N

HAL

open science

Discrimination power of measures of comparison

Maria Rifqi, Vincent Berger, Bernadette Bouchon-Meunier

» To cite this version:

Maria Rifqi, Vincent Berger, Bernadette Bouchon-Meunier.
comparison. Fuzzy Sets and Systems, 2000,

hal-01075354

HAL Id: hal-01075354
https://hal.science/hal-01075354

Submitted on 21 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Discrimination power of measures of
110, pp.189 - 196. 10.1016/S0165-0114(98)00125-0 .


https://hal.science/hal-01075354
https://hal.archives-ouvertes.fr

Discrimination power of measures of comparison

M. Rifqi 2, V. Berger ® and B. Bouchon-Meunier ®

a LIP6 — Université Pierre et Marie Curie
Case 169 — /4, Place Jussieu, 75252 Paris Cedex 05
{rifqi, bouchon}@poleia.lip6.fr

b [aboratoire Central de Recherche — Thomson-CSF
Domaine de Corbeville, 91400 Orsay

berger@thomson-ler. fr

Abstract

This paper is based on a framework [3] for a formalization of mea-
sures of comparison of fuzzy objects. The purpose is to describe the
behaviour of measures of comparison within a given family in order to
facilitate the choice of a particular measure. It can be done thanks to
the discrimination power of a measure.

1 Introduction

The comparison of two objects is a usual task for many and various domains
as psychology, statistics, fuzzy sets theory, ...Indeed, comparisons are useful
in classification for the matching step, in clustering for the construction of
classes [6], [7], in decision-making for the search of the best candidate, ...

Comparisons are usually realized by means of a measure of comparison.
The used measure is often a distance. But, more and more, a similarity or
a dissimilarity measure is chosen. But the choice of an appropriate measure
among all avalaible measures in literature is not an easy task. It is linked
to the problem of the characterization of relevant properties for the consid-
ered task. We have proposed a framework in order to deal with measures
of comparison [3]. This framework displays the main families of measures
of comparison according to the properties they satisfy. Hence, the existing
measures of comparison can be classified. And it is known that a classifica-
tion simplify a problem.



However, the problem of the choice of a measure of comparison within a
same family is still present. This paper proposes a solution to this problem.

The proposed solution lies in the discrimination power of a measure.
This way, measures can be compared among themselves according to their
behaviour. The analysis of behaviours of measures of comparison is easy
thanks to a geometrical interpretation. This geometrical interpretation is
obvious if variables stepping in family of measures are normalized.

2 Measures of comparison

In [3], we have proposed to formalize a measure of comparison between two
fuzzy sets as a function of the common elements and the distinctive elements.

Formally, for any set Q of elements, let F(2) denote the set of fuzzy
subsets of €.

Definition 1 A fuzzy set measure M is supposed to be given, that is to say
a mapping defined on F(Q) and taking values in IRT such that, for all A
and for all B in F(Q):

MI1 : M(A) =0 A=0.
MI2 : if BC A, then M(B) < M(A).

A fuzzy set measure is close to the definition of an existential evaluator
given by [9].

Definition 2 An M-measure of comparison on § is a mapping S : F(§2) X
F(Q) — [0,1] such that S(A,B) = Fs(M(AN B),M(B — A), M(A — B)),
for a given mapping Fs : IRT x IRY x IRT — [0,1] and a fuzzy set measure
M on F(Q).

We denote:
o X = M(ANB)
o Y =M(B- A)
o Z=DM(A- B)

We are interested in measures of comparison which evaluate the likeliness
of two descriptions. We have called them measures of similitude.



Definition 3 An M-measure of similitude S on Q is an M-measure of
comparison S such that Fs(X,Y,Z) is non decreasing with respect to X,
non increasing with respect to'Y and Z.

Remark Tversky’s contrast model [14] is compatible with M-measures of
similitude. Indeed, Tversky has given a relation which can be generalized
to fuzzy sets [12], [3] as follows:

S(A.B) = [(ANB)/(f(AN B) + af (A - B) + (B - A))

with «, 8 > 0. This quantity is an f-measure of similitude if f is a fuzzy set
measure.

M-measures of similitude can be distinguished more subtly in three
types: measures of satisfiability, measures of resemblance and measures of
inclusion. In this paper, we focus on the two first types of measures of
similitude.

