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Semidefinite approximations of projections
and polynomial images of semialgebraic sets

Victor Magron1 Didier Henrion2,3,4 Jean-Bernard Lasserre2,3

December 11, 2014

Abstract

Given a compact semialgebraic set S ⊂ Rn and a polynomial map f : Rn → Rm,
we consider the problem of approximating the image set F = f(S) ⊂ Rm. This
includes in particular the projection of S on Rm for n ≥ m. Assuming that F ⊂ B,
with B ⊂ Rm being a “simple” set (e.g. a box or a ball), we provide two methods to
compute certified outer approximations of F. Method 1 exploits the fact that F can
be defined with an existential quantifier, while Method 2 computes approximations
of the support of image measures. The two methods output a sequence of super-
level sets defined with a single polynomial that yield explicit outer approximations
of F. Finding the coefficients of this polynomial boils down to computing an op-
timal solution of a convex semidefinite program. We provide guarantees of strong
convergence to F in L1 norm on B, when the degree of the polynomial approxima-
tion tends to infinity. Several examples of applications are provided, together with
numerical experiments.

Keywords Semialgebraic sets; semidefinite programming; moment relaxations; polyno-
mial sum of squares.

1 Introduction

Consider a polynomial map f : Rn → Rm, x 7→ f(x) := (f1(x), . . . , fm(x)) ∈ Rm[x] of
degree d := max{deg f1, . . . , deg fm} and a compact basic semialgebraic set

S := {x ∈ Rn : gS
1 (x) ≥ 0, . . . , gS

nS(x) ≥ 0} (1)

defined by polynomials gS
1 , . . . , g

S
nS ∈ R[x].
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Since S is compact, the image set
F := f(S)

is included in a basic compact semialgebraic set B, assumed to be “simple” (e.g. a box
or a ball) and described by

B := {y ∈ Rm : gB
1 (y) ≥ 0, . . . , gB

nB(y) ≥ 0} (2)

for some polynomials gB
1 , . . . , g

B
nB ∈ R[y].

The purpose of this paper is to approximate F, the image of S under the polynomial
map f , with superlevel sets of single polynomials of fixed degrees. One expects the
approximation to be tractable, i.e. to be able to control the degree of the polynomials
used to define the approximations. This appears to be quite a challenging problem since
the polynomial map f and the set S can be both complicated.
This problem includes two important special cases. The first problem is to approximate
the projection of S on Rm for n ≥ m. The second problem is the approximation of Pareto
curves in the context of multicriteria optimization. In [MHL14], we reformulate this
second problem through parametric polynomial optimization, which can be solved using
a hierarchy of semidefinite approximations. The present work proposes an alternative
solution via approximations of polynomial images of semialgebraic sets.
In the case of semialgebraic set projections, notice that computer algebra algorithms
provide an exact description of the projection but with a very high computational cost
even in small dimension. These algorithms are based on real quantifier elimination (see
e.g. [Tar51, Col74, BCR98]). For state-of-the-art computer algebra algorithms for quan-
tifier elimination, we refer the interested reader to the survey [Bas14] and the references
therein. Quantifier elimination can be performed with the famous cylindrical algebraic
decomposition algorithm. However, for a finite set of s polynomials in n variables, the
(time) computational complexity of this algorithm is bounded by (sd)2O(n) , thus doubly
exponential. In [GJ88] an algorithm was proposed with single exponential complexity
in the case of bounded nonsingular algebraic sets. For applications that satisfy certain
additional assumptions (e.g. radicality, equidimensionality, etc.) one can use the variant
quantifier elimination method proposed in [HD12], which is less computationally demand-
ing.
To avoid this high computational cost inherent to exact computations in computer algebra
algorithms, we consider a less ambitious goal. On the one hand, we do not require an
exact description of the projection but rather a hierarchy of outer approximations with
a guarantee of convergence to the exact projection. On the other hand, the present
methodology only requires moderate assumptions: 1) the set S is compact and 2) either
the semialgebraic set S or F (resp. B\F) has nonempty interior.

Contribution and general methodology We provide two methods to approximate
the image of semialgebraic sets under polynomial applications.

• Method 1 consists of rewriting F as a set defined with an existential quantifier. Then,
one can outer approximate F as closely as desired with a hierarchy of superlevel sets
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of the form F1
r := {y ∈ B : qr(y) ≥ 0} for some polynomials qr ∈ R[y] of increasing

degrees 2r.

• Method 2 consists of building a hierarchy of relaxations for the infinite dimensional
moment problem whose optimal value is the volume of F and whose optimum is the
restriction of the Lebesgue measure on F. Then, one can outer approximate F as
closely as desired with a hierarchy of super level sets of the form F2

r := {y ∈ B :
wr(y) ≥ 1}, for some polynomials wr ∈ R[y] of increasing degrees 2r.

Method 1 and Method 2 share the following essential features:

1. The sets F1
r and F2

r are described with a single polynomial of degree 2r.

2. Assuming non-emptiness of the interior of S, resp. of F and B\F, one has
limr→∞ vol(F1

r\F) = 0, resp. limr→∞ vol(F2
r\F) = 0, where vol(·) stands for the

volume or Lebesgue measure.

3. Computing the coefficient vectors of the polynomials (qr)r∈N, resp. (wr)r∈N, boils
down to finding optimal solutions of a hierarchy of semidefinite programs. The
size of these programs is parametrized by the relaxation order r and depends on the
number of variables n, the numberm of components of the polynomial f as well as its
degree d. For the hierarchy of semidefinite programs associated with Method 1, the
number of variables at step r is bounded by

(
n+m+2r

2r

)
, with (nS+nB+1) semidefinite

constraints of size at most
(
n+m+r

r

)
. Step r of the semidefinite hierarchy associated

with Method 2 involves at most
(
n+2rd

2rd

)
+ 2

(
m+2r

2r

)
variables, (nS + 1) semidefinite

constraints of size at most
(
n+rd
rd

)
and 2(nB + 1) semidefinite constraints of size at

most
(
m+r
r

)
.

