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ON THE CANCELLATION PROBLEM FOR ALGEBRAIC TORI

ADRIEN DUBOULOZ

Dedicated to Wlodek Danielewski.

Abstract. We address a variant of Zariski Cancellation Problem, asking whether two varieties which become
isomorphic after taking their product with an algebraic torus are isomorphic themselves. Such cancellation property
is easily checked for curves, is known to hold for smooth varieties of log-general type by virtue of a result of Iitaka-
Fujita and more generally for non A

1

∗
-uniruled varieties. We show in contrast that for smooth affine factorial

A
1

∗
-ruled varieties, cancellation fails in any dimension bigger or equal to two.

Since the late seventies, the Cancellation Problem is usually understood in its geometric form as the question
whether two algebraic varieties X and Y with isomorphic cylinders X × A

1 and Y × A
1 are isomorphic themselves.

This problem is intimately related to the geometry of rational curves on X and Y : in particular, if X or Y are smooth
quasiprojective and not A

1-uniruled, in the sense that they do not admit any dominant generically finite morphism
from a variety of the form Z×A

1, then every isomorphism Φ : X×A
1 ∼
→ Y ×A

1 descends to an isomorphism between
X and Y , a property which is sometimes called strong cancellation. Over an algebraically closed field of characteristic
zero, the non A

1-uniruledness of a smooth quasi-projective variety X is guaranteed in particular by the existence of
pluri-forms with logarithmic poles at infinity on suitable projective completions of X, a property which can be read
off from the non-negativity of a numerical invariant of X, called its (logarithmic) Kodaira dimension κ(X), introduced
by S. Iitaka [11] as the analogue of the usual notion of Kodaira dimension for complete varieties. In this setting, it was
established by S. Iitaka et T. Fujita [12] that strong cancellation does hold for a large class of smooth varieties, namely
whenever X or Y has non-negative Kodaira dimension. This general result implies in particular that cancellation
holds for smooth affine curves, due to the fact that the affine line A

1 is the only such curve with negative Kodaira
dimension.

All these assumptions turned out to be essential, as shown by a famous unpublished counter-example due to W.
Danielewski [3] of a pair of non-isomorphic smooth complex A

1-ruled affine surfaces with isomorphic cylinders. The
techniques introduced by W. Danielewski have been the source of many progress on the Cancellation Problem during
the last decade but, except for the case of the affine plane A

2 which was solved earlier affirmatively by M. Miyanishi
and T. Sugie [16], the question whether cancellation holds for the complex affine space A

n remains one of the most
challenging and widely open problem in affine algebraic geometry. In contrast, the same question in positive char-
acteristic was recently settled by the negative by N. Gupta [8], who checked using algebraic methods developed by
A. Crachiola and L. Makar-Limanov that a three-dimensional candidate constructed by T. Asanuma [1] was indeed a
counter-example.

In this article, we consider another natural cancellation problem in which A
1 is replaced by the punctured affine

line A
1
∗ ≃ Spec(C[x±1]) or, more generally, by an algebraic torus T

n = Spec(C[x±1
1 , . . . , x±1

n ]), n ≥ 1. The question
is thus whether two, say smooth quasi-projective, varieties X and Y such that X × T

n is isomorphic to Y × T
n are

isomorphic themselves. In contrast with the usual Cancellation Problem, this version seems to have received much
less attention, one possible reason being that the analogue in this context of the Cancellation Problem for A

n, namely
the question whether an affine variety X such that X × T

n is isomorphic to T
n+m is itself isomorphic to the torus

T
n, admits an elementary positive answer derived from the knowledge of the structure of the automorphism groups

of algebraic tori: indeed, the action of the torus T
n = Spec(C[M ′]) by translations on the second factor of X × T

n

corresponds to a grading of the algebra of the torus T
n+m = Spec(C[M ]) by the lattice M ′ of characters of T

n,
induced by a surjective homomorphism σ :M → M ′ from the lattice of characters M of Tn+m. Letting τ :M ′ →M
be a section of σ, M ′′ = M/τ (M ′) is a lattice of rank m for which we have isomorphisms of algebraic quotients
X ≃ X × T

n//Tn ≃ T
n+m//Tn ≃ T

m = Spec(C[M ′′]).
Without such precise information on automorphism groups, the question for general varieties X and Y is more

complicated. Of course, appropriate conditions on the structure of invertible functions on X and Y can be imposed to
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ON THE CANCELLATION PROBLEM FOR ALGEBRAIC TORI 2

guarantee that cancellation holds (see [7] for a detailed discussion of this point of view): this is the case for instance
when either X or Y does not have non constant such functions. Indeed, given an isomorphism Φ : X ×A