2.1 Measures of satisfiability

A measure of satisfiability corresponds to a situation in which we consider a
reference object or a class and we need to decide if a new object is compat-
ible with it or satisfies it. More particularly, measures of satisfiability are
appropriate for rule base systems. For example, in [2] or in [1] objects are
classified by means of a decision tree. In a decision tree, a node represents
a test on the chosen attribute during the learning stage; each edge of this
node is associated with a value of the attribute. The classification of a new
object comes to find consecutive edges from the root to the leaves. In [2] and
in [1], the comparison between the value of an attribute of the new example
with test-values associated with each edge is realized by means of a measure
of satisfiability.

The satisfiability of a reference description A of F'(2) by a new descrip-
tion B defined as a fuzzy subset of €2 has been defined as follows:

Definition 4 An M-measure of satisfiability on Q is a measure S(A, B) =
Fs(X,Y,Z) such that:

e Fs is increasing with respect to X, decreasing with respect to Y and
independant of 7

Let us denote Fs.(X,Y) = Fs(X,Y, 7). Then,

e ['s.(X,0)=1 forall X



e I's.(0,Y)=0 forallY #0

With this definition, satisfiability can a priori be different with two pairs
of fuzzy sets distinctive only because of the scale. It is desirable that a
satisfiability measure depends only on the relative weights of X and Y and
not on the scale of the system. In order to obtain an objective measure, we
propose to normalize the satisfiability measure.

A B

X =400 X =40
Y =300 Y’ =30

S(A,B)£S(A’,B’)

Normalization

vV

x=x"=0.8
y=y =06

S(A,B) = S(A’, B)

Figure 1: The effect of the normalization on measures of satisfiability

We consider:

X
x = ——— the reduced intersection
XZ24+Y?
Y e
y = ————— the reduced distinctive feature
X?24+Y?2



Figure 1 shows the differences of behaviour between the two definitions
of measures of satisfiability.

As 2% 4+ y? = 1, the domain of definition of the measure of satisfiability
is a quarter of circle. It can be described by a unique argument ¢, with
¢ = arctan £. We denote the measure of satisfiability S(A, B) = n(¢).

The conditions of definition 4 become:

e 7 is decreasing with respect to ¢.
e (3) =0

e n(0)=1

reduced intersection

increasing satisfiability

reduced distinctive
feature

(AmB)

Figure 2: New representation of a measure of satisfiability

This new form of a measure of satisfiablity, expressed by a unique vari-
able, has the advantage not to be dependent upon the size of the system.
Furthermore, this normalization makes the definition of a measure of satis-
fiability more simple insofar as the argument is a segment [0, 7] and not a
quarter of plan.

There are of course many possible choices for the satisfiability measure
7 satisfying these three conditions. Among them, let us distinguish the two
following forms:

o N(p)=1- %qﬁ It is the linear satisfiability function.

o 72(¢) = cos¢. This function has the advantage of presenting a mean-
ingful physical insight. If we represent the reference set A by the



(1,0) vector V; in figure 2. If we describe each set B and its related
point (z,y) by a vector V5 from the origin, 7:(¢) is the scalar product
Vi Vz. When the two vectors are orthogonal, then the satisfiability
vanishes: S(A, B) = 0. This is a good signification of orthogonality.
More generally, the satisfiability appears as a projection, and the lack
of satisfiability is represented as a deviation in figure 2: this is an
intuitive notion of satisfiability.

We can also focus on the following measures which are known in the
literature:

e S(A,B)= %%l, which is usually defined with M the sigma-count,

can be also written: ns3(¢) = m
e S(A,B)=1-M(B-A) was introduced in [4] with M (A)

fA(LE) if fB(ZI?) = 0_
0 if fp(z) >0

sup, fa(z)
and with the difference f4_p(z) = { . It can be

also written: n4(¢) = 1 —sin ¢.

1 N I I I I
NN cos(9) —
0.8 - SO 1 —sin(¢) —— ]
O+ tan(9))
0.6 O 12k ¢/ —
\\\
04 R \\ -
N N
L S AN _
0.2 ~ A
>~ o N
0 \ \ \ \ \ |~ ~4

0 02 04 06 08 1 12 1.4

Figure 3: Satisfiability measures

Figure 3 displays the behaviour of various mentioned measures of satis-
fiability. We can see that:

e 7 is linearly discriminant: satisfiability decreases linearly with the
deviation.

e 73 is discriminant for low satisfiability: a small difference between a
set and the reference is tolerated.



e 74 is discriminant for high satisfiablity: a small difference between a
set and the reference is not tolerated.
Remark 7, and 7, are symmetrical relatively to (I, 1): na(5—¢) =
1=12(#). 12 has a low discrimination power for high satisfiability, and
a high discrimination power for poor satisfiability, whereas 7, does

exactly the reverse.

e 73 is discriminant for high and low satisfiability at the same time.
For high satisfiability, this measure is between the linearly discrimi-
nant measure and the low satisfiability discriminant measure. For low
satisfiability, it is between the linearly discriminant measure and the
high satisfiability discriminant measure. But it is low discriminant for

n(¢) =1/2.

