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Summary. In this paper we discuss fuzzy techniques for the detection and analysis
of potential breast cancer lesions on mammograms. We show how fuzzy measure-
ments can be performed on the images and how this information can be used in
the different stages of the processing.

Introduction

Medical decision problems are typical examples for multi-criteria decision
problems in which no single criteria is sufficient to arrive at a decision with
a comfortable level of certainty. In many cases only the combination of many
information sources, like patient interview, patient history and examinations
together allow the doctor to pronounce his diagnosis. As different pieces of
information acquired and fused for the final decision have different degrees
of certainty and precision, the fusion process should be able to reflect these
uncertainties. Until recently, all information in mammography was acquired,
fused and evaluated by the doctor. Today however, with the increasing perfor-
mance of image processing techniques, we are at a point where doctors using
a computer aided detection (CAD) systems perform better in some aspects,
than the doctors alone. The strong points of CAD systems are their precision
and repeatability. Logically, efforts are being made to combine the expert
knowledge of the doctor with the precision and repeatability of the CAD
system. Fuzzy logic is a powerful tool for the formulation of expert knowl-
edge and the combination of imprecise information from different sources. To
achieve meaningful results the imprecision in all information used to come to
a conclusion should be taken into account.

In this paper we discuss fuzzy techniques for the detection of cancer on
mammograms. We show how fuzzy measurements can be performed on the
images and how this information can be used in the different stages of the
processing.

We show that the use of a fuzzy representation allows the decisions to be
taken whenever sufficient information is available in the processing stage and
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to propagate the information including its uncertainty level to the next pro-
cessing stage if the decision cannot be performed with sufficient confidence.

In the first part we discuss techniques for mammographic image processing
and in the second part we show some applications of these methods on clinical
problems.

Partl: Techniques

The signs of cancer visible on mammograms can be separated in two
groups: microcalcifications and fibrous lesions. Figure 1 shows zoomed views
of two examples.

Fig. 1. Examples of microcalcifications (left) and fibrous lesions (right)

The microcalcifications are small depositions of radiologically very opaque
materials like Cag(POy4)2, CaCOs, Mgs(POy4)s [17] which can be seen on
mammography exams as small bright spots. In section 1 we will discuss how
fuzzy contours and measurement of fuzzy attributes can be used for charac-
terization of microcalcifications. In section 2 we describe an adaptive method
to determine membership functions for classification with attributes that
present significant variability from one image to the other. This technique
can be applied to microcalcifications as well as fibrous lesions. In section 3
we will discuss techniques for comparisons of fuzzy measurements which are
needed in many parts of mammographic image processing.

1 Fuzzy Contours and Fuzzy Measurements

The first stage of a CAD system is the detection of the microcalcifications on
the mammographic images. A number of methods have been proposed in the
literature for this purpose. We will not go into details here, interested readers
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may refer to [16]. The detection stage gives a number of markers for poten-
tial microcalcifications. For the distinction between real microcalcifications
and other structures the marked signs have to be analyzed. The attributes
that can be calculated on the microcalcifications can be separated into those
which are calculated without segmentation and those using a segmentation
of the calcification. Information captured by attributes without segmenta-
tion tend to be somewhat deluded by the fact that some background is being
taken into account for their calculation. On the other hand attributes that
use a segmentation have to rely on the segmentation. Segmentation of micro-
calcification is a difficult task because of their small size, their contour not
always well defined and the possibility of overlapping due to the projection.
Due to the image acquisition by projection for X-rays, the 3D-structures may
superimpose and more than one microcalcification may be projected at the
same position on the image. Therefore for some microcalcifications a unique
contour can easily be found, but for other microcalcifications more than one
contour can potentially be chosen.

We propose to use a fuzzy approach to catch the uncertainty of the seg-
mentation and transmit it to the other processing stages.

1.1 Segmentation of Microcalcification and Fuzzy Contours

A set of contour candidates are calculated for each microcalcification by re-
gion growing [3]. This ordered set of contours is considered the universe of
all possible contours describing the given microcalcification. An example of a
zoomed part of a mammogram including the set of possible contours is given
in figure 2.

Fig. 2. The set of possible contours for a microcalcification

The prior knowledge about the contours of microcalcifications, which can
be resumed by “microcalcifications are small and have a high contrast’, is
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translated into a fuzzy set description using two attributes namely the area
and the gradient shown in figure 3.

f

area gradient

Fig. 3. Translation into fuzzy rules of the a priori information: microcalcifications
are small and have a high contrast

The two functions express the degree of membership to the class contour
of a microcalcification as a function of the size (size is small) and the image
gradient under the contour (the gradient is high). Using these membership
functions the membership values for each contour are calculated by the con-
junction of the membership values for small and high gradient. Figure 4 show
the application of this method for one particular microcalcification: the two
graphs at the left show the area and the gradient for each contour obtained
by the region growing process. The right graph shows the resulting member-
ship function to the class contour of the microcalcification for each contour
in the universe.

1

area
gradient

contour contour contour

Fig. 4. Measured area and gradient values for all contours of a microcalcification

In this example the bi-lobed membership function can be interpreted in
the following way: there are two possibilities for the segmentation, one that
corresponds to a small microcalcification and another that corresponds to
a bigger one. Each of the two contours with very high membership values
are surrounded by some contours with slightly lower degrees of membership
which translate the imprecision of the contour position.