4. Data sparsity can be exploited to reduce the overall computational cost.

Method 1 relies on the previous study [Las13], in which the author obtains tractable
approximations of sets defined with existential quantifiers. The present article provides an
extension of the result of [Las13, Theorem 3.4], where one does not require anymore that
some set has zero Lebesgue measure. This is mandatory to prove the volume convergence
result.
In [HLS09], the authors consider the problem of approximating the volume of a general
compact basic semialgebraic set. The initial problem is then reformulated as an infinite
dimensional linear programming (LP) problem, whose unknown is the restriction of the
Lebesgue measure on the set of interest. The main idea behind Method 2 is a similar
infinite dimensional LP reformulation of the problem, whose unknown is µ1, the restriction
of the Lebesgue measure on F. One ends up in computing a finite number of moments of
the measure µ0 supported on S such that the image of µ0 under f is precisely µ1. Note
however that there is an important novelty compared with [HLS09], in which the set under
study is explicitly described as a basic compact semialgebraic set (i.e. the intersection of
superlevel sets of known polynomials), whereas such a description is not known for F.
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Structure of the paper The paper is organized as follows. Section 2 recalls the basic
background about polynomial sum of squares approximations, moment and localizing ma-
trices. Section 3 presents our approximation method for existential quantifier elimination
(Method 1). Section 4 is dedicated to the support of image measures (Method 2). In
Section 5, we analyze the theoretical complexity of both methods and describe how the
system sparsity can be exploited. Section 6 presents several examples where Method 1
and Method 2 are successfully applied.

2 Notation and Definitions

Let R[x] (resp. R2r[x]) be the ring of real polynomials (resp. of degree at most 2r) in the
variable x = (x1, . . . , xn) ∈ Rn, for r ∈ N. With S a basic semialgebraic set as in (1), we
set rS

j := d(deg gS
j )/2e, j = 1, . . . , nS and with B a basic semialgebraic set as in (2), we

set rB
j := d(deg gB

j )/2e, j = 1, . . . , nB. Let Σ[x] denote the cone of sum of squares (SOS)
of polynomial, and let Σr[x] denote the cone of polynomials SOS of degree at most 2r,
that is Σr[x] := Σ[x] ∩ R2r[x].
For the ease of notation, we set gS

0 (x) := 1 and gB
0 (y) := 1. For each r ∈ N, let

Qr(S) (resp. Qr(B)) be the r-truncated quadratic module (a convex cone) generated by
gS

0 , . . . , g
S
nS

(resp. gB
0 , . . . , g

B
nB

):

Qr(S) :=
{ nS∑
j=0

sj(x)gS
j (x) : sj ∈ Σr−rS

j
[x], j = 0, . . . , nS

}
,

Qr(B) :=
{ nB∑
j=0

sj(y)gB
j (y) : sj ∈ Σr−rB

j
[y], j = 0, . . . , nB

}
.

Now, we introduce additional notations which are required for Method 1. Let us first
describe the product set

K := S×B = {(x,y) ∈ Rn+m : g1(x,y) ≥ 0, . . . , gnK(x,y) ≥ 0} ⊂ Rn+m, (3)

with nK := nS + nB and the polynomials gj ∈ R[x,y], j = 1, . . . , nK are defined by:

gj(x,y) :=

gS
j (x) if 1 ≤ j ≤ nS,

gB
j (y) if nS + 1 ≤ j ≤ nK.

As previously, we set rj := d(deg gj)/2e, j = 1, . . . , nK, g0(x,y) := 1 and Qr(K) stands
for the r-truncated quadratic module generated by the polynomials g0, . . . , gnK .
To guarantee the theoretical convergence of our two methods, we need to assume the
existence of the following algebraic certificates of boundedness of the sets S and B:

Assumption 2.1. There exists an integer jS (resp. jB) such that gS
jS = gS := NS−‖x‖2

2
(resp. gB

jB = gB := NB − ‖y‖2
2) for large enough positive integers NS and NB.
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For every α ∈ Nn the notation xα stands for the monomial xα1
1 . . . xαn

n and for every r ∈ N,
let Nn

r := {α ∈ Nn : ∑n
j=1 αj ≤ r}, whose cardinality is

(
n+r
r

)
. One writes a polynomial

p ∈ R[x,y] as follows:

(x,y) 7→ p(x,y) =
∑

(α,β)∈Nn+m

pαβ xαyβ ,

and we identify p with its vector of coefficients p = (pαβ) in the canonical basis (xαyβ),
α ∈ Nn, β ∈ Nm.
Given a real sequence z = (zαβ), we define the multivariate linear functional `z : R[x,y]→
R by `z(p) := ∑

αβ pαβzαβ, for all p ∈ R[x,y].

Moment matrix The moment matrix associated with a sequence z = (zαβ)(α,β)∈Nn+m ,
is the real symmetric matrix Mr(z) with rows and columns indexed by Nn+m

r , and whose
entries are defined by:

Mr(z)((α, β), (δ, γ)) := `z(xα+δyβ+γ), ∀α, δ ∈ Nn
r , ∀β, γ ∈ Nm

r .

Localizing matrix The localizingmatrix associated with a sequence z = (zαβ)(α,β)∈Nn+m

and a polynomial q ∈ R[x,y] (with q(x,y) = ∑
u,v quvxuyv) is the real symmetric matrix

Mr(qz) with rows and columns indexed by Nn+m
r , and whose entries are defined by:

Mr(qz)((α, β), (δ, γ)) := `z(q(x,y)xα+δyβ+γ), ∀α, δ ∈ Nn
r , ∀β, γ ∈ Nm

r .

We define the restriction of the Lebesgue measure on a subset A ⊂ B by λA(dy) :=
1A(y) dy, with 1A : B→ {0, 1} denoting the indicator function on A:

1A(y) :=

1 if y ∈ A,
0 otherwise.

The moments of the Lebesgue measure on B are denoted by

zB
β :=

∫
yβλB(dy) ∈ R, β ∈ Nm (4)

We assume that the bounding set B is “simple” in the following sense:

Assumption 2.2. Set B is such that the moments (4) are explicitly given.

3 Method 1: existential quantifier elimination

3.1 Semialgebraic sets defined with existential quantifiers

The set F = f(S) is the image of the compact semialgebraic set S under the polynomial
map f : S→ B, thus it can be defined with an existential quantifier:

F = {y ∈ B : ∃ x ∈ S s.t. hf (x,y) ≥ 0},
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with

hf : Rn+m → R, (x,y) 7→ hf (x,y) := −‖y− f(x)‖2
2 = −

m∑
j=1

(yj − fj(x))2.

Let us also define
h : Rm → R, y 7→ h(y) := sup

x∈S
hf (x,y).

Theorem 3.1. There exists a sequence of polynomials (pr)r∈N ⊂ R[y] such that pr(y) ≥
hf (x,y) for all r ∈ N, x ∈ S, y ∈ B and such that

lim
r→∞

∫
|pr(y)− h(y)|λB(dy) = 0. (5)

Proof. The result follows readily from [Las13, Theorem 3.1 (3.4)] with the notations
x ← y, y ← x, K ← B × S, Kx ← S 6= ∅ and Jf ← −h, which is lower semi-
continuous.

