
HAL Id: hal-01075344
https://hal.science/hal-01075344

Submitted on 17 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Combining PCFG-LA Models with Dual Decomposition:
A Case Study with Function Labels and Binarization

Joseph Le Roux, Antoine Rozenknop, Jennifer Foster

To cite this version:
Joseph Le Roux, Antoine Rozenknop, Jennifer Foster. Combining PCFG-LA Models with Dual De-
composition: A Case Study with Function Labels and Binarization. the 2013 Conference on Empirical
Methods in Natural Language Processing, Association of Computational Linguistics, Oct 2013, Seattle,
United States. pp.1158-1169. �hal-01075344�

https://hal.science/hal-01075344
https://hal.archives-ouvertes.fr


Combining PCFG-LA Models with Dual Decomposition: A Case Study with

Function Labels and Binarization

Joseph Le Roux†, Antoine Rozenknop†, Jennifer Foster∗

† Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
∗ NCLT/CNGL, School of Computing, Dublin City University, Dublin 9, Ireland

joseph.leroux@lipn.fr antoine.rozenknop@lipn.fr jfoster@computing.dcu.ie

Abstract

It has recently been shown that different NLP

models can be effectively combined using

dual decomposition. In this paper we demon-

strate that PCFG-LA parsing models are suit-

able for combination in this way. We exper-

iment with the different models which result

from alternative methods of extracting a gram-

mar from a treebank (retaining or discarding

function labels, left binarization versus right

binarization) and achieve a labeled Parseval

F-score of 92.4 on Wall Street Journal Sec-

tion 23 – this represents an absolute improve-

ment of 0.7 and an error reduction rate of 7%

over a strong PCFG-LA product-model base-

line. Although we experiment only with bina-

rization and function labels in this study, there

is much scope for applying this approach to

other grammar extraction strategies.

1 Introduction

Because of the large amount of possibly contra-

dictory information contained in a treebank, learn-

ing a phrase-structure-based parser implies making

several choices regarding the prevalent annotations

which have to be kept – or discarded – in order to

guide the learning algorithm. These choices, which

include whether to keep function labels and empty

nodes, how to binarize the trees and whether to alter

the granularity of the tagset, are often motivated em-

pirically by parsing performance rather than by the

different aspects of the language they may be able to

capture.

Recently Rush et al. (2010), Martins et al. (2011)

and Koo et al. (2010) have shown that Dual De-

composition or Lagrangian Relaxation is an elegant

S

fedcb

(a) Original example

S

〈S〉

〈S〉

〈S〉

fe

d

c

b

(b) Left Binarized example

S

f〈S〉

e〈S〉

d〈S〉

cb

(c) Right Binarized example

Figure 1: Binarization with markovization

framework for combining different types of NLP

tasks or for building parsers from simple slave pro-

cesses that only check partial well-formedness. Here

we propose to follow this idea, but with a different

objective. We want to mix different parsers trained

on different versions of a treebank each of which

makes some annotation choices in order to learn

more specific or richer information. We will use

state-of-the-art unlexicalized probabilistic context-

free grammars with latent annotations (PCFG-LA)

in order to compare our approach with a strong base-

line of high-quality parses. Dual Decomposition is

used to mix several systems (between two and four)

that may in turn be combinations of grammars, here

products of PCFG-LAs (Petrov, 2010). The systems

being combined make different choices with regard

to i) function labels and ii) grammar binarization.

Common sense would suggest that information in

the form of function labels – syntactic labels such as

SBJ and PRD and semantic labels such as TMP and

LOC – might help in obtaining a fine-grained anal-

ysis. On the other hand, the independence hypothe-



sis on which CFGs rely and on which most popular

parsers are based may be too strong to learn the de-

pendencies between functions across the parse trees.

Also, the number of parameters increases with the

use of function labels and this can affect the learn-

ing process.

At first glance, binarization need not be an is-

sue, as CFGs admit a binarized form recognizing

exactly the same language. But binarization can be

associated with horizontal markovization and in this

case the recognized language will differ. Further-

more this can impose an unwanted emphasis on what

frontier information is more relevant to learning (be-

ginning or end of constituents). In the toy exam-

ple of Figure 1, the original grammar consisting of a

unique rule extracted from one tree only recognizes

the string bcdef, while the grammar learned from

the left binarized and markovized tree recognizes

(among others) bcdef and bdcef and the gram-

mar learned from the right binarized and markovized

tree recognizes (among others) bcdef and bcedf.

We find that i) retaining the function labels in non-

terminal categories loses its negative impact on pars-

ing as the number of grammars increases in PCFG-

LA product models, ii) the function labels them-

selves can be recovered with near state-of-the-art-

accuracy, iii) combining grammars with and without

function labels using dual decomposition is bene-

ficial, iv) combining left and right-binarized gram-

mars using dual decomposition also leads to bet-

ter trees and, v) our best results (a Parseval la-

beled F-score of 92.4, a Stanford labeled attach-

ment score (LAS) of 93.0 and a penn2malt unla-

beled attachment score (UAS) of 94.3 on Section 23

of the Wall Street Journal) are obtained by combin-

ing three grammars which encode different function

label/binarization decisions.

The paper is organized as follows. § 2 reviews

related work. § 3 presents approximate PCFG-LA

parsers as linear models, while § 4 shows how we

can use dual decomposition to derive an algorithm

for combining these models. Experimental results

are presented and discussed in § 5.