We can consider that the discrimination power of a measure of satisfia-
bility is given by the derivative 7’(¢) of 7. For instance, for small and large
differences between a set and the reference that is to say for ¢ = 0 or ¢ = J:

o 71(d) = —%, for all ¢.

e 74(0

In general, for every possible 7, we have:

s

|7 were = nG) - n0) = -1

This means that the total discrimination power 7'(¢) has to be dis-
tributed on the [0, 7] interval, but a high discrimination power somewhere
implies a low discrimination power elsewhere, the integral being constant.

Accordingly, it is necessary to choose a measure with a discrimination
power suitable for the considered application. This suggests a method of
construction of a measure of satisfiability. The choice of the discrimination
power is the first step. Then 7 is obtained by integration of this function
1'(9)-

For instance, a function with a high discrimination power for n(¢) = 1/2
but a low discrimination for 7(¢) = 0 and 7(¢) = 7 is needed. This kind
of measures means that if a description is not far from the reference, then

the satisfiability is near from 1 because the difference is not significative.



If a description is very far from the reference, we can consider that the
satisfiability is null. The example of this method of self-construction is
illustrated in figure 4.

Once the behaviour of the wanted measure is known, the measure 7
can be computed thanks to the discrimination power 7’. For instance, the
discrimination power can be considered:

e constant by intervals. In this case, 7 is piecewise linear (see figure 4).

7'(¢) n(¢)

 —— inte

Figure 4: Construction of a measure of satisfiability with a constant by
intervals discrimination power

This rigid shape of function is not very satisfactory for a measure of
satisfiability.

e A better measure is derived from a discrimination power with a more

gradual form. Let us give two possible solutions:
9 . . / _ 1

1. the Lorentz’s function: 7'(¢) = W

T

_ (6—¢0)?
2. the Gaussian function: 7/(¢) = exp™ 12

normalized on [0, 7] (see figure 5). I' is a parameter which allows a

fine control.

Finally, we would like to give the exemple of an interesting function for
the measure of satisfiability using the Fermi-Dirac function. The analytic

form is:
1

Frp(9) = — o5y

l+exp™T
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Figure 5: Discrimination power defined by Lorentz and Gaussian functions

and
(6) = Frp(¢) — Frp(3)
Frp(0) — Frp(%)
n(¢) reflects essentially the Fermi-Dirac function. The above expression is
used to ensure that 7(0) = 1 and n(§) = 0.

= S

r=0.
0.8 - | r=0.
0.6 - |
04 - I

|
0.2 - |
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0 02 04 06 08 1 12 14

Figure 6: The Fermi-Dirac measure of satisfiability

The interest of this function lies on its physical meaning: in a physical
system of temperature 7', containing a statistical set of states, the Fermi-
Dirac function describes the statistical probability that a state of energy ¢
is filled or not, with I' = kT, where k is the Boltzmann constant. Hence, it
describes the probability of a state to belong to the Fermi sea [5] which is a



good illustration of satisfiability. [' controls the decrease of the curve. The
choice of I' enables to define a measure of satisfiability more or less severe,
as shown on figure 6.

2.2 Measures of resemblance

We are now interested in resemblance measures.

A measure of resemblance is used for a comparison between the descrip-
tions of two objects, of the same level of generality, to decide if they have
many common characteristics.

Measures of resemblance are appropriate for a case-based reasoning or
an instance-based learning. In clustering methods, distances can be replaced
by a measure of resemblance. More generally, similarity-based classification
methods [10], [11] have to use resemblance measures as soon as all objects
have the same level of generality.

Definition 5 An M-measure of resemblance on Q is a measure S(A, B) =
Fs(X,Y,Z) such that:

e Fs is increasing with X and decreasing with Y and Z

o I'5(X,0,0)=1 for all X

o I's(X.Y,Z)=Fs(X,Z,Y).