Theorem 3.2. For each r ∈ N, define Fr := {y ∈ B : pr(y) ≥ 0} where the sequence of
polynomials (pr)r∈N ⊂ R[y] is as in Theorem 3.1. Then Fr ⊃ F and one has

lim
r→∞

vol(Fr\F) = 0. (6)

Proof. Let r ∈ N. By assumption, one has pr(y) ≥ hf (x,y) for all x ∈ S,y ∈ B. Thus,
one has pr(y) ≥ h(y) for all y ∈ B, which implies that Fr ⊃ F.
It remains to prove (6). Let us define F(k) := {y ∈ B : h(y) ≥ −1/k}. First, we show
that

lim
k→∞

vol F(k) = vol F. (7)

For each k ∈ N, one has F(k + 1) ⊆ F(k) ⊆ B, thus the sequence of indicator functions
(1F(k))k∈N is nonincreasing and bounded. Next, let us show that for all y ∈ B, 1F(k)(y)→
1F(y), as k →∞:

• Let y ∈ F. By the inclusion F ⊆ F(k), for each k ∈ N, 1F(k)(y) = 1F(y) = 1 and
the result trivially holds.

• Let y ∈ B\F, so there exists ε > 0 such that h(y) = −ε. Thus, there exists k0 ∈ N
such that for all k ≥ k0, y ∈ B\F(k).

Hence, 1F(k)(y) → 1F(y) for each y ∈ B, as k → ∞ (monotone non-increasing). By the
Monotone Convergence Theorem, 1F(k)(y)→ 1F(y) for the L1 norm on B and (7) holds.
Next, we prove that for each k ∈ N,

lim
r→∞

vol Fr ≤ vol F(k). (8)
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By Theorem 3.1 applied to the sequence (pr)r∈N, one has limr→∞
∫
|pr(y)−h(y)|λB(dy) =

0. Thus, by [Ash72, Theorem 2.5.1], the sequence (pr)r∈N converges to h in measure, i.e.
for every ε > 0,

lim
r→∞

vol({y ∈ B : |pr(y)− h(y)| ≥ ε}) = 0. (9)

For every k ≥ 1, observe that:

vol Fr = vol(Fr ∩ {y ∈ B : |pr(y)− h(y)| ≥ 1/k}) +
vol(Fr ∩ {y ∈ B : |pr(y)− h(y)| < 1/k}). (10)

It follows from (9) that limr→∞ vol(Fr∩{y ∈ B : |pr(y)−h(y)| ≥ 1/k}) = 0. In addition,
for all r ∈ N,

vol(Fr ∩ {y ∈ B : |pr(y)− h(y)| < 1/k}) ≤ vol({y ∈ B : h(y) ≥ −1/k}) = vol F(k).
(11)

Using both (10) and (11), and letting r → ∞, yields (8). Thus, we have the following
inequalities:

vol F ≤ lim
r→∞

vol Fr ≤ vol F(k).

Using (7) and letting k →∞ yields the desired result.

3.2 Practical computation using semidefinite programming

In this section we show how the sequence of polynomials of Theorems 3.1 and 3.2 can
be computed in practice. Define r(1)

min := max{d, r1, . . . , rnK}. For r ≥ r
(1)
min, consider the

following hierarchy of semidefinite programs:

p∗r := inf
q

∑
β∈Nm

2r

qβz
B
β

s.t. q − hf ∈ Qr(K),
q ∈ R2r[y].

(12)

The semidefinite program dual of (12) reads:

d∗r := sup
z

`z(hf )

s.t. Mr(z) � 0,
Mr−rj

(gjz) � 0, j = 1, . . . , nK,

`z(yβ) = zB
β , ∀β ∈ Nm

2r.

(13)

Theorem 3.3. Let r ≥ r
(1)
min and suppose that Assumption 2.1 holds. Then:

1. p∗r = d∗r, i.e. there is no duality gap between the semidefinite program (12) and its
dual (13).
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2. The semidefinite program (13) has an optimal solution. In addition, if S has
nonempty interior, then the semidefinite program (12) has an optimal solution qr,
and the sequence (qr)r∈N converges to h in L1 norm on B:

lim
r→∞

∫
|qr(y)− h(y)|λB(dy) = 0. (14)

3. Defining the set
F1
r := {y ∈ B : qr(y) ≥ 0}

it holds that
F1
r ⊃ F

and
lim
r→∞

vol(F1
r\F) = 0.

Proof. 1. Let Dr (resp. D∗r) stand for the feasible (resp. optimal) solution set of the
semidefinite program (13). First, we prove that Dr 6= ∅. Let z = (zαβ)(α,β)∈Nn+m

2r

be the sequence moments of λK, the Lebesgue measure on K = S ×B . Since the
measure is supported on K, the semidefinite constraints Mr(z) � 0, Mr−rj

(gjz) � 0,
j = 1, . . . , nK are satisfied. By construction, the marginal of λK on B is λB and the
following equality constraints are satisfied: `z(yβ) = zB

β for all β ∈ Nm
2r. Thus, the

finite sequence z lies in Dr 6= ∅.
Note that Assumption 2.1 implies that the semidefinite constraints Mr−1(gSz) � 0
and Mr−1(gBz) � 0 both hold. Thus, the first diagonal elements of Mr−1(gSz) and
Mr−1(gBz) are nonnegative, and since `z(1) = zB

0 , it follows that `z(x2k
i ) ≤ (NS)kzB

0 ,
i = 1, . . . , n and `z(y2k

j ) ≤ (NB)kzB
0 , j = 1, . . . ,m, k = 0, . . . , r and we deduce

from [LN07, Lemma 4.3, p. 111] that |zαβ| is bounded for all (α, β) ∈ Nn+m
2r . Thus,

the feasible set Dr is compact as closed and bounded. Hence, the set D∗r is nonempty
and bounded. The claim then follows from the sufficient condition of strong duality
in [Trn05].