2 Related Work

Parser Model Combination It is well known that

improved parsing performance can be achieved by

leveraging the alternative perspectives provided by

several parsing models rather than relying on just

one. Examples are parser co-training (Steedman

et al., 2003; Sagae and Tsujii, 2007), voting over

phrase structure constituents or dependency arcs

(Henderson and Brill, 1999; Sagae and Tsujii, 2007;

Surdeanu and Manning, 2010), dependency pars-

ing stacking (Nivre and McDonald, 2008), product

model PCFG-LA parsing (Petrov, 2010), using dual

decomposition to combine dependency and phrase

structure models (Rush et al., 2010) or several non-

projective dependency parsing models (Koo et al.,

2010; Martins et al., 2011), and using expecta-

tion propagation, a related approach to dual decom-

position, to combine lexicalized, unlexicalized and

PCFG-LA models (Hall and Klein, 2012). In this

last example, the models must factor in the same

way: in other words, the grammars must use the

same binarization scheme. In our study, we employ

PCFG-LA product models with dual decomposition,

and we relax the constraints on factorization, as we

require only a loose coupling of the models.

Function Label Parsing Although function labels

have been available in the Penn Treebank (PTB) for

almost twenty years (Marcus et al., 1994), they have

been to a large extent overlooked in English parsing

research — most studies that report parsing results

on Section 23 of the Wall Street Journal (WSJ) use

parsing models that are trained on a version of the

WSJ trees where the function labels have been re-

moved. Notable exceptions are Merlo and Musillo

(2005) and Gabbard et al. (2006) who each trained

a parsing model on a version of the PTB with func-

tion labels intact. Gabbard et al. (2006) found that

parsing accuracy was not affected by keeping the

function labels. There have also been attempts to

use machine learning to recover the function labels

post-parsing (Blaheta and Charniak, 2000; Chrupala

et al., 2007). We recover function labels as part of

the parsing process, and use dual decomposition to

combine parsing models with and without function

labels. We are not aware of any other work that

leverages the benefits of both types of models.

Grammar Binarization Matsuzaki et al. (2005)

compare binarization strategies for PCFG-LA pars-

ing, and conclude that the differences between them

have a minor effect on parsing accuracy as the num-



ber of latent annotations increases beyond two. Hall

and Klein (2012) are forced to use head binarization

when combining their lexicalized and unlexicalized

parsers. Dual decomposition allows us to combine

models with different binarization schemes.

3 Approximation of PCFG-LAs as Linear

Models

In this section, we explain how we can use PCFG-

LAs to devise linear models suitable for the dual de-

composition framework.

3.1 PCFG-LA

Let us recall that PCFG-LAs are defined as tuples

G = (N , T ,H,RH, S, p) where:

• N is a set of observed non-terminals, among

which S is the distinguished initial symbol,

• T is a set of terminals (words),

• H is a set of latent annotations or hidden states,

• RH is a set of annotated rules, of the form

a[h1] → b[h2] c[h3] for internal rules1 and

a[h1] → w for lexical rules. Here a, b, c ∈ N
are non-terminals, w ∈ T is a terminal and

h1, h2, h3 ∈ H are latent annotations. Follow-

ing Cohen et al. (2012) we also define the set of

skeletal rules R, in other words, rules without

hidden states, of the form a → b c or a → w.

• p : RH → R≥0 defines the probabilities asso-

ciated with rules conditioned on their left-hand

side. Like Petrov and Klein (2007), we impose

that the initial symbol S has only one latent an-

notation. In other words, among rules with S

on the left-hand side, only those of the form

S[0] → γ are in RH.

With such a grammar G we can define probabil-

ities over trees in the following way. We will con-

sider two types of trees, annotated trees and skeletal

trees. An annotated tree is a sequence of rules from

RH, while a skeletal tree is a sequence of skeletal

rules from R. An annotated tree TH is obtained by

left-most derivation from S[0]. Its probability is:

1For brevity and without loss of generality, we omit unary

and n-ary rules, as PCFG-LA admit a Chomsky normal form.

p(TH) =
∏

r∈TH

p(r) (1)

We define a projection ρ from annotated trees to

skeletal trees. ρ(TH) is a tree T isomorphic to TH

with the same terminal and non-terminal symbols la-

beling nodes, without hidden states. The probability

of a skeletal tree T is a sum of the probabilities of

all annotated trees that admit T as their projection.

p(T ) =
∑

TH∈ρ−1(T )

∏

r∈TH

p(r) (2)

PCFG-LA parsing amounts to, given a sequence

of words, finding the most probable skeletal tree

with this sequence as its yield according to a gram-

mar G:

T ∗ = argmax
T

∑

TH∈ρ−1(T )

∏

r∈TH

p(r) (3)

Because of this alternation of sum and products,

the parsing problem is intractable. Moreover, the

PCFG-LAs do not belong to the family of linear

models that are assumed in the Lagrangian frame-

work of (Rush and Collins, 2012). We now turn to

approximations for the parsing problem in order to

address both issues.

3.2 Variational Inference and MaxRule

Variational inference is a common technique to ap-

proximate a probability distribution p with a cruder

one q, as close as possible to the original one,

by minimizing the Kullback-Liebler divergence be-

tween the two – see for instance (Smith, 2011),

chapter 5 for an introduction. Matsuzaki et al.

(2005) showed that one can easily find such a cruder

distribution for PCFG-LAs and demonstrated exper-

imentally that this approximation gives good results.

More precisely, they find a PCFG that only rec-

ognizes the input sentence where the probabilities

q(rs) of the rules are set according to their marginal

probabilities in the original PCFG-LA parse forest.

The parameters rs are skeletal rules with span infor-

mation. Distribution q is defined in Figure 2.

