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Dynamical Behaviors of Multicellular Chopper
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Abstract: In this paper, the behavior analysis of two cellspper connected to a nonlinear load is reportéds Tthis is done in
order to highlight the way to chaos. Furthermanepaghout the study of these dynamical behaviothisfcomplex switched system
some basic dynamical properties, such as Poin@u#os, first return map, bifurcation diagram, povepectrum, and strange
attractor are investigated. The system examineMatiab-Simulink. Analyses of simulation results shthat this system has
complex dynamics with some interesting charactesist

Key words: Chaos, multicellular chopper, dynamical propertiésotic attractor.

1. Introduction a nonlinear hybrid dynamical model [14, 15].
There have been many methods for detecting chaos

Multicellular! converters have grown from an ) _
) ) , i ) from order [16]. They include routes to chaos with
attractive theoretical concept to industrial apiizns, ) X ) i )
phase portraits, first return map, Poincaré sestion

especially for using in higher power applications e
Lyapunov exponents [17], fast Lyapunov indicators

[1-6], and they are well suited to packaging of , i )
L18], SAl (smaller alignment index) [19] and its

renewable energy sources. Indeed, due to thei i i ) i )
) , generalized alignment index [20], bifurcations, pow
modular structure, they can be combined easilyl{b]. .
spectra [21], frequency analysis [22], 0-1 test],[23

recent decades, it was discovered that most at stat . o .
geometrical criteria [24, 25], and fractal basin

converters were the seat of unknown nonlinear ) )
) ) ) boundaries [26], etc.. Each of them has its adgasta
phenomena in power electronics [7-11]. It is, for i .
and drawbacks in classifying the attractors.

example, It is for example the case of multicellula ) i
o ) The main purpose of the present paper is to use
choppers that can exhibit unusual behaviors and

numerical approaches to study the dynamical priggert
sometimes chaotic behavio®bviously, this may PP y Y P

, of two-cells chopper connected to nonlinear load.
generate dramatical consequences (such as the 1 ) ) )
The rest of this paper is organized as follows.

Megawatt multicellular chopper [12]). However, the ) i
. Section 2: the two-cells chopper connecting to a
usually averaged models do not allow to predict ) ) _ ..
) particularly nonlinear load modeling and analysgisin
nonlinear phenomena encountered. By nature, these o ) )
, ) . of a switching cell are presented. Basic dynamical
models obscure the essential nonlinearities [18]. T

, L properties of the chaotic system are also investija
analyses these strange behaviors, it is necessaset | i ) i ) .
in Section 3. Finally, chaotic behavior and simolat

results are presented in Section 4.

Corresponding author: Philippe Djondiné, Ph.D. candidate,
research field: dynamical properties analysis ofwero
electronics converters. E-mail: pdjondine@yahoo.fr.
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2. Multicellular Chopper Modeling

The multicellular converters (Fig. 1) are built

starting from an association of a certain nhumber of

cells. At the output, one obtaing ¢ 1) levels (O,
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Fig. 1 P—cells chopper connected to RL load.

E/p, ..., (o - 1)E/p, E). This association in series
allows the output source to evolve gn+ 1) possible
levels. As the orders of the switches of the cefls
commutation are independent, one obtainpossible
combinations [27-31]. Thus, it is necessary to ensu
an equilibrated distribution of the voltage of the

floating condensers. Under these conditions, one

obtains the following property:
The converter ha9(- 1) floating voltages sources
and the voltage of the capacity of indeis k = E/p.

For this model the load currentand the floating
voltages \, are used as space variables

To simplify the study and the notations, we will
study the overlapping operation of a converter with
two-cells (Fig. 2). Its function is to supply a pa®
load (RL) in series with another nonlinear load

celly celly

Uy

Fig. 2 Two-cells chopper connected to a nonlineaod.

Connected in parallel with a capacitor [13]. Four
operating modes are then possible as shown in3Fig.
Note that the floating source takes part in the
evolution of the dynamics of the system only to the
third and fourth mode. In the third mode, the c#tpac
discharges and charge during the fourth mode. Thus,
these two modes last same time with a constant

The control signal associated with each commutation

cell is noted asi;, wherei, represents the number of
cells of the topologyThis signal will be equal to 1
when the upper switch of threell is conducting and 0
when the lower switch of the cédl conducting

Note that the chopper,
dissipative load, cannot generate a chaotic behavio
Nevertheless, it is well known from Ref. [5] that

power converter, when it is connected to nonlinear

which has a purely

charging current, then the average power trangmitte
by this floating source over one period of
commutation is null. We also notice that these two
modes make it possible to obtain by commuting the
additional leveE/2 on the output voltagés.