Once the membership function for contour of a microcalcification on the
universe of all contours has been calculated the attributes of this fuzzy con-
tour can be evaluated.



Mammographic Image Processing 5

1.2 Measurements of Fuzzy Attributes

Several attributes are calculated on each of the contours with a non-zero
membership value. To transform the attribute measurements performed on
all the contours of the universe to a fuzzy measure which characterizes the
microcalcification we can use the extension principle.

fo. N
c,circularity

contour | circularity

o
circularity _,

contour

Fig. 5. Fuzzy measurements on contours using the extension principle

Figure 5 show the application of the extension principle to calculate the
degree of circularity of a microcalcification. The figure 5a shows the degree
of membership to the class contour of a microcalcification for each contour
obtained by the fuzzy segmentation and the figure 5b shows a crisp circu-
larity measure for each contour. By combining the two graphs we obtain the
membership function for the circularity of a fuzzy contour which describes a
microcalcification. While using the extension principle as shown in figure 5, it
is possible to obtain more than one degree of membership for a given attribute
value whenever the original membership functions are not monotonous. As
we interpret the membership function as a degree of possibility for the micro-
calcification to have a certain attribute value, we use the maximum operator
to obtain a unique degree of membership for each value of the attribute.

In the example shown in figure 5¢c, we have computed the membership
function for the circularity measurement using the example shown in figure
4 which can be interpreted in the following way: the ambiguity about the
contours has disappeared in the circularity measure as all possible contours
for the microcalcification exhibit a high circularity. Therefore the circularity
measurement does not show any ambiguity, but some imprecision remains.
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1.3 Conclusion

The fuzzy contours allow to capture the uncertainty and imprecision of the
contours. The extension principle makes it possible to forward these uncer-
tainties to any attribute that can be measured on a single contour to obtain
fuzzy measurements for any attribute. The fuzzy measurements can be used
in many applications like semiological classification of lesion or matching of
microcalcifications (see section about applications).

2 Adaptive Membership Functions

A priori, the fuzzy segmentation and measurement methods presented in
the previous section should be applicable to fibrous lesions as well as to
microcalcifications.

Unfortunately the attributes calculated on mammographic images for the
detection or classification of fibrous lesions show a significant variability from
one image to the other which are due to the large variability of the breast
tissue.

This big variability of the normal structures in mammograms between
patients makes it extremely difficult to distinguish between normal and ab-
normal findings using rules with predefined membership functions applied to
the fuzzy measurements.

We propose the construction of adaptive prototypes for the membership
functions. The prototypes are adapted to the current image to obtain a more
discriminative representation of the class memberships and thereby extract
the maximum of information from each attribute. With this approach we can
use a single set of rules for the identification of lesions.

2.1 Adaptive Membership Functions for Classification

In the following we consider the fuzzy decision problem that consists in clas-
sifying each pixel of the image into one of two classes normal or suspect. A
simple way of creating probabilistic membership functions for the classes is
to use attribute histograms ss illustrated in figure 6:

The histogram of the attributes over all pixels of each class in the learning
database is calculated. The histogram is normalized by the joint histogram
of all classes together. If the attribute under consideration exhibits variation
coming from other factors than the class membership of the pixels (like ex-
position parameter setup for the image acquisition) the histogram may be
shifted in the universe. The variations will be modeled in the membership
functions by an increase in uncertainty. If the variability between images is
much bigger than the variations between classes, the membership functions
have a very small discrimination power.

A way to reduce this uncertainty is to extract some information about
the current case from the joint histogram of all classes. A simple method to
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Fig. 6. Classification using varying attributes

do this, would be to adapt the average of the different membership functions
to the average of the current image. Nevertheless this will not allow to take
advantage of regularities which cannot be described by a simple shift of the
histogram.

In order to find more complicated relationships we have to find some pa-
rameters to describe the form of the histogram and then find the relationships
between these parameters.

2.2 Parametrization of the Histogram

The parametrization of the histogram must satisfy a certain number of con-
ditions in order to be useful for expressing the relationships between the joint
histogram of all classes and the histogram of one class.

e Robustness: The parametrization must change little if the histogram
changes little

e Completeness: All histograms which may be encountered for the problem
under consideration must be supported by the selected parameters.

e Compactness: The number of parameters must be as low as possible.

The parametrization we propose to use is a weighted sum of parametric
functions fy.