Other approximations are possible. In particu-

lar, Petrov and Klein (2007) found that normaliz-

ing by the forest probability (in other words the in-

side probability of the root node) give better exper-



score(a→ b c, i, j, k) =
∑

x,y,z∈H

P
i,k
out

(

a[x]
)

· p
(

a[x]→ b[y] c[z]
)

· P i,j

in

(

b[y]
)

· P j,k

in

(

c[z]
)

norm(a→ b c, i, j, k) =
∑

x∈H

P
i,k

in

(

a[x]
)

· P i,k
out

(

a[x]
)

score(a→ w, i) =
∑

x∈H

P
i,i
out

(

a[x]
)

· p
(

a[x]→ w
)

norm(a→ w, i) =
∑

x∈H

P
i,i

in

(

a[x]
)

· P i,i
out

(

a[x]
)

q(rs) =

[

score(rs)

norm(rs)
(Variational Inference)

]

or

[

score(rs)

P
0,n
in (S[0])

(MaxRule-Product)

]

Figure 2: Variational Inference for PCFG-LA. Pin and Pout denote inside and outside probabilities.

imental results although its interpretation as varia-

tional inference is still unclear. This approximation

is called MaxRule-Product and amounts to replacing

the norm function (see Figure 2).

In both cases, the probability of a skeletal tree

now becomes a simple product of parameters asso-

ciated with anchored skeletal rules. For our purpose,

the consequence is twofold:

1. The parsing problem becomes tractable by ap-

plying standard PCFG algorithms relying on

dynamic programming (CKY for example).

2. Equivalent to probability, a score σ can be de-

fined as the logarithm of the probability. The

parsing problem becomes2:

T ∗ = argmax
T

∏

rs∈T

q(rs)

= argmax
T

∑

rs∈T

log q(rs)

= argmax
T

∑

rs∈F

wrs · 1{rs ∈ T}

= argmax
T

σ(T )

Thus, from a PCFG-LA we are able to de-

fine a linear model whose parameters are the log-

probabilities of the rules in distribution q.

2We denote the parse forest of a sentence by F and the char-

acteristic function of a set by 1.

3.3 Products of PCFG-LAs

Although PCFG-LA training is beyond the scope

of this paper, it is worthwhile mentioning that the

most common way to learn their parameters relies

on Expectation-Maximization which is not guaran-

teed to find the optimal estimation. Fortunately, this

can be partly overcome by combining grammars that

only differ on the initial parameterization of the EM

algorithm. The probability of a skeletal tree is the

product of the probabilities assigned by each single

grammar Gi.

T ∗ = argmax
T

n∏

i=1

qGi
(T ) (4)

Since grammars only differ by their numerical pa-

rameters (i.e. skeletal rules are the same), inference

can be efficiently implemented using dynamic pro-

gramming (Petrov, 2010).

Scoring with n such grammars now becomes:

T ∗ = argmax
T

n∑

i=1

∑

r∈T

log qGi
(r) (5)

= argmax
T

∑

r∈T

n∑

i=1

log qGi
(r) (6)

The distributions qGi
still have to be computed in-

dependently – and possibly in parallel – but the final

decoding can be performed jointly. This is still a

linear model for PCFG-LA parsing, but restricted to

grammars that share the same skeletal rules.



4 Dual Decomposition

In this section, we show how we derive an algorithm

to work out the best parse according to a set of n

grammars that do not share the exact same skele-

tal rules. As such, the grammars’ product cannot

be easily conducted inside the parser to produce and

score a same and unique best tree, and we now con-

sider a c(ompound)-parse as a tuple (T1 . . . Tn) of

n compatible trees. Each grammar Gi is responsi-

ble for scoring tree Ti, and we seek to obtain the

c-parse that maximizes the sum of the scores of its

different trees. For a c-parse to be consistent, we

have to precisely define the parts on which the trees

must agree to be compatible with each other, so that

we can model these as agreement constraints.

4.1 Compound Parse Consistency

Let us suppose we have a set of phrase-structure

parsers trained on different versions of the same

treebank. Hence, some elements in the charts will

either be the same or can be mapped to each other

provided an equivalence relation and we define con-

sensus between parsers on these elements.

When the grammar is not functionally annotated,

phrase-structure trees can be decomposed into a set

of anchored (syntactical) categories Xs, asserting

that a category X is in the tree at position3 s. Thus,

such a tree T can be described by means of a boolean

vector z(T ) indexed by anchored labels Xs, where

z(T )Xs = 1 if Xs is in T and 0 otherwise.

We will differentiate the set of natural non-

terminals that occur in the treebanks from the set

of artificial non-terminals that do not occur in the

treebank and are the results of a binarization with

markovization. As these artificial non-terminals dis-

appear after reversing binarization in solution trees,

they do not play any role in the consensus between

parsers, and we only consider natural non-terminals

in the set of anchored labels.

When the grammar is functionally annotated,

each label X̄ in a tree is a pair (X,F ), where X

is a syntactical category and F is a function label.

In this case, in order to manage the consensus with

3The anchor s of a label is composed of the span (i, j), de-

noting that the label covers terminals of the input sentence from

index i to index j. In case the grammar contains unary non-

lexical rules, the anchor also discriminates the different posi-

tions in a sequence of unary rules.

non-functional grammars, we decompose such a tree

into two sets: a set of anchored categories Xs and a

set of anchored function labels Fs. Thus, a tree T

can be described by means of two boolean vectors:

• z(T ) indexed by anchored categories Xs,

z(T )Xs = 1 if there exists a function label F

so that (X,F )s is in T , and 0 otherwise;

• ζ(T ) indexed by anchored function labels Fs,

ζ(T )Fs = 1 if there exists a category X so that

(X,F )s is in T , and 0 otherwise.