As the switches of each cell are regarded as ideals
their behavior can be modeled by a discrete state
taking of the values 0 (on) or 1 (off). In practice
some of these states never will be visited foraras

load may have a chaotic behavior. The chopper

modeling is:
dVe _u2— w,
- L
dt C
dVe. _Us—uw2 i
- L
dt C2

: 1)
dVOp-lzu;)—up—liL
dt GCo-1
dic _uw-w
dt L

U —

Vo +---+

of safety measures or following the strategy ofeord
adopted or because of the structure of the converte
him finally to even or comply with the rule of
adjacency. The transitions are not necessarily
controlled.

The system model can be represented by three
differential equations giving its state space.
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dt 1
dv. . g(Vcw) = GuVa + 7(Ga - Gb)(‘Vcw +11 - ‘Vcw - :u)
= (U2 — uwiL 2

C
dt

c dve
dt

|LdL (Uz = U)Ve—Va— ROC+U2[E (2) where,

=i - g(VCI)

Fig. 3 Switching cell and its configurations.

which is the mathematical representation of theRescaling Eq. (2) ag = X.Bp, W& = X3Bp, i = x:GBp,
characteristic curve of nonlinear load. The slopés G = 1/R, t = (C/G} (V¢ denote the voltage across C,
the inner and outer regions afg, and G,. The V¢ denote the voltage across@denote the
parameters of the circuit elements are fixe€as 0.1 reactanceand then redefining ast the following set
uF, C =40uF,L =50 mHR=10Q,E=100 V. of normalized equations are obtained:

3. Dynamical Properties %= B(-patexe—xs) +aE
X2 = &
X3 = p(x— g(xs))

3)
For the power converters, many methods like phase
portrait, bifurcation diagram, and time-domain
waveform can be used to analyze the nonlineawhere
phenomenon in the system. In this work, the e¢=u,—u,p=c/c,pf=cl/ LG, Yy=RG a=pE/
bifurcation diagrams and Poincaré sections are miraw By,
based on the discrete iterated mapping model. Obviously,
Time-domain waveform, phase portrait, and power
spectrum are obtained by building simulation module
in Matlab/Simulink, which is analyzed from literagu or
results.

g(xs) =bxs + 05(a = b)[|Xs +1 =Xz -1]]
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sections. One point or a few discrete points irtdica
(4)  that the converter is working in periodical statéjle
the cutoff point with a fractal structure reveals a
chaotic behavior.
herea=G,/G,b=G,/G. The Poincaré section is computed Xp= 0 when
Now the dynamics of Eq. (3) depends on thethe frequency is 20 Hz. From Fig. 4, it can be seen
parameterse, p, B, v, & b and a. The that the symmetry is around the nominal voltage
circuit parameters used are then rescaled ascapacitorV. [38]. We also see a local symmetry
p = 25X10% B =2X10% a=2X10% a=-15b =5, around the floating capacitor voltages 0 and 100.
vy=1.

bx+a-bxs>1

g(xs) =< axs, x4 <1

bxs—a+bxs<-1

3.4 First Return Map

3.1 Symmetry and Invariance . ) ) .
Another tool which illustrates the interesting dymes

4.2 =
N
\] 1

We can see the invariance of the system under the
coordinate transformationxy( Xs, X3)—> (X1, X2, Xa).

4.15F

Also note that, in theg versusx plane there is a1r
symmetry around the nominal value of the voltage of 405
the floating capacitor that is 50V. This symmetsy i P

shown in Fig. 3. 295l

3.2 Dissipativity 2o}

3.85r

For Eq. (3), we can obtain

3.8 . . . . .
-100 -50 0 50 100 150 200

Xs‘ >1 (5) x2

&1& 0X3

O 0% 0% _|~Ay=pb,
OV=""+_—+——= .
- By- p&‘XS‘ <1 Fig. 4 Phase plane strange attractors; versusx,.

Note that (8y - pb) is a negative value. Thus the o T T T
volume elements are contracting. After a time unit, 1501 T . . ! L
this contraction reduces a volurdg by a factore® * R P N R IR

] ARV Y R YDl A Y LA DI TR Y

Pt = g12u0™ | which means that each volume Vouy sy Bilepeen g oyl s gy o
containing the trajectory of this dynamical system < so—:° ) L "..._. .-: ‘. .
converges to zero ds-»wo at exponential ratefg + o.-:::.;?-.:‘. Save. Vi lo o 55
pb). Therefore, all system orbits are ultimately T ¥ s "-"ﬂ:. B ":..'_'"
confined to a specific subset having zero volumg an 50f o R
the asymptotic motion settles onto an atractor | 't ct
[32_37] -1 08 06 -04 -02 x(:)L 0.2 0.4 0.6 0.8 mels

. , . Fig.5 The Poincaré section af; versusx, plane.
3.3 Poincaré Section g ! 2P

. B} . . of two cells chopper attractor is the Poincarét firs
Poincaré sections can be an effective method to