K
F@lpe, Or) =D pr - fr(x|Ok) (1)
k=1
for example a weighted sum of Gaussian:
K
F@|®) =" pi - gi(a, e, ox) (2)
k=1
with :
R Q
T, b, O) = —F——¢€ Tk
Jr\T; k> Ok Nors

and :
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= (p,p,0)

p=(p1, -,pr), with p = weight Gaussian k
w=(p1, -, ux), with pp = average of Gaussian k
o = (o1, --,0k) , with o = variance of Gaussian k

2.3 Parameter Estimation with the EM-Algorithm

There exists a variety of algorithms for the parameter estimation of a Gaus-
sian mixture model. Most of them are iteration methods based on the EFM-
algorithm proposed by Demster [8]. The idea of the EM-algorithm is to start
with an initial estimate (po, to,00) for the parameters of the component
functions and estimate a membership value Ag; for each example i to each
component k. During the iterations two steps are performed alternately:

e E-step: Update the \; based on the last set of parameters (p(™m—1 p(m=1 g(m=1))

(m—1)

(m=1) _(m-—1)
T m— m— m—
Yo p M gl plm Y ol

e M-step: Optimize the parameters of the Gaussian with the examples
weighted by the Ag;.

m m m i= >\z T
A =S u = Lz 5)
1=1 pk
Ny (m) (m)y2
m i1 A (T —
0,(6 ) — Dim1 Ak ((:) py, ) (6)
by,

The problem of the standard EM-algorithms is the necessity of an initial-
ization close to the optimal state. Based on the initialization, the obtained
result corresponds to a local minimum close to the starting position which in
general is not the global minimum. As an illustration we present a histogram
approximated by 8 or 12 Gaussian which were initially equally spaced in the
universe (figure 7).

The main lobe in the histogram is approximated with one or two compo-
nents, depending on the initialization. This method of parameter estimation
is not well adapted for variance modeling, as the parameters depend not only
on the histogram itself but also on the initialization.

2.4 Parameter Estimation with the Hierarchical EM-Algorithm

A modified version of the EM-algorithm is proposed by Huang et al. [31].
This approach adds the components one by one to the model and estimates
their parameters under the assumption of uniform noise. Uniform noise is
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Fig. 8. Hierarchical approximation by 2 or 12 components

used as a simplification for all components which are to be identified later.
This hierarchical decomposition is much more stable. In figure 8 the same
histogram is used to identify 2 or 12 components.

The principal components are always identified the same way and are
independent of the number of total components that are used. In the following
we will call this algorithm H-EM.

2.5 Modeling of Variability

Once the histogram has been parametrized the links between the joint his-
togram of all classes and the membership functions for each class must be
established. Figure 9 summarizes the learning phase in which the parameter
models for two classes are identified.

The regression fits some function to the parameters of the joint histogram
to predict the membership functions for each class. In some practical appli-
cations the estimated parameters by means of the hierarchical EM algorithm
are not sufficiently stable for a regression (e.g. with a linear model). One of
the reasons of this can easily be understood for a histogram with two equally
high and well separated components. The H-EM algorithm will detect the
two components, but the order of the components is undetermined.
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Fig. 9. Regression of membership function parameters

2.6 Generation of a Prototype

In order to further stabilize the parameters we propose to calculate a proto-
type for the components and use the prototype during the histogram approx-
imation phase. A simple static prototype can be described with an average
value for all parameters of the mixture and a variance around this value. It
can be shown that this approach is equivalent to specify a prior probability
distribution of the parameters of Gaussian components which are themselves
Gaussian.

To use the prototype during the estimation of the mixture components,
the EM algorithm must be modified. We will call the modified algorithm
P-EM (prototype-EM).

e E-step: Update the \y; based on the last set of parameters (p™ 1, p(m=1 g(m=1)),

e M-step: The optimization of the parameters of the Gaussian with the
examples weighted by the Ag;.

e P-step: Update the parameters of the Gaussians to take into account the
prototype.

P = g pi, + (1 — g, )pi™ (7)
wd™Y = g, g, + (1 g, )™ (8)
o™ = g, 00+ (1— 0z, )ot™) 9)

(10)
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For the static prototype, the P-step consists in taking a weighted average
between the prototype center values (p;,, i, ,04.) and the current parame-
ters (pgm),ugm),agm)) calculated in the M-step. The weights (o, ,;,, s, )
determine the importance of the protoype versus the importantce of the his-

togram.

2.7 Prototype with Parameter Interactions

The P-EM algorithm is able to avoid instabilities in the parametrization
of the histogram like exchanged components. On the other hand, there is
no direct link between the components during the approximation. In case
of a histogram which contains a pattern that has not the form of a single
component (like a triangular area when using Gaussian components) the
pattern can be approximated by a number of components. To find these
patterns in a histogram, a link between the parameters of the components
used to describe the pattern is necessary, otherwise each component will be
updated independently of the others during iteration.

An efficient way to incorporate parameter interactions into the model is
to change the P-step in the P-EM algorithm with an update which includes
interactions. One example of interaction is a linear relationship between pa-
rameters. We can define a matrix A that describes a linear relationship be-
tween the components of the parameter vector &.

A-&=0 (11)

In the general case the parameters of the model do not show a perfectly linear
relation so that the equation 11 becomes:

A-d=¢ (12)

The error of the linear model € can be used to define the internal energy of
the mixture components:

Ein = [A®]" R, [AD] (13)

where R; is the diagonal matrix of the standard deviation of the linear model.
With this notation the algorithm P-EM minimizes an energy function which
is the sum of the external energy FE.,; which describes the correspondence
between the mixture model and the histogram, and the internal energy FE;,;
which describes the distance of the adapted mixture model to the prototype
model. E.,; is minimized by the E- and M- steps of the algorithm P-EM and
E;,+ is minimized in the P-step.