In the present work, a compound parse (T1 . . . Tn)
is said to be consistent iff every tree shares the same

set of anchored categories, i.e. iff:

∀(i, j) ∈ J1, nK2, z(Ti) = z(Tj)

4.2 Combining Parsers through Dual

Decomposition

Like previous applications, we base our reasoning

on the assumption that computing the optimal score

with each grammar Gi can be efficiently calculated,

which is the case for approximate PCFG-LA pars-

ing. We follow the presentation of the decomposi-

tion from (Martins et al., 2011) to explain how we

can combine several PCFG-LA parsers together.

For a sentence s, we want to obtain the best con-

sistent compound parse from a set of n parsers:

(P ) : find argmax
(T1...Tn)∈C

n∑

p=1

σp(Tp) (7)

s.t. ∀(i, j) ∈ J1, nK2, z(Ti) = z(Tj) (8)

where C = F1(s) × ... × Fn(s) is the product of

parse forests F i(s), and F i(s) is the set of trees in

grammar Gi whose yields are the input sentence s.

Solving this problem with an exact algorithm is

intractable. While artificial nodes could be inferred

using a traditional parsing algorithm based on dy-

namic programming (i.e. CKY), the natural nodes

require a coupling of the parsers’ items to enforce

the fact that natural daughter nodes must be identical

(or equivalent) with the same spans for all parsers.

Since the debinarization of markovized rules enables

the creation of arbitrarily long n-ary rules, in the

worst case the number of natural daughters to check

is exponential in the size of the span to infer. Even if



we bound the length of debinarized rules, the prob-

lem is hardly tractable.

As this problem is intractable, even for approxi-

mate PCFG-LA parsing, we apply the iterate method

presented in (Komodakis et al., 2007) for MRFs,

also applied for joint tasks in NLP such as combined

parsing and POS tagging in (Rush et al., 2010).

First, we introduce a witness vector u in order to

simplify constraints in (8). Problem (P ) can then be

written in an equivalent form :

(P ) : find oP = max
(T1...Tn)∈C

n∑

i=1

σi(Ti) (9)

s.t. ∀i ∈ J1, nK, z(Ti) = u (10)

Next, we proceed to a Lagrangian decomposition.

This decomposition is a two-step process:

Step 1 (Relaxation): the coupling constraints (10)

are removed by introducing a vector of Lagrange

multipliers Λi = (λi,Xs)Xs for each parser i, in-

dexed by anchored categories Xs, and writing the

equivalent problem:

(RP ) : oRP = max
u, T1...n

min
Λ

f(u, T1...n,Λ)

where:

f(u, T1...n,Λ) =
∑

i

σi(Ti) +
∑

i

(z(Ti)− u) · Λi

Intuitively, we can see the equivalence of (RP )
and (P ) with the following reasoning:

• whenever all constraints (10) are met, the sec-

ond sum in f is nullified and f(u, T1...n,Λ) =∑
i σi(Ti), which is a finite value and precisely

the objective function maximized in (P );

• if there is at least one (i,X, s) such that

z(Ti)Xs 6= uXs , then the value of
∑

i(z(Ti) −
u) · Λi can be made arbitrarily small by

an appropriate choice of λi,Xs ; in this case,

minΛ f(u, T1...n,Λ) = −∞. Thus, (RP ) can

not reach its maximum at a point where con-

straints (10) are not satisfied.

Step 2 (dualization): the dual problem (LP ) is ob-

tained by permuting max and min in (RP ):

(LP1) : oLP = min
Λ

max
u, T1...n

f(u, T1...n,Λ)

Finally, u can be removed from (LP1) by adding

the constraint:
∑

i Λi = 0. As a matter of fact,

one can see that if this constraint is not matched,

maxu,T1...n f(u, T1...n,Λ) = +∞ and (LP1) can

not reach its minimum on such a point. We can now

find the maximum of f by maxing each Ti indepen-

dently of each other. The dual problem becomes:

(LP ) : oLP = min
Λ

n∑

i=1

max
Ti∈F i

(σi(Ti) + z(Ti) · Λi)

s.t.
∑

i

Λi = 0

Minimization in (LP ) can be solved iteratively

using the projected subgradient method. Finding a

subgradient amounts to computing the optimal so-

lution (Rush and Collins, 2012) for each of the n

subproblems (the slave problems in the terminol-

ogy of (Martins et al., 2011) and (Komodakis et al.,

2007)) which can be done efficiently, by incorpo-

rating the calculation of the penalties in the parsing

algorithm, and in parallel. Until the agreement con-

straints are met (or a maximal number of iterations

τ ), the Lagrangian multipliers are updated according

to the deviations from the average solutions (i.e. up-

dates are zeros for a natural span if the parsers agree

on it). This leads to Algorithm 1.

It should be noted that the DP charts are built and

pruned during the first iteration only (t = 0); fur-

ther iterations do not require recreating the DP chart,

which is memory intensive and time consuming, nor

recomputing the approximate distribution for varia-

tional inference. As DP on the pruned charts is a fast

process, the bottleneck of the algorithm still is in the

first calculation of slave solutions.

The stepsize sequence (αt)0≤t must be diminish-

ing and non-summable, that is to say: ∀t, αt ≥ 0,

limt→∞ αt = 0 and
∑∞

t=0 αt = ∞. In practice, we

set αt =
1

1+c(t) where c(t) is the number of times the

objective function oP has increased since iterations

began.