1
∗

∼
→ Y ×A

1
∗,

the restriction to every closed fiber of the first projection pr1 : X × A
1
∗ → X of the composition of Φ with the second

projection pr2 : Y × A
1
∗ → A

1
∗ induces an invertible function on X, implying that Φ descends to an isomorphism

between X and Y as soon as every such function on X is constant.
But from a geometric point of view, it seems that the cancellation property for A

1
∗ is again related to the nature

of affine rational curves contained in the varieties X and Y , more specifically to the geometry of images of the
punctured affine line A

1
∗ on them. It is natural to expect that strong cancellation holds for varieties which are not

dominantly covered by images of A
1
∗, but this property is harder to characterize in terms of numerical invariants.

In particular, in every dimension ≥ 2, there exists smooth A
1
∗-uniruled affine varieties X of any Kodaira dimension

κ(X) ∈ {−∞, 0, 1, . . . ,dimX−1}. In contrast, a smooth complex affine variety X of log-general type, i.e. of maximal
Kodaira dimension κ(X) = dimX, is not A

1
∗-uniruled, and another general result of I. Itaka and T. Fujita [12] does

indeed confirm that strong cancellation holds for products of algebraic tori with smooth affine varieties of log-general
type. Combined with the fact that A

1
∗ is the unique smooth affine curve of Kodaira dimension 0, this is enough for

instance to conclude that cancellation holds for smooth affine curves.
Our main result, which can be summarized as follows, shows that similarly as in the case of the usual Cancellation

Problem for A
1, these assumptions are essential:

Theorem. In every dimension d ≥ 2, there exists non isomorphic smooth factorial affine A
1
∗-uniruled varieties X

and Y of dimension d and Kodaira dimension d− 1 with isomorphic A
1
∗-cylinders X × A

1
∗ and Y × A

1
∗.

In dimension d ≥ 3, these families are obtained in the form of total spaces of suitable Zariski locally trivial A1
∗-

bundles over smooth affine varieties of log-general type. The construction guarantees the isomorphy between the
corresponding A

1
∗-cylinders thanks to a fiber product argument reminiscent to the famous Danielewski fiber product

trick in the case of the usual Cancellation Problem. The two-dimensional counter-examples are produced along the
same lines, at the cost of replacing the base varieties of the A

1
∗-bundles involved in the construction by appropriate

orbifold curves. The article is organized as follows: in the first section, we establish a variant of Iitaka-Fujita strong
cancellation Theorem for Zariski locally trivial T

n-bundles over smooth affine varieties of log-general type. This
criterion is applied in the second section to deduce the existence of families of Zariski locally trivial A1

∗-bundles over
smooth affine varieties of log-general type with non isomorphic total spaces but isomorphic A

1
∗-cylinders. The two-

dimensional case is treated in a separate sub-section. The last section contains a generalization of some of these
constructions to the cancellation problem for higher dimensional tori Tn over varieties of dimension at least three,
and a complete discussion of the cancellation problem for A

1
∗ in the special case of smooth factorial affine surfaces.

1. A criterion for cancellation

1.1. Recollection on locally trivial Tn-bundles. In what follows, we denote by T
n the spectrum of the Laurent

polynomial algebra C[t±1
1 , . . . , t±1

n ] in n variables. We use the notation T
n to indicate that we consider T

n as the
product Gnm, i.e. T

n equipped with its natural algebraic group product structure. The automorphism group Aut(Tn)
of Tn is isomorphic to the semi-direct product Tn⋊GLn(Z), where T

n acts on T
n by translations and where GLn(Z)

acts by (aij)i,j=1,...,n · (t1, . . . , tn) = (
∏n
i=1 t

a1i
i , . . . ,

∏n
i=1 t

ani

i ).