2. Assume that S has nonempty interior, so K = S × B has also nonempty interior.
Thus, the feasible solution z (defined above) satisfies Mr(z) � 0, Mr−rj

(gjz) � 0,
j = 1, . . . , nK, which implies that Slater’s condition holds for (13). Note also that
the semidefinite program (12) has the trivial feasible solution q = 0 since −hf is
SOS by construction. As a consequence of a now standard result of duality in
semidefinite programming (see e.g. [VB94]), the semidefinite program (12) has an
optimal solution qr ∈ R2r[y].
Let us consider a sequence of polynomials (pr)r∈N ⊂ R[y] as in Theorem 3.1. Now,
fix ε > 0. By Theorem 3.1, there exists r0 ∈ N such that∫

|pr(y)− h(y)|λB(dy) ≤ ε/2, (15)

for all r ≥ r0. Then, observe that the polynomial pεr := pr + ε/(2 vol B) satisfies
pεr(y) − hf (x,y) > 0, for all x ∈ S, y ∈ B. Let r ≥ max{d(deg pr)/2e, r(1)

min}. As
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a consequence of Putinar’s Positivstellensatz (e.g. [Las09, Section 2.5]), there exist
s0, . . . , snK ∈ Σ[x,y] such that

pεr(y)− hf (x,y) =
nK∑
j=0

sj(x,y)gj(x,y),

with deg(sjgj) ≤ 2r for j = 0, . . . , nK. And so, pεr − hf lies in the r-truncated
quadratic module Qr(K), which implies that pεr is a feasible solution for Prob-
lem (12). Hence, qr being an optimal solution of problem (12), the following holds:∫

qr(y)λB(dy) ≤
∫
pεr(y)λB(dy) =

∫
[pr(y) + ε/(2 vol(B))]λ(dy). (16)

Combining (15) and (16) yields
∫
|qr(y)− h(y)|λ(dy) ≤ ε, concludes the proof.

3. This is a consequence of Theorem 3.2.

4 Method 2: support of image measures

Given a compact set A ⊂ Rn, letM(A) stand for the vector space of finite signed Borel
measures supported on A, understood as functions from the Borel sigma algebra B(A) to
the real numbers. Let C(A) stand for the space of continuous functions on A, equipped
with the sup-norm (a Banach space). Since A is compact, the topological dual (i.e. the set
of continuous linear functionals) of C(A) (equipped with the sup-norm), denoted by C(A)′,
is (isometrically isomorphically identified with)M(A) equipped with the total variation
norm, denoted by ‖ · ‖TV. The cone of non-negative elements of C(A), resp. M(A), is
denoted by C+(A), resp. M+(A). Recall that λB stand for the Lebesgue measure on B.
If µ, ν ∈ M(A), the notation µ � ν stands for µ being absolutely continuous w.r.t. ν,
whereas the notation µ ≤ ν means that ν − µ ∈ M+(A). For background on functional
analysis and measure spaces see e.g. [RF10, Section 21.5].

4.1 LP primal-dual conic formulation

Given a polynomial application f : S→ B, the pushforward or image map

f# :M(S)→M(B)

is defined such that
f#µ0(A) := µ0({x ∈ S : f(x) ∈ A})

for every set A ∈ B(B) and every measure µ0 ∈ M(S). The measure f#µ0 ∈ M(B) is
then called the image measure of µ0 under f , see e.g. [AFP00, Section 1.5].
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To approximate the image set F = f(S), one considers the infinite-dimensional linear
programming (LP) problem:

p∗ := sup
µ0,µ1,µ̂1

∫
µ1

s.t. µ1 + µ̂1 = λB,

µ1 = f#µ0,

µ0 ∈M+(S), µ1, µ̂1 ∈M+(B),

(17)

In the above LP, by definition of the image measure, µ1 exists whenever µ0 is given. The
following result gives conditions for µ0 to exist whenever µ1 is given.

Lemma 4.1. Given a measure µ1 ∈ M+(B), there is a measure µ0 ∈ M+(S) such that
f#µ0 = µ1 if and only if there is no continuous function v ∈ C(B) such that v(f(x)) ≥ 0
for all x ∈ S and

∫
v(y)dµ1(y) < 0.

Proof. This follows from [CK77, Theorem 6] which is an extension to locally convex topo-
logical spaces of the celebrated Farkas Lemma in finite-dimensional linear optimization.
One has just to verify that the image cone f#(M+(S)) = {f#µ0 : µ0 ∈M+(S)} is closed
in the weak-star topology σ(M(B), C(B)) ofM(B).This, in turn, follows from continuity
of f and compactness of S.

Corollary 4.2. Given any measure µ1 ∈ M+(B) admissible for LP (17), there is a
measure µ0 ∈M+(S) such that f#µ0 = µ1.

Proof. Since µ1 ∈ M+(B), µ1 + µ̂1 = λB and spt µ1 ⊆ F, it holds 0 ≤ µ1 � λF and
by Radon-Nikodým there exists a function q1 ∈ L1(λF) such that dµ1(y) = q1(y)dλF(y)
and q1(y) ≥ 0 for all y ∈ F. The claim follows then from Lemma 4.1 since it is im-
possible to find a function v ∈ C(B) such that v(y) ≥ 0 for all y ∈ F while satisfying∫
v(y)q1(y)dλF(y) < 0.

Lemma 4.3. Let µ∗1 be an optimal solution of LP (17). Then µ∗1 = λF and p∗ = vol F.

Proof. From Corollary 4.2, the choice µ∗1 = λF ∈ M+(B) is admissible for LP (17)
since there exists µ∗0 ∈ M+(S) such that f#µ

∗
0 = µ∗1 and we can enforce µ̂∗1 = λB − µ∗1.

Optimality of µ∗1 = λF then follows exactly as in the proof of [HLS09, Theorem 3.1].

Next, we express problem (17) as an infinite-dimensional conic problem on appropriate
vector spaces. By construction, a feasible solution of problem (17) satisfies:∫

B
v(y)µ1(dy)−

∫
S
v(f(x))µ0(dx) = 0, (18)∫

B
w(y)µ1(dy) +

∫
B
w(y) µ̂1(dy) =

∫
B
w(y)λ(dy), (19)

for all continuous test functions v, w ∈ C(B).

10



Then, we cast problem (17) as a particular instance of a primal LP in the canonical form
given in [Bar02, 7.1.1]:

p∗ = sup
x
〈x, c〉1

s.t. Ax = b,

x ∈ E+
1 ,

(20)

with

• the vector space E1 :=M(S)×M(B)2;

• the vector space F1 := C(S)× C(B)2;

• the duality 〈·, ·〉1 : E1 × F1 → R, given by the integration of continuous functions
against Borel measures, since E1 = F ′1;

• the decision variable x := (µ0, µ1, µ̂1) ∈ E1 and the reward c := (0, 1, 0) ∈ F1;

• E2 :=M(B)2, F2 := C(B)2 and the right hand side vector b := (0, λ) ∈ E2 = F ′2;

• the linear operator A : E1 → E2 given by

A (µ0, µ1, µ̂1) :=
[
−f#µ0 + µ1
µ1 + µ̂1

]
.