Solving (P): it is easy to see that oLP is an up-

per bound of oP , but we do not necessarily have



Algorithm 1 Find best compound parse with con-

straints on natural spans

Require: n parsers {pi}1≤i≤n

for all i, syntactical category X , anchor s do

λ
(0)
i,Xs

= 0
end for

for t = 0→ τ do

for all parsers pi do

T
(t)
i ← argmaxT∈Fi

(

σi(T ) + z(T ) · Λ
(t)
i

)

end for

for all parsers pi do

∆
(t)
i ← αt

(

z
(

T
(t)
i

)

−
∑

1≤j≤n z
(

T
(t)
j

)

n

)

Λ
(t+1)
i ← Λ

(t)
i +∆

(t)
i

end for

if ∆
(t)
i = 0 for all i then

Exit loop

end if

end for

return (T
(τ)
1 , · · · , T

(τ)
n )

strong duality (i.e. oLP = oP ) due to the facts that

parse forests are discrete sets. Furthermore, they get

pruned independently of each other. Thus, the algo-

rithm is not guaranteed to find a t such that z(T
(t)
i )

is the same for every parser i. However – see (Koo

et al., 2010) – if it does reach such a state, then we

have the guarantee of having found an exact solution

of the primal problem (P ). We show in the experi-

ments that this occurs very frequently.

5 Experiments

5.1 Experimental Setup

We perform our experiments on the WSJ sections of

the PTB with the usual split: sections 2 to 21 for

training, section 23 for testing, and we run bench-

marks on section 22. evalb is used for evaluation.

We use the LORG parser modified with Algo-

rithm 1. 4 All grammars are trained using 6

split/merge EM cycles. For the handling of unknown

words, we removed all words occurring once in the

training set and replaced them by their morpholog-

ical signature (Attia et al., 2010). Grammars for

products are obtained by training with 16 random

seeds for each setting. We use the approximate al-

4The LORG parser is available at https://github.

com/CNGLdlab/LORG-Release and the modification at

https://github.com/jihelhere/LORG-Release/

tree/functional_c11.

gorithm MaxRule-Product (Petrov and Klein, 2007).

The basic settings are a combination of the two

following parameters:

left or right binarization: we conjecture that this

affects the quality of the parsers by impacting the

recognition of left and right constituent frontiers.

We set vertical markovization to 1 (no parent anno-

tation) and horizontal markovization to 0 (we drop

all left/right annotations).

with or without functional annotations: in par-

ticular when non-terminals are annotated with mul-

tiple functions, all are kept.

5.2 Products of Grammars

We first evaluate each setting on its own before com-

bining them. We test the 4 different settings on the

development set, using a single grammar or a prod-

uct of n grammars. Results are reported on Figure 3.

We can see that right binarization performs better

than left binarization. Contrary to the results of Gab-

bard et al. (2006), function labels are detrimental for

parsing performance for one grammar only. How-

ever, they do not penalize performance when using

the product model with 8 grammars or more.

n

F

1 2 4 8 16
89

90

91

92

93
Func Right

No Func Right
No Func Left

Func Left

Figure 3: F1 for products of n grammars on the dev. set

EM is not guaranteed to find the optimal model

and the problem is made harder by the increased

number of parameters. Product models effectively

alleviate this curse of dimensionality by letting some

models compensate for the errors made by others.

On the other hand, as differences between left

and right binarization settings remain over all prod-

uct sizes, right binarization seems more useful on

its own. The first part of Table 1 gives F-score and



Exact Match results of the product models with 16

grammars on the development set.

5.3 Combinations with Dual Decomposition

We now turn to a series of experiments combining

product models of 16 grammars. In all these experi-

ments, we set the maximum number of iterations in

Algorithm 1 to 1000. The system then returns the

first element of the c-parse. We first try to combine

two settings in four different combinations:

DD Right Bin the two right-binarized systems –

with and without functions – the system returns

the function-labeled parse;

DD Left Bin the two left-binarized systems – with

and without functions – the system returns the

function-labeled parse;

DD Func the two systems with functions – left and

right binarization – the system returns the right-

binarized parse;

DD No Func the two systems without functions –

left and right binarization – the system returns

the right-binarized parse;

Results are in the second part of Table 1. Un-

surprisingly, the best configuration is the one com-

bining the two best product systems (with right bi-

narization) but all combined systems perform better

than their single components.

Setting F EX

No Func Right 92.26 42.97

No Func Left 91.92 42.91

Func Right 92.37 43.35

Func Left 91.95 43.15

DD Right Bin 92.71 44.44

DD Left Bin 92.23 43.97

DD Func 92.51 44.79

DD No Func 92.52 44.08

DD3 92.86 45.03

DD4 92.82 45.14

Table 1: Parse evaluation on development set.

We also combine 3 and 4 parsers to see if combin-

ing the above DD Right Bin setting with informa-

tion that could improve the recognition of beginning

of constituents can be helpful. We have 2 settings:

DD3 The 2 right-binarized parsers combined with

the left binarized parser without functions,

DD4 The 4 parsers together.

In both cases the system returns the right-

binarized function annotated parse. The results are

shown in the last part of Table 1. These 2 new con-

figurations give similar F-scores, better than all 2-

parser configurations.

We conclude from these results that left-

binarization and right-binarization capture different

linguistic aspects, even in the case of heavy horizon-

tal markovization, and that the method we propose

enables a practical integration of these models.

Table 2 shows for each setting how often the sys-

tems agree before 1000 iterations of Algorithm 1.

As one might expect, the more diverse the systems

are, the lower the rate of agreement.