2.8 Prototype Model Learning from a Database

The parameters for the adaptive membership functions are the center of the
prototype @q, the distance matrix A and its standard deviation matrices R;
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(standard deviation of the linear prototype) and R, (standard deviation of
the static prototype). To learn these parameters from a learning data base,
we first apply the hierarchical-EM algorithm on all histograms. This will
give a first estimation of the components that are encountered, but they
are not necessarily ordered. The next step is to find histogram components
that are present in most of the images, in other words to apply a clustering
algorithm to the components estimated by the H-EM. The clustering of the
components establishes the order which is needed for a successful estimation
of the interaction between components

After the clustering, a matrix @ containing all the ordered parameters ®;
for all images can be constructed and the matrix A can be calculated by a
least square approach minimizing A - &. Using A, R, and R; the P-step can
now be formulated as:

&= (Rgl + ATR;lA) & (14)

2.9 Conclusion

For applications such as detection of fibrous lesions on mammograms, fuzzy
rule based reasoning can be applied, but the amount of uncertainty intro-
duced by different sources of variability seriously reduces the classification
performance. The use of adaptive membership functions can help to reduce
the uncertainty by extracting a model for at least some part of the variability
and thereby increase the classification performance.

3 Comparison Measures and Prototypes for Image
Processing

Comparison of objects is a widespread operation necessary in many frame-
works. It is based on the idea that if two objects are sufficiently similar then
a transfer of knowledge is possible from one to the other. This comparison is
frequently achieved through a measure intended to determine to which extent
the descriptions have common points or differ from each other.

Many measures of comparison have been proposed and studied. We have
proposed a general form for measures of comparison, enabling us to classify
the main existing ones with respect to their properties. Thus, the framework
we have obtained provides a means to choose a measure of comparison rele-
vant and appropriate for a given problem. We use the formalization and the
framework introduced in [4] to deal with measures of comparison. We show
the interest of this framework in two kinds of problems: classification and
construction of a fuzzy prototype.
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3.1 A Framework to Compare Fuzzy Subsets

We propose the construction of a general framework enabling to include the
majority of all the measures, indices and relations of comparison. For this pur-
pose, different classes of measures are defined according to their properties:
comparison, similitude, dissimilarity, satisfiability, inclusion, resemblance...
This framework, described in details in [4], is a tool for a classification of the
existing measures as well as for a creation of new quantities.

For any set (2 of elements, let F'(2) denote the set of fuzzy subsets of (2,
fa the membership function of any description A in F(£2). We use the clas-
sical definition of intersection: fang = min(f4, fg) to describe the elements
belonging to A and B. The definition used for the difference between two
fuzzy subsets is the following;:

An operation on F({2) is called a difference and denoted by —, if it
satisfies for every A and B in F({2) :

e if AC B, then A— B = ).
e B — A is monotonous with regard to B : B C B’ entails B—ACB' — A

We suppose that we have a way of evaluating the weight of the elements
of the universe characterized by a fuzzy set through a fuzzy set measure
M . This fuzzy set measure M is a mapping F(£2) — IR" such that, for every
A and B in F(2):

[] M(@):O
e if BC A, then M(B) < M(A).

A measure of comparison between A and B in the most general sense,
takes into account common features, ANB, and distinctive features, B— A and
A — B. Therefore a M-measure of comparison on (2 is a mapping S : F/(£2) x
F(2) = [0,1] such that S(A,B) = Fs(M(AN B),M(B — A), M(A — B)),
for a given mapping Fs : R™ x RT x IRt — [0,1] and a fuzzy set measure
M on F(£2).

One example of a M-measure of comparison is Zadeh’s inclusion:
S(A, B) = 5 Xy min(1, 1= fa(2)+ fp(2)) = 1= 5 M (A= B) with fa_,p =
max(0, fa — fp) and M the sigma-count [7].

A M-measure of comparison can either evaluate the likeliness of two de-
scriptions (it is called a M-measure of similitude), or their differences (it is
then called a M-measure of dissimilarity). We consider the following proper-
ties for Fg:

symmetry: Fs(u,v,w) = Fs(u,w,v)

minimality: Fs(u,0,0) =0
reflexivity: Fs(u,0,0) =1
containment: Fs(u,0,w) = 1 whatever u and w may be.
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e exclusiveness: Fs(0,v,w) = 0 whatever (v,w) # (0,0) may be.

Obviously, symmetry of Fs implies that S satisfies S(A4,B) = S(B,A).
Minimality of Fs entails that S(A, A) = 0 while reflexivity corresponds to
S(A,A) = 1. The containment property yields S(4,B) = 1if B C A. The
exclusiveness property implies that S(A, B) = 0 as soon as AN B = 0.

A M-measure of similitude S on (2 is a M-measure of comparison S
such that Fs(u,v,w) is non decreasing in u, non increasing in v and w.

An example for a f-measure of similitude is the relation given by Tversky
[28] and generalized to fuzzy sets [26], [4]:
S(A,B) = (AN B)/(f(AN B) +af(A - B) + 8f(B — A))
with a, 8 > 0 and f a fuzzy set measure.