Notice that all spaces E1, E2 (resp. F1, F2) are equipped with the weak topologies
σ(E1, F1), σ(E2, F2) (resp. σ(F1, E1), σ(F2, E2)). Importantly, σ(E1, F1) is the weak-star
topology (since E1 = F ′1). Observe thatA is continuous with respect to the weak topology,
as A′(F2) ⊂ F1.
With these notations, the dual LP in the canonical form given in [Bar02, 7.1.2] reads:

d∗ = inf
y
〈b, y〉2

s.t. A′ y − c ∈ C+(B)2
(21)

with

• the dual variable y := (v, w) ∈ E2;

• the (pre)-dual cone C+(B)2, whose dual is E+
1 ;

• the duality pairing 〈·, ·〉2 : E2 × F2 → R, with E2 = F ′2;

• the adjoint linear operator A′ : F2 → F1 given by

A′ (v, w) :=

 −v ◦ fv + w
w

 .

11



Using our original notations, the dual LP of problem (17) then reads:

d∗ := inf
v,w

∫
w(y)λB(dy)

s.t. v(f(x)) ≥ 0, ∀x ∈ S,
w(y) ≥ 1 + v(y), ∀y ∈ B,
w(y) ≥ 0, ∀y ∈ B,
v, w ∈ C(B).

(22)

Theorem 4.4. There is no duality gap between problem (17) and problem (22), i.e. p∗ =
d∗.

Proof. This theorem follows from the “zero duality gap” result from [Bar02, Theorem
7.2], if one can prove that the cone

A (E+
1 ) := {(Ax, 〈x, c〉1) : x ∈ E+

1 } (23)

is closed in E2 × R. To do so, let us consider a sequence (x(k)) = (µ(k)
0 , µ

(k)
1 , µ̂

(k)
1 )) ⊂ E+

1
such thatAx(k) → s = (s1, s2) and 〈x(k), c〉1 → t. Let us prove that (s, t) = (Ax∗, 〈x∗, c〉1)
for some x∗ = (µ∗0, µ∗1, µ̂∗1) ∈ E+

1 . As c = (0, 1, 0), one has ‖µ(k)
1 ‖TV =

∫
B µ

(k)
1 (dy) → t(≥

0), thus supk ‖µ
(k)
1 ‖TV < ∞. Therefore there is a subsequence (denoted by the same

indices) (µ(k)
1 ) which converges to µ∗1 ∈ M+(B) for the weak-star topology. In particular

‖µ∗1‖TV = t. Hence from µ̂
(k)
1 + µ

(k)
1 → s2 one deduces that µ̂(k)

1 → s2 − µ∗1 for the weak-
star topology. But then we also have −f#µ

(k)
0 → s1 − µ∗1 in the weak-star topology of

M(B). Therefore −s1 +µ∗1 is a positive measure. So let µ∗0 be such that f#µ
∗
0 = −s1 +µ∗1

guaranteed to exist since we have seen that f#(M+(S)) is weak-star closed. Then we
have A(x∗) = (s1, s2) and 〈x∗, c〉 = t, the desired result.

4.2 Practical computation using semidefinite programming

For each r ≥ r
(2)
min := max{drS

1 /de, . . . , drS
nS/de, rB

1 , . . . , r
B
nB}, let z0 = (z0β)β∈Nm

2r
be the

finite sequence of moments up to degree 2r of measure µ0. Similarly, let z1 and ẑ1 stand
for the sequences of moments up to degree 2r, respectively associated with µ1 and µ̂1.
Problem (17) can be relaxed with the following semidefinite program:

p∗r := sup
z0,z1,ẑ1

z10

s.t. z1β + ẑ1β = zB
β , Lz0(f(x)β) = z1β, ∀β ∈ Nm

2r ,

Mrd−rS
j
(gS
j z0) � 0, j = 0, . . . , nS,

Mr−rB
j

(gB
j z1) � 0,Mr−rB

j
(gB
j ẑ1) � 0, j = 0, . . . , nB.

(24)

12



Consider also the following semidefinite program, which is a strengthening of problem (22)
and also the dual of problem (25):

d∗r := inf
v,w

∑
β∈Nm

2r

wβz
B
β

s.t. v ◦ f ∈ Qrd(S),
w − 1− v ∈ Qr(B),
w ∈ Qr(B),
v, w ∈ R2r[y].

(25)

Theorem 4.5. Let r ≥ r
(2)
min and suppose that both F and B\F have nonempty interior

and that Assumption 2.1 holds. Then:

1. p∗r = d∗r, i.e. there is no duality gap between the semidefinite program (24) and its
dual (25).

2. The semidefinite program (25) has an optimal solution (vr, wr) ∈ R2r[y] × R2r[y],
and the sequence (wr) converges to 1F in L1 norm on B:

lim
r→∞

∫
|wr(y)− 1F(y)|λB(dy) = 0. (26)

3. Defining the set
F2
r := {y ∈ B : wr(y) ≥ 1}

its holds that
F2
r ⊃ F

and
lim
r→∞

vol(F2
r\F) = 0.

Proof.

1. Let µ1 = λF, let µ0 be such that f#µ0 = µ1 as in Lemma ??, and let µ̂1 = λB − µ1

so that (µ0, µ1, µ̂1) is feasible for LP (17). Given r ≥ r
(2)
min, let z0, z1 and ẑ1 be

the sequences of moments up to degree 2r of µ0, µ1 and µ̂1, respectively. Clearly,
(z0, z1, ẑ1) is feasible for program (24). Then, as in the proof of the first item of
Theorem 3.3, the optimal solution set of the program (24) is nonempty and bounded,
which by [Trn05] implies that there is no duality gap between the semidefinite
program (25) and its dual (24).

2. Now, one shows that (z0, z1, ẑ1) is strictly feasible for program (24). Using the fact
that

(a) F (resp. B\F) has nonempty interior,
(b) z1 (resp. ẑ1) is the moment sequence of µ1 (resp. µ̂1),

13



one has Mr(gB
j z1) � 0 (resp. Mr(gB

j ẑ1) � 0), for each j = 0, . . . , nB. Moreover,
Mr(gS

j z0) � 0, for all j = 0, . . . , nS. Otherwise, assume that there exists a nontrivial
vector q such that Mr(gS

j z0) q = 0 for some j. As F has nonempty interior, it
contains an open set A ⊂ Rm. By continuity of f , the set f−1(A) := {x ∈ S :
f(x) ∈ A} is an open set of S and µ0(f−1(A)) = µ1(A) > 0. Then,

0 = 〈q,Mr(gS
j z0) q〉 =

∫
S
q(x)2 gS

j (x) dµ0(x) ≥
∫
f−1(A)

q(x)2 gS
j (x) dµ0(x),

which yields q(x)2 gS
j (x) = 0 on the open set f−1(A), leading to a contradiction.