Definition 1. A Zariski locally trivial Tn-bundle over a scheme X, is an X-scheme p : P → X for which every point
of X has a Zariski open neighbourhood U ⊂ X such that p−1 (U) ≃ U ×T

n as schemes over U .

1.1.1. Isomorphy classes of Zariski locally trivial Tn-bundle over X are in one-to-one correspondence with elements
of the Čech cohomology group Ȟ1(X,Aut(Tn)). Furthermore, letting GLn(Z)X denote the locally constant sheaf
GLn(Z) on X, we derive from the short exact sequence 0→ T

n → Aut(Tn) → GLn(Z)X → 0 of sheaves over X the
following long exact sequence in Čech cohomology

0→ Ȟ0(X,Tn)→ Ȟ0(X,Aut(Tn))→ Ȟ0(X,GLn(Z)X)→ Ȟ1(X,Tn)→ Ȟ1(X,Aut(Tn))→ Ȟ1(X,GLn(Z)X).

If X is irreducible, then Ȟ1(X,GLn(Z)X) = 0 and so, every Zariski locally trivial Tn-bundle can be equipped with
the additional structure of a principal homogeneous T

n-bundle. Moreover, two principal homogeneous T
n-bundles

have isomorphic underlying T
n-bundles if and only if their isomorphy classes in Ȟ1(X,Tn) ≃ H1(X,Tn) belong to

the same orbit of the natural action of Ȟ0(X,GLn(Z)X) ≃ GLn(Z) which, for every (aij)i,j=1,...n ∈ GLn(Z), sends
the isomorphy class of the T

n-bundle p : P → X with action T
n × P → P , ((t1, · · · , tn), p) 7→ (t1, . . . , tn) · p to

the isomorphy class of p : P → X equipped with the action ((t1, . . . tn), p) 7→ ((aij)i,j=1,...,n · (t1, . . . , tn)) · p. In
other words, for an irreducible X, isomorphy classes of Zariski locally trivial T

n-bundles over X are in one-to-one
correspondence with elements of H1(X,Tn)/GLn(Z).
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1.2. Cancellation for T
n-bundles over varieties of log-general type. Recall that the (logarithmic) Kodaira

dimension κ(X) of a smooth complex algebraic variety X is the Iitaka dimension of the invertible sheaf ωX/C(logB) =

(detΩ1
X/C

)⊗OX(B) on a smooth complete model X of X with reduced SNC boundary divisor B = X \X. So κ(X)

is equal to tr.degC(
⊕

m≥0H
0(X,ωX/C(logB)⊗m))− 1 if H0(X,ωX/C(logB)⊗m) 6= 0 for sufficiently large m, and, by

convention to −∞ otherwise. The so-defined element of {−∞} ∪ {0, . . . ,dimCX} is independent of the choice of a
smooth complete model (X,B) [11] and coincides with the usual Kodaira dimension in the case where X is complete.
A smooth variety X such that κ(X) = dimCX is said to be of log-general type.

The following Proposition is a variant for Zariski locally trivial bundles of Iitaka-Fujita’s strong Cancellation
Theorem [12, Theorem 3] for products of varieties of log-general type with affine varieties of Kodaira dimension equal
to 0, such as algebraic tori Tn.

Proposition 2. Let X and Y be smooth algebraic varieties and let p : P → X and q : Q → Y be Zariski locally
trivial T n-bundles. If either X or Y is of log-general type then for every isomorphism of abstract algebraic varieties
Φ : P

∼
→ Q between the total spaces of P and Q, there exists an isomorphism ϕ : X

∼
→ Y such that the diagram

P
Φ
→ Q

p ↓ ↓ q

X
ϕ
→ Y

commutes.