The measure of dissimilarity is not defined as the dual of a measure
of similitude, but it has specific properties. A M-measure of dissimilarity S
on 2 is a M-measure of comparison satisfying the minimality property and
such that Fs(u,v,w) is independent of v and non decreasing in v and w.

A definite symmetrical M-measure of dissimilarity (i.e. S(4, B) = S(B, A),
VA and B) satisfying the triangular inequality (i.e. S(4,B) < S(4,C) +
(C,B), YA, B and C) is a distance.

In order to classify the existing measures more subtly, we distinguish three
types of M-measures of similitude: satisfiability, inclusion and resemblance.

A measure of resemblance is used for a comparison between the de-
scriptions of two objects, of the same level of generality, to decide if they
have many common characteristics. A M-measure of resemblance on (2 is a
M-measure of similitude S which satisfies the reflexivity and the symmetry
properties.

In the case where T is the minimum, we obtain extensions of measures of
similarity. Examples of M-measures of resemblance are the following:

e S(A,B) = ewp(_6|d7"(‘47 B)|)[19]
where 3 > 0 and d,.(A4, B) = (3. |fa — fa|")"/", for r > 1. This quantity
is a product-transitive indistinguishability relation.

e S(A,B) = M(An B)/M(A U B) [10] for M such that: M(A U B) =
M(ANB)+ M(A—-B)+ M(B - A).

o S(A,B) =1— 15 32, [falz) = f(2)| = 1 - 55 (M(A~ B) + M(B — A))
[10] with the sigma-count M(A) =3 fa(x) as a fuzzy set measure.

A measure of satisfiability corresponds to a situation in which we
consider a reference object or class and we decide if a new object is compatible
with it or satisfies the reference. A M-measure of satisfiability S on (2 is a
M-measure of similitude S satisfying the containment and the exclusiveness
properties and such that Fg(u,v,w) is independent of w.

Analogy relations [5]: S(A, B) = inf, min(1 — fg(z) + fa(x), 1), and fuzzy
similitude [6]: S(4, B) =1 —supy, ;)= fB(7) are particular M-measures of
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satisfiability. Measures of satisfiability have been proven [4] to be compatible
with the contrast model introduced by Tversky, satisfying major properties
such as matching, monotonicity, independence, solvability [28].

A measure of inclusion also concerns a situation with a reference object
and measures if the points common to A and B are important with regard
to A. A M-measure of inclusion S on (2 is a M-measure of similitude satis-
fying the reflexivity and the exclusiveness properties such that Fgs(u,v,w) is
independent of v.

As an example of M-measure of inclusion, we can find the degree intro-
duced by Sanchez [25]: S(A,B) = |[ANB|/|A| = M(ANB)/(M(ANB) +
M(A — B)) with the sigma-count as M.

A classification of all the measures of comparison discussed above is shown
in figure 10. We point out that there exist measures of comparison which

M-measures of comparison
Fs(M(AN B), M(B — A), M(A - B))

Fs independent of u, » v and w

minimality

M-measures of similitude
Fg 7 uand\ v and w

M-measures of dissimilarity

M-measures M-measures M-measures
of satisfiability of inclusion of resemblance
Fs independent of w Fs independent of v reflexivity
Fs(0,v) =0V v#0 reflexivity T
Fs(u,0,.)=1Vu Fs(0,v,w) =0V v and w ¥ ¥

Fig. 10. Classification of M-measures of comparison

are neither similitudes nor dissimilarities. The same holds for measures of
similitude: they can be different from satisfiability, inclusion or resemblance.
In the rest of this section, we show the use of this framework for two kinds of
problems in mammographic image processing: classification and construction
of fuzzy prototypes.

3.2 Measures of Comparison for Classification Process

A similarity based-classification method has to solve the problem of the choice
of a measure of similarity or, more generally, a family of measures of com-
parison. A new object we do not know the class is often classified thanks to
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a comparison with a rule. Indeed, a prototype can be considered as a rule
describing a class. For example, the prototype of the class “round” might be:
around 15 pixels for surface, between 5 and 6 for compacity. In other
words, if surface = around 15 pixels, and compacity = between 5 and 6
then class = round. A decision tree is also equivalent to a set of IF...THEN
rules. Each path in the tree is associated with a rule, where premises are
composed by the tests of the encountered nodes, and the conclusion of the
rule is composed by the class associated with the leaf of the path.

The classification process is based on the question: does the new object
satisfy the rule? This question entails the use of a measure which is mazimal
when the object is included in the prototype (exclusiveness property) and can
be considered as a particular case of the prototype, and minimal when no
common features are shared by the two objects (minimality property). In the
proposed framework, these properties are shared by measures of satisfiability.

3.3 Construction of a Fuzzy Prototype

The prototype is intrinsically interesting because of its power of description.
This power can be used for a classification process for example the semiolog-
ical classification of microcalcifications in mammography.

According to E. Rosch [23], all objects do not represent in a same manner
the category they belong to. They are spread along a scale of typicality.
According to Rosch and Mervis [24] :

[.] categories tend to become defined in terms of prototypes or pro-
totypical instances that contain the attributes most representative of
items inside and least representative of items outside the category.(p.30)

Therefore the notion of prototype is linked to the notion of typicality. Zadeh
[30] has emphasized this aspect: the typicality is a matter of degree and it
implies that the concept of prototype is a fuzzy concept. A prototype, as L.
A. Zadeh said, is not a unique object or a group of objects. It is more a fuzzy
schema enabling us to generate a set of objects because of the synthesized
information it contains.