Therefore, as for the proof of the second item of Theorem 3.3, we conclude that the
semidefinite program (25) has an optimal solution (vr, wr) ∈ R2r[y]× R2r[y].
Next, one proves that there exists a sequence of polynomials (wk)k∈N ⊂ R[y] such
that wk(y) ≥ 1F(y), for all y ∈ B and such that

lim
k→∞

∫
|wk(y)− 1F(y)|λB(dy) = 0. (27)

The set F being closed, the indicator function 1F is upper semi-continuous and
bounded, so there exists a non-increasing sequence of bounded continuous func-
tions hk : B → R such that hk(y) ↓ 1F(y), for all y ∈ B, as k → ∞. Using
the Monotone Convergence Theorem, hk → 1F for the L1 norm. By the Stone-
Weierstrass Theorem, there exists a sequence of polynomials (w′k)k∈N ⊂ R[y], such
that supy∈B |w′k(y) − hk(y)| ≤ 1/k. The polynomial wk := w′k + 1/k satisfies
wk > hk ≥ 1F and (27) holds.
Let us define w̃k := wk+ε/(2 vol B), ṽk := wk−1. Next, for r ∈ N large enough, one
proves that (ṽk, w̃k) is a feasible solution of (25). Using the fact that w̃k > wk > 1F,
one has w̃k ∈ Qr(B), as a consequence of Putinar’s Positivstellensatz. For each
x ∈ S, ṽk(f(x)) = wk(y) − 1 > 1F(f(x)) − 1 + ε/(2 vol B) > 0, so ṽk ◦ f lies
in Qrd(S). Similarly, w̃k − ṽk − 1 ∈ Qr(B). Then, one concludes using the same
arguments as for (14) in the proof of the second item of Theorem 3.3.

3. Let y ∈ F. There exists x ∈ S such that y = f(x). Let (vr, wr) ∈ R2r[y] × R2r[y]
be an optimal solution of (25). By feasibility, wr(y) − 1 ≥ vr(y) = vr(f(x)) ≥ 0.
Thus, F2

r ⊃ F. Finally, the proof of the convergence in volume is analogous to the
proof of (6) in Theorem 3.2.
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5 Computational considerations

5.1 Complexity analysis and lifting strategy

5.1.1 Method 1

First, consider the semidefinite program (13) of Method 1. For r ≥ r
(1)
min, the number of

variables n(1) (resp. size of semidefinite matrices m(1)) of problem (13) satisfies:

n(1) ≤
(
n+m+ 2r

2r

)
.

Problem (13) involves (nB + nS + 1) semidefinite constraints of size m(1) bounded as
follows:

m(1) ≤
(
n+m+ r

r

)
.

5.1.2 Method 2

Now, consider the semidefinite program (24). For r ≥ r
(2)
min, the number of variables n(2)

of Problem (24) satisfies:

n(2) ≤
(
n+ 2rd

2rd

)
+ 2

(
m+ 2r

2r

)
.

Problem (24) also involves (nS + 1) semidefinite constraints of size at most
(
n+rd
rd

)
and

2(nB + 1) semidefinite constraints of size at most
(
m+r
r

)
.

Due to the dependence on the degree d of the polynomial application, one observes that
the number of variables (resp. constraints) can quickly become large if d is not small. An
alternative formulation to limit the blowup of these relaxations is obtained by considering
y1, . . . , ym as “lifting” variables, respectively associated with f1, . . . , fm, together with the
following 2m additional constraints:

gS
nS+j(x,y) := yj − fj(x), gS

nS+2j(x,y) := fj(x)− yj, j = 1, . . . ,m.

By considering the basic compact semialgebraic set Slift ⊂ Rn+m given by

Slift := {(x,y) ∈ K : gS
nS+1(x,y) ≥ 0, . . . , gS

nS+2m(x,y) ≥ 0}, (28)

problem (25) becomes:
inf
v,w

∑
β∈Nm

2r

wβz
B
β

s.t. v ∈ Qr(Slift),
w − 1− v ∈ Qr(B),
w ∈ Qr(B),
v, w ∈ R2r[y],

(29)
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which is actually equivalent to the following problem:

inf
w

∑
β∈Nm

2r

wβz
B
β

s.t. w − 1 ∈ Qr(Slift),
w ∈ Qr(B),
w ∈ R2r[y].

(30)

For problem (30), the minimal relaxation order is r(2)
lift := max{dd2e, r

S
1 , . . . , r

S
nS , rB

1 , . . . , r
B
nB}

and the number of variables n(2)
lift is bounded as follows:

n
(2)
lift ≤

(
n+m+ 2r

2r

)
+
(
m+ 2r

2r

)
.

Problem (30) involves (nS + 2m+ 1) semidefinite constraints of size at most
(
n+m+r

r

)
and

(nB + 1) semidefinite constraints of size at most
(
m+r
r

)
. When m is small and d is large,

this seems to be a suitable choice to reduce the computational cost of the semidefinite
program (24). Experimental results described further (see Table 1 in Section 6.1 and
Table 2 in Section 6.4) agree with this observation.

5.2 Exploiting sparsity

As explained above, both Method 1 and Method 2 are computationally demanding in gen-
eral. However, if the polynomials x 7→ fj(x), (j = 1, . . . ,m) have some structured sparsity,
then one can still exploit sparsity in a way similar to the one described in [WKKM06,
Las06] to handle problems in higher dimensions. In particular, let {1, . . . , n} be the union⋃m
j=1 Ij of subsets Ij ⊆ {1, . . . , n} and assume that for each j = 1, . . . ,m, the polynomial

fj involves only variables {xi | i ∈ Ij}. One also suppose that the collection {I1, . . . , Im}
satisfies the so-called running intersection property:

Definition 5.1. The collection {I1, . . . , Im} of subsets Ij ⊆ {1, . . . , n} satisfies the run-
ning intersection property if the following holds for each j = 1, . . . ,m− 1:

Ij+1 ∩
j⋃

k=1
Ik ⊆ Il for some l ≤ j.

The following assumption allows to apply the sparse representation result of [Las06, Corol-
lary 3.9] while using either Method 1 or Method 2.

Assumption 5.2. The index set {1, . . . , n} is partitioned into m disjoint sets Ij, j =
1, . . . ,m so that:

1. The collection {I1, . . . , Im} satisfies the running intersection property.

2. For each j = 1, . . . , nS, there exists some kj such that the polynomial gS
j in (1)

involves only variables {xi | i ∈ Ikj
}.
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3. In the definition (1) of S, we replace the inequality constraint NS − ‖x‖2
2 ≥ 0 by

the m quadratic constraints:

Nj −
∑
i∈Ij

x2
i ≥ 0, j = 1, . . . ,m.