Proof. The proof is very similar to that of [12, Theorem 1]. We may assume without loss of generality that Y is of
log-general type. Since p has local sections in the Zariski topology, it is enough to show that q ◦ Φ is constant on
the fibers of p to guarantee that the induced set-theoretic map ϕ : X → Y is a morphism. Furthermore, since Φ
is an isomorphism, ϕ will be bijective whence an isomorphism by virtue of Zariski Main Theorem [5, 8.12.6]. Since
p : P → X is Zariski locally trivial and κ(Tn) = 0, it follows from [11] that for every prime Weil divisor D on
X, the Kodaira dimension κ(p−1(Dreg)) of the inverse image of the regular part of D is at most equal to dimD.
This implies in turn that the restriction of q ◦ Φ to p−1(D) cannot be dominant since otherwise we would have
κ(Y ) ≤ κ(p−1(Dreg)) < dimX = dimY , in contradiction with the assumption that κ(Y ) = dimY . So there exists a
prime Weil divisor D′ on Y such that the image of p−1(D) by Φ is contained in q−1(D′), whence is equal to it since
they are both irreducible of the same dimension. Now given any closed point x ∈ X, we can find a finite collection of
prime Weil divisors D1, . . . , Dn such that D1 ∩ · · ·Dn = {x}. Letting D′

i be a collection of prime Weil divisors on Y
such that Φ(p−1(Di)) = q−1(D′

i) for every i = 1, . . . , n, we have

q−1(
⋂

i=1,...,n

D′
i) =

⋂

i=1,...,n

q−1(D′
i) =

⋂

i=1,...,n

Φ(p−1(Di)) ≃ Φ(
⋂

i=1,...,n

p−1(Di)) ≃ Φ({x} ×T
n) ≃ T

n.

So the intersection of the D′
i, i = 1, . . . , n, consists of a unique closed point y ∈ Y for which we have by construction

Φ(p−1(x)) = q−1(y), as desired. �

Remark 3. The proof above shows in fact that the conclusion of the Theorem holds under the more geometric
hypothesis that either X or Y is not A

1
∗-uniruled, i.e., does not admit any dominant generically finite morphism from

a variety of the form Z × A
1
∗. In particular strong cancellation holds for products of algebraic tori T

n with non
A

1
∗-uniruled varieties.

Corollary 4. Two smooth curves C and C′ admit Zariski locally trivial Tn-bundles p : P → C and p′ : P ′ → C′ with
isomorphic total spaces P and P ′ if and only if they are isomorphic.

Proof. If either C or C′ is of log-general type, then the assertion follows from Proposition 2. Note further that C is
affine if and only if so is P . Indeed, p : P → C is an affine morphism and conversely, if P is affine, then viewing P as a
principal homogeneous T

n -bundle with geometric quotient P//Tn ≃ C, the affineness of C follows from the fact that
the algebraic quotient morphism P → P//T = Spec(Γ(P,OP )

T) is a categorical quotient in the category of algebraic
varieties, so that C ≃ Spec(Γ(P,OP )

T). Thus C and C′ are simultaneously affine or projective. In the first case, C
and C′ are isomorphic to either the affine line A

1 or the punctured affine line A
1
∗ which both have a trivial Picard

group. So P and P ′ are trivial Tn-bundles and the isomorphy of C and C′ follows by comparing invertible function on
P and P ′. In the second case, if either C or C′ has non negative genus, say g(C′) ≥ 0, then, being rational, the image
of a fiber of p : P → C by an isomorphism Φ : P

∼
→ P ′ must be contained in a fiber of p′ : P ′ → C′. We conclude

similarly as in the proof if the previous Proposition that Φ descends to an isomorphism between C and C′. �
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1.2.1. The automorphism group Aut(X) of a scheme X acts on the set of isomorphy classes of principal homogeneous
T
n-bundles over X via the linear representation

η : Aut (X)→ GL(H1(X,Tn)), ψ 7→ η (ψ) = ψ∗ : H1(X,Tn)
∼
→ H1(X,Tn),

where ψ∗ maps the isomorphy class of principal homogeneous T
n-bundle p : P → X to the one of the T

n-bundle
pr2 : P ×p,X,ψ X → X. This action commutes with natural action of GLn(Z) introduced in § 1.1.1 above, and
Proposition 2 implies the following characterization:

Corollary 5. Over a smooth variety X of log-general type, the set H1(X,Tn)/(Aut(X) × GLn(Z)) parametrizes
isomorphy classes as abstract varieties of total spaces of Zariski locally trivial T n-bundles p : P → X.