In the approach we describe here, we retain Rosch’s idea that an object
is all the more typical as it resembles the members of its class and it is
distinct with regard to the members of others classes and Zadeh’s idea that a
prototype is not a particular example but a fuzzy schema. The difference with
the standard methods of determining prototype lies on the fact that values
of attributes rather than objects themselves are compared pair by pair.

We need to determine the typicality of each value appearing in a learning
database in order to construct a fuzzy prototype.

This situation of comparison is based on the assumption that values of
attributes are considered to have the same level of generality, and no value
can be taken as a reference. This situation needs a symmetrical measure
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because all values have the same level of generality and a reflexive measure
because there does not exist any pair of distinctive objects which perfectly
look like each other. In the proposed framework, these properties are shared
by measures of resemblance.

Let X be a set of objects. We suppose that there exists a partition given
on X composed by crisp classes C;. For an object O of the class C;, the
typicality of the value v of an attribute A is computed as follows:

Step 1. Compute the resemblance r(v,v;) between v and the value v; of the
attribute A for any example of the same class C;. The global resem-
blance R(v) relative to the set of values of A present in examples, is
obtained by aggregating the degrees (v, v;).

Step 2. Compute the dissimilarity d(v,v;) between v and the value v; of
the attribute A for any example of class Cj different from C;. The
total dissimilarity D(v) relative to the set of values of A present in
examples, is obtained by aggregating the degrees d(v,v;).

Step 3. The aggregation of this two values (for example with a t-norm), R(v)
and D(v), gives the typicality T'(v) of v, according to the attribute
A, for the class C;.

Degrees of typicality participate in the construction of a fuzzy prototype
of a given class. For an attribute A, the degree of typicality of each value of
A is computed for each class. Then, the fuzzy prototype of any given class
is characterized by the most typical value(s) of each attribute. This means
that a fuzzy prototype is a virtual object described by means of the same
attributes as the objects in the learning database. The values taken by the
fuzzy prototype are the most typical.

One of the intermediate steps of the semiological classification is the clas-
sification of the microcalcifications according to their form: round or not
round. Figure 11 shows the prototypes obtained for the classes round and
not round by the method described above, applied to a learning database
of annotated mammograms. More specifically, these prototypes have been
obtained by using :

o M(A) = [, fa(x)dzx for the fuzzy set measure,

S(A,B) =2 arctan(2M(AAr}aZg))()AmB)) for the measure of resemblance,

S(A,B) = (X, pasrs fa-B@) + 2, 1y 5 1, fB-a(@)) for the measure
of dissimilarity,

the mediane for the aggregation of resemblance and for the aggregation
dissimilarity in the steps 1 and 2 of the method.

the probabilist t-conorm (i.e. L (z,y) = = +y — zy) for the aggregation
operator in the third step of the method.

The prototypes can be provided to the radiologist as a help to formalize
his reasoning and to better understand the structure of microcalcifications
and its link to the semiological classes. For example the first row in figure 11
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shows that the microcalcifications in the class round have a surface of about
15 pixels and at the same time that the surface of microcalcifications in the
class not round is less specific (between 16 and 44 pixel).

3.4 Conclusion

The proposed formal framework of comparison measures can help to choose
the right fuzzy measures for different tasks which require comparisons be-
tween fuzzy objects. The two applications in mammography to which we
have applied it (the classification of microcalcifications, and the matching
of microcalcifications) have confirmed its efficiency. Furthermore, degrees of
typicality based on measures of comparison can be used for the construction
of fuzzy prototypes which are effective for a classification problem [22].

Part2: Applications

In this part we will discuss applications of the fuzzy methods described
above. We will first describe a system for the semiological classification of
microcalcification clusters. In the second section we will show some results of
the application of fuzzy comparisons to the matching of microcalcifications
seen on different views of a stereotactic exam. The matching is used for the
reconstruction of a 3D representation of a microcalcification cluster.

4 Computer-Aided Diagnosis for mammography

Fuzzy Contours Fuzzy Measurements Fuzzy Decision Tree Fuzzy Decision Tree
for Individual for Clusters of

Detection Microcalcifications Microcalcifications
A RN
=2 A =R
O O O O

Fig. 12. Overview of the CAD system

Systems for computer-aided diagnosis for breast cancer are in most cases
multi-level decision processes. The knowledge of uncertainty in each part of
the processing is important for a decision process, if the uncertainty can be
transmitted from step to step. In the computer-aided detection and charac-
terization system we describe here (fig. 12), this principle has been realized
using a fuzzy representation. The steps of the algorithm are:

e detection of the microcalcifications
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e fuzzy segmentation of the microcalcifications

e fuzzy measurements on each calcification

e fuzzy decision tree for the classification of individual microcalcifications
e fuzzy decision tree for the classification of microcalcification clusters.