Setting Rate

DD Right Bin 99.24

DD Left Bin 99.12

DD Func 98.53

DD No Func 99.12

DD3 96.18

DD4 94.53

Table 2: Rate of certificates of optimality on the dev set.

5.4 Evaluation of Function Labeling

We also evaluate the quality of the function labels.

We compare the results obtained directly from the

parser output with results obtained with Funtag, a

state-of-the-art functional tagger that is applied on

parser output, using a gold model trained on sections

02 to 21 of the WSJ (Chrupala et al., 2007).

Setting SYSTEM FUN FUNTAG

No Func Right – 90.41

No Func Left – 90.26

Func Right 89.61 90.37

Func Left 89.29 90.40

DD Right Bin 89.50 90.38

DD Left Bin 89.11 90.31

DD Func 89.54 90.49

DD No Func – 90.36

DD3 89.48 90.42

DD4 89.57 90.45

Table 3: Function labeling F1 on development set.

The results are shown in Table 3. First, we can

see that the parser output is always outperformed by

Funtag. This is expected from a context-free parser



that has a limited domain of locality with strong in-

dependence constraints, compared to a voted-SVM

classifier that can rely on arbitrarily rich features.

Second, the quality of the Funtag prediction seems

to be influenced by the fact that parser already han-

dle functions and by the accuracy of the parser (Par-

seval F-score). This is because we use a model

trained on the gold reference and so the closer the

parser output is from the reference, the better the

prediction. On the other hand, this is not the case

with parser predicted functions, where the best sys-

tem is the right-binarized product model with func-

tions, with very similar performance obtained by the

combinations consisting of 2 function parsers, set-

tings DD Func and DD4. This tends to indicate

that the constraints we have set to define consisten-

cies in c-parses, focusing on syntactical categories,

do not help in retrieving better function labels. This

suggests some possible further improvements where

parsers with functional annotations should be forced

to agree on these too.

5.5 Evaluation of Dependencies

Setting Stanford LTH p2m

LAS UAS LAS UAS UAS

Func Right 92.18 94.32 89.51 93.92 94.2

No Func Right 92.03 94.47 65.31 92.22 94.2

Func Left 91.86 94.06 89.28 93.75 93.9

No Func Left 91.83 94.29 65.33 92.18 94.1

DD Right Bin 92.56 94.60 89.81 94.17 94.5

DD Left Bin 92.01 94.38 89.62 94.05 94.2

DD Func 92.19 94.36 89.67 94.06 94.2

DD No Func 92.19 94.57 65.44 92.37 94.3

DD3 92.77 94.79 90.04 94.33 94.5

DD4 92.59 94.62 89.95 94.24 94.4

Table 4: Dependency accuracies on the dev set

Dependency-based evaluation of phrase structure

parser output has been used in recent years to pro-

vide a more rounded view on parser performance

and to compare with direct dependency parsers (Cer

et al., 2010; Petrov et al., 2010; Nivre et al., 2010;

Foster et al., 2011; Petrov and McDonald, 2012).

We evaluate our various parsing models on their

ability to recover three types of dependencies: basic

Stanford dependencies (de Marneffe and Manning,

2008)5, LTH dependencies (Johansson and Nugues,

5We used the latest version at the time of writing, i.e. 3.20.

2007)6 and penn2malt dependencies.7 The latter

are a simpler version of the LTH dependencies but

are still used when reporting unlabeled attachment

scores for dependency parsing.

The results, shown in Table 4, mirror the con-

stituency evaluation results in that the dual decom-

position results tend to outperform the basic product

model results, and combining three or four gram-

mars using dual decomposition yields the highest

scores. The differences between the Func and No

Func results highlight an important difference be-

tween the Stanford and LTH dependency schemes.

The tool used to produce Stanford dependencies has

been designed to work with phrase structure trees

that do not contain function labels. In contrast, the

LTH tool makes use of function label information

in phrase structure trees. Thus, their availability re-

sults in only a moderate improvement in LAS for the

Stanford dependencies and a very striking improve-

ment for the LTH dependencies. By retaining func-

tion labels during parsing, we have shown that LTH

dependencies can be recovered with a high level of

accuracy without having to resort to a post-parsing

function labeling step.

5.6 Test Set Results

We now evaluate our various systems on the test set

(the first half of Table 5) and compare these results

with state-of-the-art systems (the second half of Ta-

ble 5). We present parser accuracy results, measured

using Parseval F-score and penn2malt UAS, and, for

our systems, function label accuracy for labels pro-

duced during parsing and after parsing using Funtag.

We also carried out statistical significance testing8

on the F-score differences between our various sys-

tems on the development and test sets. The results

6
nlp.cs.lth.se/software/treebank_converter. It

is recommended that LTH is used with the version of the Penn

Treebank which contains the more detailed NP bracketing pro-

vided by Vadas and Curran (2007). However, to facilitate com-

parison with other parsers and dependency schemes, we did not

use it in our experiments. We ran the converter with the right-

Branching=false option to indicate that we are using the version

without extra noun phrase bracketing.
7
stp.lingfil.uu.se/˜nivre/research/Penn2Malt.

The English head-finding rules of Yamada and Mat-

sumoto (2003), supplied on the website, are employed.
8We used Dan Bikel’s compare.pl script which uses

stratified shuffling to compute significance. We consider a p

value < 0.05 to indicate a statistically significant difference.