For each j = 1, . . . ,m, index the variable yj by n+ j and define I(1)
j := Ij

⋃{n+1, . . . , n+
m}.

Proposition 5.3. Under Assumption 5.2, the collection {I(1)
1 , . . . , I(1)

m } of subsets I
(1)
j ⊆

{1, . . . , n, n+ 1, . . . , n+m} satisfies the running intersection property.

Proof. The collection {I1, . . . , Im} of subsets Ij ⊆ {1, . . . , n} satisfies the running intersec-
tion property. For each j = 1, . . . ,m− 1, there exists l ≤ j such that Ij+1 ∩

⋃j
k=1 Ik ⊆ Il.

Thus, I(1)
j+1∩

⋃j
k=1 I

(1)
k = (Ij+1∩

⋃j
k=1 Ik)

⋃{n+1, . . . , n+m} ⊆ Il
⋃{n+1, . . . , n+m} = I

(1)
l ,

the desired result.

Then Assumption 5.2 allows one to apply the sparse representation result of [Las06,
Corollary 3.9] to the semidefinite program (12) associated with Method 1. Indeed, observe
that the polynomial (x,y) 7→ hf (x,y) can be decomposed as hf = ∑m

j=1 hf j, where for
each j = 1, . . . ,m, the polynomial hf j involves only the variables {xi | i ∈ Ij} (the same
variables involved in fj) and y.
Under Assumption 5.2, this sparse representation result can also be applied for the
semidefinite program (30) associated with the lifting variant of Method 2 described in
Section 5.1.2. This is due to the fact that for each j = 1, . . . ,m, the polynomials gS

nS+j
and gS

nS+2j involve only the variables {xi | i ∈ Ij} and y.

6 Application examples

Here we present some application examples together with numerical results. In particular,
this section illustrates that our methodology is a unified framework which can tackle
important special cases: semialgebraic set projections (Section 6.2) and Pareto curves
approximations (Section 6.3). Moreover, the framework can be extended to approximate
images of semialgebraic sets under semialgebraic applications (Section 6.4).
The numerical results are given after solving either the semidefinite program (12) for
Method 1, the semidefinite program (25) for Method 2 or the semidefinite program (30)
for the lifting variant of Method 2, with the Yalmip toolbox [Löf04] for Matlab. As
explained in Section 5.1.2, the outer approximations obtained by Method 2 and its lifting
variant are the same, but their semidefinite formulations differ.
Benchmarks are performed on an Intel Core i5 CPU (2.40GHz) with Yalmip interfaced
with the semidefinite programming solver Mosek [Dah12].
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6.1 Polynomial image of semialgebraic sets

Example 1. Consider the image of the two-dimensional unit ball S := {x ∈ R2 : ‖x‖2
2 ≤

1} under the polynomial application f(x) := (x1 + x1x2, x2 − x3
1)/2. We choose B = S

since it can be checked that F = f(S) ⊂ B.

On Figure 1 resp. 2, we represent in light gray the outer approximations F1
r resp. F2

r

of F obtained by Method 1 resp. 2, for increasing values of the relaxation order r. On
each figure, the black dots correspond to the image set of the points obtained by uniform
sampling of S under f . We observe that the approximations behave well around the
locally convex parts of the boundary of F, and that it is not straightforward to decide
whether Method 1 or Method 2 provides the best approximations.

(a) r = 1 (b) r = 2 (c) r = 3 (d) r = 4

Figure 1: Outer approximations F1
r (light gray) of F (black dot samples) for Example 1,

for r = 1, 2, 3, 4.

(a) r = 1 (b) r = 2 (c) r = 3 (d) r = 4

Figure 2: Outer approximations F2
r (light gray) of F (black dot samples) for Example 1,

for r = 1, 2, 3, 4.

We indicate in Table 1 the data related to the semidefinite programs solved by Mosek
to compute approximations of increasing degrees, while using Method 1, Method 2 and
Method 2 with the lifting strategy (see Section 5.1.2 for more details). For each problem,
“vars” stands for the total number of variables and “size” stands for the size of the
semidefinite matrices. The computational timings of Method 2 with the lifting strategy
are similar to those of Method 1, for r = 1, . . . , 5. However, for r = 6 the size of the
problem is significantly smaller with Method 1.
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Table 1: Comparison of timing results for Example 1

relaxation order r 1 2 3 4 5 6

Method 1
vars 40 212 1039 4211 14028 40251
size 30 111 350 915 1991 3822

time (s) 0.64 0.72 0.77 1.69 8.22 40.37

Method 2
vars 286 2140 8241 22720 51166 100626
size 129 471 1029 1803 2793 3999

time (s) 0.65 0.74 1.54 3.4 12.89 43.74

Method 2
with lifting

vars 51 308 1499 5882 19546 56710
size 32 157 536 1411 3128 6127

time (s) 0.58 0.66 0.68 1.93 10.07 63.88

6.2 Projections of semialgebraic sets

For n ≥ m, we focus on the special case of projections. Let f be the projection of S with
respect to the m first coordinates, i.e. f(x) := (x1, . . . , xm). It turns out that in this
case, the semidefinite program (30) associated to the lifting variant of Method 2, has the
following simpler formulation:

inf
w

∑
β∈Nm

2r

wβz
B
β

s.t. w − 1 ∈ Qr(S),
w ∈ Qr(B),
w ∈ R2r[x1, . . . , xm].

(31)

Example 2. Consider the projection F on the first two coordinates of the semialgebraic
set S := {x ∈ R3 : ‖x‖2

2 ≤ 1, 1/4 − (x1 + 1/2)2 − x2
2 ≥ 0, 1/9 − (x1 − 1/2)4 − x4

2 ≥ 0},
which belongs to B := {x ∈ R2 : ‖x‖2

2 ≤ 1}.

(a) r = 2 (b) r = 3 (c) r = 4

Figure 3: Outer approximations F1
r (light gray) of F (black dot samples) for Example 2,

for r = 2, 3, 4.

Figure 3 resp. 4 displays approximation of the projection of S on the first two coordinates
with Method 1 resp. 2.
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(a) r = 2 (b) r = 3 (c) r = 4

Figure 4: Outer approximations F2
r (light gray) of F (black dot samples) for Example 2,

for r = 2, 3, 4.