4.1 Automated Construction a Fuzzy Decision Tree for the
Classification of Lesions from a Learning Database

The image database is transformed into an attribute database by using the
fuzzy measurements described in sections 1. Each case is characterized by 73
attributes. We have to classify them to give a diagnosis. Radiologists provide
us some indications about the way they examine the mammographic images.
But they only study the films, and have only qualitative information. On the
contrary, we have digital images, with measurable qualitative information.
Images can also be filtered, and they provide a kind of data ignored by the
radiologists (gradient, ...). Among all these attributes, a few are relevant and
should be identified by a learning system.

We choose the decision tree as a learning and classification system for the
following reasons:

e It can learn from a small database (our database, which is noisy, has 118
examples for 73 attributes),

e It is able to handle a large number of attributes, choosing only the most
relevant among them,

e The rules provided by the radiologists can be easily translated into nodes
in the tree,

e It is possible to track the path followed by an example through the tree
and to compare this path to the radiologist reasoning.

4.2 Decision Tree

Learning step: The tree looks for a partition of the database according to
an attribute, which is well suited to the ideal partition realized by the class.
The values of attributes we use are numerical, and the partition corresponds
to a threshold. The error between the two partitions is evaluated with an
entropy (as in the method ID3 proposed by Quinlan [20]), or other measures
(contrast, ...). We use the following contrast measure:

— fmin(fAl (w)ang (CU))dCU
[ max(fa, (), fa,(z))dz

If f4, is the membership function for the attribute compacity for all malignant
calcifications and fa, the membership function for the same attribute for
all benign calcifications, C' gives the contrast for the attribute compacity.
The attribute which minimizes this contrast is chosen to constitute a test

C

(15)
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associated with the node. Each element of the partition follows the branches
of the tree, and the operation is repeated, until a predefined stopping criterion
is reached (e.g. the homogeneity of the classes of the elements in the leaf is
sufficiently high). An example for a decision tree, construced in this way from
a training set of different shaped microcalcifications, is shown in figure 13

tiny medium or large

fine granular i
elongation

high

compac/ &i\er low

"teacup" casting other lobulated

Fig. 13. Decision tree

Classification step: A new example is introduced at the root of the tree. At
each node a fuzzy measure of satisfiability is calculated to estimate to which
degree the example satisfies the test on the attribute. According to the out-
come of this measure, the example is propagated to one or several branches
with its corresponding degree of satisfiability. At the end, the example falls
into one or several leaves with different degrees which are aggregated to de-
termine the final class of the example.
In our implementation, we have used the following satisfiability:

_ [ fanp(z)dz
[ fe(z)dx

and the Zadeh t-norm (i.e. the minimum) for the aggregation operator.

S(A, B) (16)

4.3 Classification Results

We compared the performance of our approach with several different ap-
proaches for the classification of microcalcifications into small, round and
elongated classes which are the usual categories used by the doctors to de-
termine the risk of cancer (table 1). It is not easy to compare an optimized
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fuzzy logic approach with crisp methods that are not necessarily optimized.
Nevertheless, it is interesting to have some comparative figures. We tested our
database with the MLC (Inducer) software. The techniques provided by this
software handle only crisp data, therefore the database has been defuzzified
with the max operator for those methods.

Method KNN |Naive Bayes|ID3 |Fuzzy tree
Success for “small” class 91.8 %(93.7% 93.1%96.4 %
Success for “round” class 79.6 %|74.1% 84.2%(84.4 %
Success for “elongated” class|73.5 %|72.8% 80.1%|83.1 %

Table 1. Comparison of fuzzy tree performance with other classification methods

These results represent the characterization of individual microcalcifica-
tions. We added a second decision tree to take into account the global cluster
attributes. For difficult cases, especially those with many superimpositions,
we observed that even if a high level of uncertainty remains in the classifica-
tion of some of the individual microcalcifications, the system can make use
of the more certain measurements of the majority of microcalcifications in
the cluster to give a valid result. We think this behavior is similar to that of
radiologists.

5 3D Reconstruction of Microcalcification Clusters

When breast lesions containing ambiguous microcalcifications are detected, a
biopsy using stereotactic guidance can be used to confirm the diagnostic. The
stereotactic exam consists in taking two views of the breast from two different
directions. If the object to be punctured - typically a microcalcification - can
be detected on both views and the geometry of the acquisition is known,
the 3D position of the object can be calculated. A positioning device can
then be used to introduce a needle at the exact position of the object, to
obtain a tissue sample. Figure 14 shows images obtained for the two angles
and the scout view, which is a centered view that is taken to verify the
correct, positioning. Generally, the radiologist has to identify the object to be
analyzed on both images from the two images only.

The application we show in this chapter is the 3D reconstruction of the
microcalcification cluster from these two views.

5.1 Microcalcifications Matching

The 3D reconstruction of a cluster microcalcification cluster from two or more
views requires that the microcalcifications can be matched between the views.