M-measures of resemblance which satisfy an additional property of ¢-
transitivity, for a triangular norm ¢, are extensions of indistinguishability
relations [13], [15] to fuzzy sets. In the case where ¢ is the minimum, we
obtain extensions of measures of similarity.

M-measures of resemblance satisfying the property of exclusiveness:

Fs(0,Y,Z)=0 forall (Y,Z)# (0,0)

are called exclusive M-measures of resemblance. We focus on them in the
sequel.

Following our normalization procedure, we define:
X

B Y

N, eFn w2
A

VX2 +Y24 22

10



for (X,Y, Z) # (0,0,0). Similarly to the the case of measures of satisfiability,
this ensures that an exclusive measure of resemblance is not dependent on
the scale of the problem.

The domain of study is now restricted to a piece of the unity sphere since
22 4+ y2 4+ 22 = 1. We have now to find the exclusive resemblance 1 which
satisfies the symmetry property u(z,y, z) = p(z, z,y).

Geometrically, the sphere is simply obtained by a rotation of the satis-

fiability circle around the z-axis (see figure 7). The vector representation is
still valid.

A=B
Plane y = 0 Vi Plane z = 0
B-A=0 A-B=10
B 4 4 B
Y Vs
Yy
Plane 2 =0
ANB=10

B
A

O o

Figure 7: New representation of an exclusive measure of resemblance

Let us consider p = &(y, z) with £(y, z) = &(z,y). This means that p can
be described by any symmetrical function with respect to y and z.

Let us look for an expression of v(z, p) = p(z,y, z). By definition, an
exclusive measure of resemblance is symmetrical with respect to (Y, 7), (see

11



Definition 5). And we have:

v(0.p) = 0ifp#0
v(z,0) = 1Va

These conditions show that the problem has been reduced to a satisfi-
ability measure. We can therefore use again the solution described in the
preceding section dealing with satisfiability. With this definition of p, an
exclusive resemblance appears as a satisfiability where a global distinctive
feature p is defined by p = £(y, z), from the two individual distinctive fea-
tures y and z (see Figure 8).

Satisfiability Resemblance

(z,y) == (2,p)
with p = €(y, 2)

Figure 8: Correspondance between saistisfiability measures and exclusive
resemblance measures

We can also consider different exclusive measures of resemblance as
we have already done with measures of satisfiability. Let us define ¢ =
0
arctan(Z-) with p® =y + 2.

e vy = —L5y = —L_ This measure corresponds to the measure of
1+ 1+tan

satisﬁabilmity n3. Furthermore, vy can be also written as: S(A4,B) =
TCgs with M such that: M(AU B) = M(AN B) + M(A - B) +

M (B — A). This measure was introduced in [8].

Other definitions of p can be envisaged, for instance:

p/ — /y2 + 22
or B = (V4

The choice of a particular form of p has an effect on the measure of
resemblance because this parameter represents distinctive elements. We can
notice that:

p'>p°>p Yy, = (1)

12



As p has a decreasing effect on an exclusive measure of resemblance, rela-

tion (1) implies that:

for a given z and for all y and 2, v"(z,p") < v(z,p°) < V'(z,p)

(2)

Relation (2) means that v”(z,p"”) penalizes more the differences between

two sets than v(z, p%) and that v(z, p°
v'(z,p’). Furthermore, a particular p i
y and z as it is illustrated in Figure 9.

it means that y >> 2z or z >> y, or inj
means that y = z, the behaviours of a

P= (VY
i Uyéalancedxfferences

y=0 z=25
B A

Py =5
/7N
AN

Py =9

Yy
H‘ b = 9.9

Balanced differences

P

penalizes more t]
5 sensitive to the g

he differences than

ymmetry between
es are unbalanced

ndeed, if differeng
versely, if differenc
given p are not th

0

V7)? PP=y+z

es are balanced, if]
e same.

nce

Figure 9: The effects of different definitions of p on exclusive measures of

resemblance.

3 Conclusion

This paper gives an explicit method to choose a measure of comparison.
This methods consists in two major points:

1. the choice of the appropriate family of measures of comparison.

13



2. the choice of the appropriate measure in the chosen family of measures
of comparison.

The first choice was described in details in [3]. This paper focuses more
on the second point. It establishes the notion of discrimination power which
enables to describe precisely the behaviour of a measure. Therefore, it is
possible to choose a particular measure among measures of same family that
the chosen one because of its particular power of discrimination.
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