6.3 Approximating Pareto curves

In [MHL14], we propose a method to approximate Pareto curves associated with bicri-
teria polynomial optimization problems minx∈S{(f1(x), f2(x))}. The image space R2 is
partially ordered with the positive orthant R2

+, that is, for every y1,y2 ∈ R2, y1 ≥ y2
stands for y2 − y1 ∈ R2

+. A point x̄ is called a weakly Edgeworth-Pareto optimal point,
when there is no x ∈ S such that fj(x) < fj(x̄), j = 1, 2. The Pareto curve is the set of
weakly Edgeworth-Pareto optimal points. For more details on multicriteria optimization,
we refer the interested reader to [Jah10] and the references therein.
The methodology of [MHL14] consists of reformulating the initial bicriteria optimization
problem to use a hierarchy of semidefinite approximations for parametric polynomial
optimization problems. Then, one can apply the framework developed in [Las10] and build
a hierarchy of semidefinite programs, allowing to approximate as closely as desired the
Pareto curve. Here we propose to study outer approximations of the set F = (f1(S), f2(S))
since points along the boundary of a tight outer approximation are expected to be close
to the Pareto curve.

Example 3. Let consider the two-dimensional nonlinear problem proposed in [WCSF01]:
minx∈S{(f1(x), f2(x))}, with f1(x) := (x1+x2−7.5)2

4 + (x2 − x1 + 3)2, f2(x) := x1 + x2
2 and

S := {x ∈ R2 : −(x1 − 2)3/2 − x2 + 2.5 ≥ 0,−x1 − x2 + 8(x2 − x1 + 0.65)2 + 3.85 ≥ 0}.
Instead of f1, we consider f̃1 := (f1(x) − a1)/(b1 − a1), where a1 and b1 are given by
a1 := minx∈S f1(x) and b1 := f1(x) with x a solution of minx∈S f2(x). Similarly, we
consider a scaled criterion f̃2 defined from f2. A preprocessing step consists in computing
lower and upper bounds of the polynomial f1 (resp. f2) over S to define f̃ = (f̃1, f̃2).
Doing so, one ensures that f̃(S) is a subset of the unit ball B and the present methodology
applies.

In this case, the Pareto curve is nonconvex and disconnected. As depicted in Figure 5
and Figure 6, it is difficult to obtain precise approximations of the whole image set, in
particular for the subset F ∩ B0, with an ellipse B0 := {x ∈ R2 : ((x1 − 13.7)/1.7)2 +
((x2 − 1.8)/0.5)2 ≤ 1}. Figure 7 displays more precise outer approximations of degree 8
(a) and degree 10 (b).
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(a) r = 1 (b) r = 2 (c) r = 4

Figure 5: Outer approximations F1
r (light gray) of F (black dot samples) for Example 3,

for r = 1, 2, 4.

(a) r = 1 (b) r = 2 (c) r = 4

Figure 6: Outer approximations F2
r (light gray) of F (black dot samples) for Example 3,

for r = 1, 2, 4.

(a) r = 4 (b) r = 5

Figure 7: Outer approximations F1
r (light gray) of F∩B0 (black dot samples) for Exam-

ple 3, for r = 4, 5.
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6.4 Semialgebraic image of semialgebraic sets

Given a semialgebraic set S as in (1), Methods 1 and 2 can be extended to approx-
imate the image of S under a semialgebraic application f = (f1, . . . , fm). To do so,
we follow [LP10] and introduce lifting variables to represent non-polynomial components
involved in f1, . . . , fm, as well as additional polynomial constraints.
Proceeding as in [LP10], for each semialgebraic function fj, one introduces additional
variables xj := (xj1, . . . , xjtj ) such that the graph {(x, fj(x)) : x ∈ S} = {(x, xjtj ) :
(x,xj) ∈ Ŝj} for some semialgebraic set Ŝj ⊆ Rn+tj . In the end, one works with the lifted
set Ŝ := {(x,x1, . . . ,xm) : (x,xj) ∈ Ŝj , j = 1, . . . ,m }.

Example 4. Here, we consider the image of the two-dimensional unit ball S := {x ∈ R2 :
‖x‖2

2 ≤ 1} under the semialgebraic application f(x) := (min(x1 + x1x2, x
2
1), x2 − x3

1)/3.
Remind that 2 min(a, b) = a + b − |a − b|, so that 2 min(x1 + x1x2, x

2
1) = x1 + x1x2 +

x2
1 − |x1 + x1x2 − x2

1|. To handle the absolute value, we introduce an additional variable
x3 together with the equality constraint x2

3 = (x1 + x1x
2
2)2 and the inequality constraint

x3 ≥ 0.

(a) r = 1 (b) r = 2 (c) r = 3 (d) r = 4

Figure 8: Outer approximations F1
r (light gray) of F (black dot samples) for Example 4,

for r = 1, 2, 3, 4.

(a) r = 1 (b) r = 2 (c) r = 3 (d) r = 4

Figure 9: Outer approximations F2
r (light gray) of F (black dot samples) for Example 4,

for r = 1, 2, 3, 4.

As for Example 1, we report in Table 2 the data related to the semidefinite problems
solved by Mosek to compute approximations of increasing degrees, while using Method
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1, Method 2 and Method 2 with the lifting strategy. Method 2 fails to compute polynomial
approximations of degree higher than eight (r = 4), the system running out of memory
(indicated with the symbol “−”). The lifting strategy described in Section 5.1.2 overcomes
this practical limitation.

Table 2: Comparison of timing results for Example 4

relaxation order r 1 2 3 4 5

Method 1
vars 66 438 3137 16993 73213
size 45 226 1008 3387 9075

time (s) 0.68 0.85 1.16 14.41 147.32

Method 2
vars 715 12243 89695 − −
size 295 1957 6283 − −

time (s) 0.83 3.29 52.55 − −

Method 2
with lifting

vars 78 540 3788 20216 87475
size 51 273 1262 4247 11508

time (s) 0.68 0.96 1.83 14.44 174.80

7 Discussion and conclusion

In this work, we propose two methods to approximate polynomial images of basic com-
pact semialgebraic sets, a numerical approximation alternative to exact computer algebra
methods when the latter are too computationally demanding. In its present form, this
methodology is applicable to problems of modest size, except if some sparsity can be
taken into account, as explained earlier. Therefore, to handle larger size problems, the
methodology needs to be adapted. A topic of further investigation is to search for alter-
native positivity certificates, less demanding than the SOS certificates used in this paper
but more efficient than the LP based certificates as defined in [Han88, Vas03]. On the one
hand, the latter are appealing since they yield a hierarchy of LP relaxations (as opposed
to semidefinite relaxations as in this paper). Moreover, today’s LP solvers can handle
huge size LP problems, which is far from being the case for semidefinite solvers. On the
other hand, it has been shown in [Las09] that generically finite convergence cannot occur
for convex problems, except for the linear case.
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