An overview of the matching process we propose is shown in figure 15.
The first step is the detection of all microcalcifications on all views. We
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left image scout image right image

Fig. 14. Stereotactic exam
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Fig. 15. Matching process for microcalcifications
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construct a correspondence matrix which has one row for every candidate
in the left image and one column for every candidate in the right image.
This correspondence matrix is initialized to 1.0 for each element to indicate
that all matches between any pair of candidates is possible. The geometrical
constraints from the known acquisition geometry (epipolar line) are used to
eliminate all candidates combinations which are not possible by setting to
zero the corresponding matrix component. If a scout view was taken ( a
third view with a centered tube angle) it can be used to eliminate further
candidate combination which do not project at the right place on the third
view.

5.2 Using Measures of Similarity and Dissimilarity for
Comparing Microcalcifications

The remaining candidates are compared by using fuzzy attributes calculated
on the fuzzy contours of the calcifications. All candidates from one view are
compared to all remaining candidates in the second view by calculating sim-
ilarity measures based on the fuzzy attribute. We use the same approach
as for the construction of a fuzzy prototype of a class of objects (see 3.3).
For a given microcalcification in one view we need to find the most similar
microcalcification in the other view and at the same time, the most dissim-
ilar microcalcification to the other microcalcifications it matches. For the
same reasons given for the construction of a fuzzy prototype, the similarity
is determined thanks to the computation of a resemblance measure.
Comparisons of microcalcifications are made attribute by attribute. A step
of aggregation is needed to give a single index of similarity or dissimilarity.
We denote the value of attribute j of the microcalcification [ for the view &
by mf’ i The method is decomposed as follows:
For a given microcalcification on the first view (described by mzl71... g orin
short m}),

Step 1. For each non-zero cell in the correspondent column (i.e. a matched
microcalcification m3 in the second view), compute the resemblance
r(my ;,mj ;) for all j. The global resemblance R(my,mj) is obtained
by aggregating the degrees r(m; ;, mj ;).

Step 2. For each non-zero cell in the row of mj (i.e. a matched microcalcifi-
cation mj, in the first view), compute the dissimilarity d(mj ;,mj, ;)
for all j. The dissimilarity D(m3,m;}) is obtained by aggregating the
degrees d(mj, ;,mj, ;). The global dissimilarity D(mj) of mj relative
to all matched my, is given by aggregating the degrees D(m32,m;}).

The result is a matrix obtained from the correspondence matrix where,
in each non-zero cell, two indices are computed: the resemblance index and
the dissimilarity index.
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Several approaches can be imagined to use the correspondence matrix.
The most obvious possibility is to aggregate the resemblance index and the
dissimilarity index into a single similarity value A by taking the value ob-
tained by:

A(m},m2) = R(m},m3) A =~D(m3) (17)

or more generally:
T(R(my,m}),n(D(m}))) (18)

where T is a triangular norm and 7 is a strict negation.

If the remaining uncertainty about the matching is to be transmitted
to the user, the remaining candidates may be visualized in 3D using a color
indication for the similarity measure which can be interpreted as a confidence
level in the reconstruction position. An example for this approach is shown
in the following section.

In most cases the visualization of results after defuzzification is preferable.
In other words only the reconstructions with the highest confidence levels
are shown. In this case we have to define a defuzzification method for the
similarity matrix.

Several defuzzification methods can be imagined:

1. take the maximal similarity value in the matrix and display it, remove the
example from both images (take out the row and column of the similarity
matrix) and continue with the next maximum

2. find the combination of candidates that maximizes the total sum of sim-
ilarity values without using a candidate in two combinations

3. maximize the number of possible combinations and the sum of similarity
values without using a candidate in two combinations

4. maximize the contrast (similarity between the chosen candidates versus
similarity with regard to the other candidates)

From a complexity point of view, the first method is by far the most favor-
able, but its tendency to emphasize the maximal similarity values, even if this
choice prevents many other matches with a slightly lower similarity, is prob-
lematic. The choice of a defuzzification method for this type of application
with constraints between the fuzzy values needs further investigation.

5.3 3D Visualization

In figure 16 the reconstructed 3D-positions corresponding to the result of the
matching process are shown. Each candidate is represented by a small point
in 3D in front of one of the images acquired during the stereotactic exam.
The image is positioned exactly where the detector was during the exam. In
the top row all combinations of candidates are shown from three different
positions, the underlying image is the scout view. In the middle row the
candidates are shown as if the eye position were at the X-ray tube position
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Fig. 16. Visualization of the reconstructed clusters

to show the exact projection onto the acquired images. In the last row, the
similarity measure of the remaining candidates after projection on the scout
view is shown using different shades of grey. The most similar correspondences
are shown in dark grey, the most different in light grey.

Conclusion

Fuzzy techniques can effectively be used in mammographic image processing
to represent and treat the uncertainty present in the different steps of the
processing. The use of fuzzy techniques during the segmentation allows to
capture the ambiguity of the segmentation without taking a decision about
the true contour too early. Fuzzy rules (as a part of a fuzzy decision tree or any
other framework) can be useful to represent expert knowledge or knowledge
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acquired by learning from a database. Adaptive membership functions can
be used to represent class memberships even with varying attributes so that
fuzzy rules remain valid across large variations.

Using these fuzzy techniques, many applications in mammographic image
processing can be realized. In the second part of this paper we presented
two of them: the classification of breast lesions and the 3D reconstruction of
microcalcifications clusters from a stereotactic exam.
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