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Let X be a random variable and p(x) its probability density function, F (x) = P (X ≤ x) its distribution function, and Ψ(x) = 1-F (x) its complementary distribution function. We can define a new random variable, Y n , as the maximum of n copies of the random variable X: Y n = max{X 1 , X 2 , ..., X n }. Y n is the nsample maximum of the random variable X. If the events generating the realizations of X are independent, the cumulative distribution of Y n may be expressed as [F (y)] n . Upon definition of a renormalized variable S n = (Y n -b n )/a n , the extreme value theorem establishes that Theorem If

lim n→∞ P (S n < s) = lim n→∞ F n (a n s + b n ) = H(s) (1) 
where a n > 0 and b n are normalization constants, then the function H(s) in Eq. ( 1) must be one of the three following types:

• EV1 or Gumbel: H(s) = exp(-exp(-s))

• EV2 or Fréchet:

H(s) = exp(-s -α ) • EV3 or Weibull: H(s) = exp(-|s| α )
The three asymptotic types, EV1-EV3, can be thought of as special cases of a single Generalized Extreme Value distribution (GEV) :

H GEV (s) = exp -1 + γ s -µ σ -1/γ + (2) 
where (.) + = max(., 0), µ is the location parameter, σ > 0 is the scale parameter, and γ is a shape parameter. The limit γ = 0 corresponds to the EV1 distribution, γ > 0 to the EV2 distribution (with α = 1/γ) and γ < 0 to the EV3 distribution (with α = -1/γ). The function H GEV (s) is usually fitted to the cumulative distribution of non-normalized maxima, so that the location parameter µ and the scale parameter σ are the renormalization parameters b n and a n respectively. However, it is important to note that the distribution describing the n-sample maximum will strictly be a GEV only for large values of n. How large the value of n needs to be should be determined by analyzing the convergence properties based on the observed realizations of X.

When the studied phenomena depends on a covariate, one has to deal with Conditional Extreme Value Analysis (CEVA). This branch of statistics has become very active these past ten years, the main contributions to this domain are listed below:

• Theoretical issues: [START_REF] Rao | A review on conditional extreme value analysis[END_REF][START_REF] Rao | Linear aggregation of conditional extreme-value index estimators[END_REF][START_REF] Rao | Nonlinear aggregation of conditional extreme-value index estimators[END_REF][START_REF] Das | Detecting a conditional extreme value model[END_REF][START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF][START_REF] Daouia | Kernel estimators of extreme level curves[END_REF][START_REF] Gardes | Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels[END_REF][START_REF] Gardes | Functional nonparametric estimation of conditional extreme quantiles[END_REF][START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF][START_REF] Beirlant | Local polynomial maximum likelihood estimation for pareto-type distributions[END_REF][START_REF] Ac Davison | Local likelihood smoothing of sample extremes[END_REF][START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF][START_REF] Hall | Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data[END_REF][START_REF] Das | Conditioning on an extreme component: Model consistency with regular variation on cones[END_REF][START_REF] Beirlant | Nonparametric estimation of extreme conditional quantiles[END_REF][START_REF] Abdous | Extreme behaviour for bivariate elliptical distributions[END_REF][START_REF] Wang | Estimation of high conditional quantiles for heavy-tailed distributions[END_REF][START_REF] Wang | Tail index regression[END_REF][START_REF] Goegebeur | Nonparametric regression estimation of conditional tails: the random covariate case[END_REF][START_REF] Dierckx | Local robust and asymptotically unbiased estimation of conditional pareto-type tails[END_REF] • Quantile regression: [START_REF] Koenker | Quantile regression: An introduction[END_REF][START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF][START_REF] Rosen | Extreme percentile regression[END_REF] • Application to finance: [START_REF] Byström | Managing extreme risks in tranquil and volatile markets using conditional extreme value theory[END_REF][START_REF] Bali | A conditional extreme value volatility estimator based on high-frequency returns[END_REF][START_REF] Ghorbel | Predictive performance of conditional extreme value theory in value-at-risk estimation[END_REF][START_REF] Byström | Extreme value theory and extremely large electricity price changes[END_REF][START_REF] Marimoutou | Extreme value theory and value at risk: application to oil market[END_REF][START_REF] Wang | A model of conditional var of high frequency extreme value based on generalized extreme value distribution[END_REF][START_REF] Methni | Nonparametric estimation of extreme risks from conditional heavy-tailed distributions[END_REF] Edge estimation [START_REF] Jacob | Regression and edge estimation[END_REF][START_REF] Jacob | Estimating the edge of a poisson process by orthogonal series[END_REF], frontier estimation [70, 66, 

and boundary estimation [START_REF] Girard | A note on extreme values and kernel estimators of sample boundaries[END_REF][START_REF] Girard | Smoothed extreme value estimators of non-uniform point processes boundaries with application to star-shaped supports estimation[END_REF][START_REF] Girard | Central limit theorems for smoothed extreme value estimates of poisson point processes boundaries[END_REF][START_REF] Girard | Extreme values and kernel estimates of point processes boundaries[END_REF][START_REF] Girard | Projection estimates of point processes boundaries[END_REF][START_REF] Girard | Extreme values and haar series estimates of point process boundaries[END_REF][START_REF] Hall | Local likelihood tracking of fault lines and boundaries[END_REF][START_REF] Delaigle | Estimation of boundary and discontinuity points in deconvolution problems[END_REF][START_REF] Hall | Estimating a changepoint, boundary, or frontier in the presence of observation error[END_REF][START_REF] Bi | Estimating the self-thinning boundary line as a density-dependent stochastic biomass frontier[END_REF][START_REF] Geffroy | Asymptotic normality of the l 1-error of a boundary estimator[END_REF][START_REF] Girard | On the asymptotic normality of the l1-error for haar series estimates of poisson point processes boundaries[END_REF] are particular cases of CEVA. They are embedded in the situation where the conditional extreme-value index is negative.

Our mail result is the following: Theorem Let φ1 (x), . . . , φK (x) be K consistent estimators of a boundary φ(x). Let w 1 , . . . , w K be K weights summing to one and ψ a continuous bijective function with continuous inverse ψ -1 . Then,

φ(x) := ψ -1 ( K i=1 w i ψ( φi (x)))
is a consistent estimator of the boundary φ(x).

Proof. The continuity property of ψ implies that ψ( φi (x)) converges to ψ(φ(x)) in probability. Besides, since K i=1 w i = 1, it follows that K i=1 w i ψ( φi (x)) converges to ψ(φ(x)) in probability as well and the result follows.

Let us highlight that the positivity of the weights in not required. This result extends the linear aggregation procedure of [START_REF] Rao | Linear aggregation of frontier estimators[END_REF] to the nonlinear case where the function ψ is not the identity.