Setting F UAS Fun Funtag

Func Right 91.73 93.9 91.02 91.88

No Func Right 91.76 93.8 – 91.80

Func Left 91.45 93.7 90.41 91.80

No Func Left 91.57 93.7 – 91.74

DD Right Bin 92.16 94.1 90.85 91.86

DD Left Bin 91.89 93.9 90.10 91.85

DD Func 92.23 94.1 91.02 91.91

DD No Func 92.09 94.0 – 91.86

DD3 92.45 94.3 90.86 91.98

DD4 92.44 94.3 90.97 92.04

(Shindo et al., 2012) 92.4

(Zhang et al., 2009) 92.3

(Petrov, 2010) 91.8

(Huang, 2008) 91.7

(Bohnet and Nivre, 2012) 93.7

Table 5: Test Set Results: Parseval F-score, penn2malt

UAS, Function Label Accuracy and Funtag Function La-

bel Accuracy

are shown in Table 6.

Comparison Dev Test

Func Right vs. No Func Right ✗ ✗

Func Left vs. No Func Left ✗ ✗

Func Right vs. Func Left X ✗

No Func Right vs. No Func Left ✗ ✗

DD Right Bin vs. Func Right X X

DD Right Bin vs. No Func Right X X

DD Left Bin vs. Func Left X X

DD Left Bin vs. No Func Left X X

DD Right Bin vs DD Left Bin X X

DD Func vs. Func Right ✗ X

DD Func vs. Func Left X X

DD No Func vs. No Func Right X X

DD No Func vs. No Func Left X X

DD Func vs. DD No Func ✗ ✗

DD3 vs. DD Right Bin ✗ X

DD3 vs. No Func Left X X

DD3 vs. DD Func X X

DD4 vs. DD. Right Bin ✗ X

DD4 vs. DD. Left Bin X X

DD4 vs. DD Func X X

DD4 vs. DD3 ✗ ✗

Table 6: Statistical Significance Testing

We measured the performance of DD4 on the test

set. It is approximately 3 times slower than the

slowest product model (left binarization with func-

tion labels) and 7 slower than the fastest one (right

binarization without function labels). This system

performs on average 85.5 iterations of the DD al-

gorithm. If we exclude the non-converging cases

(5.1% of the cases), this drops to 39.4.

Finally we compare our results with systems

trained and evaluated on the PTB, see the lower half

of Table 5. Our product models are not different

from those presented in (Petrov, 2010) and it is not

surprising to see that the F-scores are similar. More

interestingly our DD4 setting improves on these re-

sults and compares favorably with systems relying

on richer syntactic information, such as the discrim-

inative parser of (Huang, 2008) that makes use of

non-local features to score trees and the TSG parser

of (Shindo et al., 2012) that can take into account

larger tree fragments: this would indicate that by

combining our parsers we extend the domain of lo-

cality, horizontally with binarization schemes and

vertically with function labels. Our system also per-

forms better than the combination system presented

in (Zhang et al., 2009) that only relies on material

from the PTB9 but a more detailed comparison is

difficult: this system does not use products of la-

tent models and more generally their method is or-

thogonal to ours. We also include for comparison

state-of-the-art dependency parsing results (Bohnet

and Nivre, 2012).

6 Conclusion

We presented an algorithm and a set of experiments

showing that grammar extraction strategies can be

combined in an elegant way and give state-of-the-art

results when applied to high-quality phrase-based

parsers. As well as repeating these experiments for

languages which rely more on function annotation,

we also plan to apply our method to other types of

annotations, e.g. more linguistically motivated bina-

rization strategies or – of particular interest to us –

annotation of empty elements.

Acknowledgments

We are grateful to the reviewers for their helpful

comments. We also thank Joachim Wagner for pro-

viding feedback on an early version of the paper.

This work has been partially funded by the Labex

EFL (ANR/CGI).

9Their other system relying on the self-trained version of the

BLLIP parser achieves 92.6 F1.



References

Mohammed Attia, Jennifer Foster, Deirdre Hogan,

Joseph Le Roux, Lamia Tounsi, and Josef van Gen-

abith. 2010. Handling unknown words in statistical

latent-variable parsing models for Arabic, English and

French. In Proceedings of the First Workshop on Sta-

tistical Parsing of Morphologically Rich Languages

(SPMRL 2010).

Don Blaheta and Eugene Charniak. 2000. Assigning

function tags to parsed text. In Proceedings of the 1st

Annual Meeting of the North American chapter of the

ACL.

Bernd Bohnet and Joakim Nivre. 2012. A transition-

based system for joint part-of-speech tagging and la-

beled non-projective dependency parsing. In Proceed-

ings of the 2012 Joint Conference on Empirical Meth-

ods in Natural Language Processing and Computa-

tional Natural Language Learning, pages 1455–1465.

Daniel Cer, Marie-Catherine de Marneffe, Daniel Juraf-

sky, and Christopher D. Manning. 2010. Parsing to

Stanford Dependencies: Trade-offs between speed and

accuracy. In Proceedings of LREC.

Grzegorz Chrupala, Nicolas Stroppa, Josef van Genabith,

and Georgiana Dinu. 2007. Better training for func-

tion labeling. In Proceedings of the 2007 Conference

on Recent Advances in Natural Language Processing

(RANLP).

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P.

Foster, and Lyle Ungar. 2012. Spectral learning of

latent-variable PCFGs. In Proceedings of the 50th

Annual Meeting of the Association for Computational

Linguistics (ACL’12).

Marie-Catherine de Marneffe and Christopher D. Man-

ning. 2008. The Stanford typed dependencies repre-

sentation. In Proceedings of the COLING Workshop

on Cross-Framework and Cross-Domain Parser Eval-

uation.

Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner,

Joseph Le Roux, Joakim Nivre, Deirdre Hogan, and

Josef van Genabith. 2011. From news to comment:

Resources and benchmarks for parsing the language

of web 2.0. In Proceedings of IJCNLP.

Ryan Gabbard, Mitchell Marcus, and Seth Kulick. 2006.

Fully parsing the penn treebank. In Proceedings of the

Human Language Technology Conference of the North

American Chapter of the ACL, pages 184–191.

David Hall and Dan Klein. 2012. Training factored

PCFGs with expectation propagation. In Proceedings

of the 2012 Conference on Empirical Methods in Nat-

ural Language Processing, pages 649–652.

John C. Henderson and Eric Brill. 1999. Exploiting

diversity in natural language processing: Combining

parsers. In Proceedings of the 1999 Conference on

Empirical Methods in Natural Language Processing,

pages 187–194.

Liang Huang. 2008. Forest reranking: Discriminative

parsing with non-local features. In Proceedings of

ACL-08: HLT, pages 586–594.

Richard Johansson and Pierre Nugues. 2007. Extended

constituent-to-dependency conversion for english. In

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek,

and Mare Koit, editors, Proceedings of NODALIDA

2007, pages 105–112.

Nikos Komodakis, Nikos Paragios, and Georgios Tziri-

tas. 2007. MRF optimization via dual decomposition:

Message-passing revisited. In Computer Vision, 2007.

ICCV 2007. IEEE 11th International Conference on,

pages 1–8. IEEE.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi

Jaakkola, and David Sontag. 2010. Dual decompo-

sition for parsing with non-projective head automata.

In Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz,

Robert MacIntyre, Ann Bies, Mark Ferguson, Karen

Katz, and Britta Schasberger. 1994. The penn tree-

bank: Annotating predicate argument structure. In

Proceedings of the 1994 ARPA Speech and Natural

Language Workshop, pages 114–119.

André FT Martins, Noah A Smith, Pedro MQ Aguiar,

and Mário AT Figueiredo. 2011. Dual decomposition

with many overlapping components. In Proceedings

of the Conference on Empirical Methods in Natural

Language Processing, pages 238–249.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.

2005. Probabilistic CFG with latent annotations. In

Proceedings of the 43rd Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL’05), pages

75–82.

Paola Merlo and Gabriele Musillo. 2005. Accu-

rate function parsing. In Proceedings of Human

Language Technology Conference and Conference on

Empirical Methods in Natural Language Processing

(HLT/EMNLP), pages 620–627.

Joakim Nivre and Ryan McDonald. 2008. Integrating

graph-based and transition-based dependency parsers.

In Proceedings of ACL-08: HLT, pages 950–958.

Joakim Nivre, Laura Rimell, Ryan Mc Donald, and Car-

los Gómez-Rodrı́guez. 2010. Evaluation of depen-

dency parsers on unbounded dependencies. In Pro-

ceedings of COLING.

Slav Petrov and Dan Klein. 2007. Improved infer-

ence for unlexicalized parsing. In Proceedings of

the conference on Human Language Technologies and

the conference of the North American Chapter of

the Association for Computational Linguistics (HLT-

NAACL’07).



Slav Petrov and Ryan McDonald. 2012. Overview of

the 2012 shared task on parsing the web. In Working

Notes of the SANCL Workshop (NAACL-HLT).

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and

Hiyan Alshawi. 2010. Uptraining for accurate deter-

ministic question parsing. In Proceedings of EMNLP.

Slav Petrov. 2010. Products of random latent variable

grammars. In Proceedings of the conference on Hu-

man Language Technologies and the conference of the

North American Chapter of the Association for Com-

putational Linguistics (HLT-NAACL’10), pages 19–27.

Alexander Rush and Michael Collins. 2012. A tutorial

on dual decomposition and lagrangian relaxation for

inference in natural language processing. Journal of

Artificial Intelligence Research, 45:305–362.

Alexander M Rush, David Sontag, Michael Collins, and

Tommi Jaakkola. 2010. On dual decomposition and

linear programming relaxations for natural language

processing. In Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing,

pages 1–11.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency pars-

ing and domain adaptation with LR models and parser

ensembles. In Proceedings of the CoNLL shared task

session of EMNLP-CoNLL, pages 1044–1050.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and

Masaaki Nagata. 2012. Bayesian symbol-refined tree

substitution grammars for syntactic parsing. In Pro-

ceedings of the 50th Annual Meeting of the Association

for Computational Linguistics: Long Papers-Volume

1, pages 440–448.

Noah A. Smith. 2011. Linguistic Structure Predic-

tion. Synthesis Lectures on Human Language Tech-

nologies. Morgan and Claypool, May.

Mark Steedman, Miles Osbourne, Anoop Sarkar, Stephen

Clark, Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen,

Steven Baker, and Jeremiah Crim. 2003. Boot-

strapping statistical parsers from small datasets. In

Proceedings of EACL, pages 759–763.

Mihai Surdeanu and Christopher D. Manning. 2010. En-

semble models for dependency parsing: Cheap and

good? In Proceedings of the conference on Hu-

man Language Technologies and the conference of the

North American Chapter of the Association for Com-

putational Linguistics (HLT-NAACL’10), pages 649–

652.

David Vadas and James R. Curran. 2007. Adding noun

phrase structure to the penn treebank. In Proceedings

of ACL, pages 240–247.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical

dependency analysis with support vector machines. In

Proceedings of IWPT, pages 195–206.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou

Li. 2009. K-best combination of syntactic parsers.

In Proceedings of the 2009 Conference on Empiri-

cal Methods in Natural Language Processing, pages

1552–1560.