. _ . return map. We again take a cross section of thd ba
analyze the characteristics dynamic of nonlinear ) o )
. . . by cutting through it with a plane perpendiculathe
systems. According to nonlinear dynamics theorg, th

performance of the system can be judged by obs'.yrvinfIOW (for.our burposes the portion of the versusxs
_plane with [x{<0.01 works well). We then record

the number of the cutoff points on the Poincaré ) ]
the x3 value of a trajectory when it crosses our plane
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and graph it against theg value of the next time the The power spectrum is also an effective way to
trajectory crosses the section. In this way, we camanalyze the stability of the circuit. When the aitc
investigate the mixing which is done by the twist i operates in the cycle, the peak of the wavefornh wil
the attractor. only appear when the frequency is equal to times of
From Fig. 5, it can be seen that there is a foldingthe operating frequency (is a positive integer).
point at each end of the cross and obviously symymet  When the circuit in a chaotic state, the power
occurs [39]. spectrum manifesting as a continuous spectrum,hwhic
contains a peak corresponding to the periodic motio
The results are in good agreement with the previous
From Fig. 6, it can be seen that the system isanalysis, which further verify the correctness foé t
chaotic for low frequencies. When the frequency results obtained by theoretical analysis.
becomes very large, the behavior of the systemirsma  The spectrum of this nonlinear system in Eq. (3) is

3.5 Bifurcation Diagram

4'025***r"r"r*ﬂf"fl-retfmimfa?"r"r"r"r also studied, its spectrum is continuous as shawn i
A Uy S SO S AU Fig. 7. It can be seen from Fig. 7 that the system
ot~ 17" ,‘l:,,i,,,lp,,}”}”:L”:L”:L”% exhibits chaotic behaviors.
0051 — - MMt et e
p 4\;’ 4. Routes to Chaos
3'9957"3"737"37 7')%7::“%-‘7(;:":?"%"% The initial values of the system are selected a§,(0
ot O R D 4). Using Simulink/Matlab the numerical simulation
S N S SR SN SN S NS D have been completed. This nonlinear system exhibits
3,:98 3,9:85 3,:99 3.9:95 A:t 4.;05 4.:01 4,0115 4.:02 470‘25 the Complex and abundant ChaOtiC dynamics
X3 behaviors, the strange attractors are shown in&ig.
Fig. 6 First return map. These phase portrait are obtained by solving Egs.
oo 4 ; - ; ; — (1)-(4) by means of Runge Kutta method for step siz
3*””3*”,;';i""’.';'*‘i*-”'”i*”.”i””* of 0.000001.
2""_’T’f"}-’:’:ﬂ,”.’-’.]”.-:’.’}:’.’:? One of the routes to chaos observed in studied
. :;;;"*;j:ij:f:j::}: ] multicellular chopper is scroll doubling, which
gos, ”: XN i.t.i 7'1‘ . jr s ;;jj | continues until there are no further stable staeshe
SR B SRS ,,,',i.:', e o beginning of simulatiom;, = u, = 0.
N ‘r———'5-7‘;:'.—.'—.'—?——'——3————_—1——"* Now it is clear that the double scroll attractos lsa
45 015 I : 11_5 12 21_5 . structure quite different from the well-known Loren
fr(Hz) 000

[40], Rossler [41] and Chua [42] attractors sinlge t
double-scroll structure has not been observed thigh
chaotic up to resonance and the load current reachdatter attractors.
its maximum. When the switching frequency is higher When system parameter vary, periodic state

Fig. 7 Bifurcation diagram.

than the resonance frequen‘cyz/CJ'CL - 22536Hz becomes unstable because of period doubling

JLCC scroll. Between 0.25 Hz and 20 Hz, one has a double
the system behavior changes from the strange titrac scroll centered around the equilibrium points. From
to an equilibrium point. 25 Hz (Fig. 8d), the second scroll tends to disappe

3.6 Spectrum Map
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Fig. 8 Power spectrum ok,.
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X2 1000 1

x1

L _ 4 L

Fig. 9 Phase portraits: (a) fs = 1 Hz, (b) fs = 18z, (c) fs = 20 Hz, (d) fs = 25 Hz, (e) fs = 50 H{) fs = 250 Hz, (g) fs = 500

Hz, (h) fs = 50 kHz.

When the switching frequency becomes large, we[s]

have a single scroll (Fig. 8h). For fs = 250 Hz &nd
500 Hz, the attractor evolves into the limit cyclése

limit cycles are shown in Fig. 8f and Fig. 8g. "
4

5. Conclusions [5]

This note has presented the two cells chopper
chaotic. These new attractors are different from th [6]
Lorenz attractor; Rossler and Chua, but it is a new
butterfy shaped chaotic attractor. These new
attractors need further study and exploration. Thei
topological structure should be completely and 17l
thoroughly investigated. It is expecting that more
detailed theory analysis and simulation investagati
will be provided in the near future. The dynamical (8]
behaviors of the two cells chopper associated to a
particular nonlinear load are analyzed, both
theoretically and numerically, including some basic [9]
dynamical properties, first return map, bifurcation
diagram, Poincaré section, power spectrum and soute
to chaos. As a result, they achieve the same sesult
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