2. non-Cancellation for the 1-dimensional torus

Candidates for non-cancellation of the 1-dimensional torus T = A
1
∗ = Spec(C[t±1]) can be constructed along the

following lines: given say a smooth quasi-projective variety X and a pair of non-isomorphic principal homogeneous
Gm-bundles p : P → X and q : Q → X whose classes generate the same subgroup of H1(X,Gm), the fiber product
W = P ×XQ is a principal homogeneous T2-bundle over X, which inherits the structure of a principal Gm-bundle over
P and Q simultaneously, via the first and the second projection respectively. Since the classes of P and Q generate
the same subgroup of H1(X,Gm), it follows that the classes of pr1 : W ≃ p∗Q → P and pr2 : W ≃ q∗P → Q in
H1(P,Gm) and H1(Q,Gm) respectively are both trivial and so, we obtain isomorphisms P ×Gm ≃W ≃ Q×Gm of
locally trivial T2-bundles over X.

Then we are left with finding appropriate choices of X and classes in H1(X,Gm) which guarantee that the total
spaces of the corresponding principal homogeneous Gm-bundles p : P → X and q : Q → X are not isomorphic as
abstract algebraic varieties.

2.1. Non-cancellation for smooth factorial affine varieties of dimension ≥ 3. A direct application of the
above strategy leads to families of smooth factorial affine varieties of any dimension ≥ 3 for which cancellation fails:

Proposition 6. Let X be the complement of a smooth hypersurface D of degree d in P
r, r ≥ 2, such that d ≥ r+2 and

| (Z/dZ)∗ | ≥ 3, and let p : P → X and q : Q→ X be the Gm-bundles corresponding to the line bundles OPn(1) |X and

OPn(k) |X , k ∈ (Z/dZ)∗ \ {1, d− 1} under the isomorphism H1(X,Gm) ≃ Pic(X). Then P and Q are not isomorphic
as abstract algebraic varieties but P × A

1
∗ and Q× A

1
∗ are isomorphic as schemes over X.

Proof. The Picard group of X is isomorphic to the group µd ≃ Z/dZ of d-th roots of unity, generated by the restriction
of OPn(1) to X. Since k is relatively prime with d, OPr (k) |X is also a generator of Pic(X). This guarantees that P×A1

∗

is isomorphic to Q×A
1
∗ by virtue of the previous discussion. Since d ≥ r+2, KPr +D is linearly equivalent to a positive

multiple of a hyperplane section, and so X is of log-general type. We can therefore apply Proposition 2 to deduce
that for every isomorphism of abstract algebraic varieties Φ : P

∼
→ Q, there exists an automorphism ϕ of X such that

P is isomorphic to ϕ∗Q as a Zariski locally trivial A1
∗-bundle over X. In view of Corollary 5, this means equivalently

that as a Gm-bundle over X, ϕ∗Q is isomorphic to either P or its inverse P−1 in H1(X,Gm). Since the choice of k
guarantees that the Gm-bundle Q is isomorphic neither to P nor to P−1, the conclusion follows from the observation
that the natural action of Aut(X) on H1(X,Gm) is the trivial one, due to the fact that every automorphism of X is
the restriction of a linear automorphism of the ambient space P

r. Indeed, through the open inclusion X →֒ P
r, we

may consider an automorphism ϕ of X as a birational self-map of Pr restricting to an isomorphism outside D. If ϕ is
not biregular on the whole P

r, then D would be an exceptional divisor of ϕ−1, in particular, D would be birationally
ruled, in contradiction with the ampleness of its canonical divisor KD guaranteed by the condition d ≥ r + 2 . �

Example 7. In the setting of Proposition 6 above, an isomorphism P ×A
1
∗

∼
→ Q×A

1
∗ can be constructed “explicitly”

as follows. The complement X ⊂ P
r = Proj(C[x0, . . . , xr]) of a smooth hypersurface D defined by an equation

F (x0, . . . , xr) = 0 for some homogeneous polynomial of degree d can be identified with the quotient of the smooth
factorial affine variety X̃ ⊂ A

r+1 with equation F (x0, . . . , xr) = 1 by the free action of the group µd = Spec(C[ε]/(εd−
1)) of d-th roots of unity defined by ε · (x0, . . . , xr) = (εx0, . . . , εxr). The Gm-bundles over X corresponding to the
line bundles OPr (k) |X , k ∈ Z, then coincide with the quotients of the trivial A1

∗-bundles X̃ × A
1
∗ = X̃ × Spec(C[t±1])

by the respective µd-actions ε · (x0, . . . , xn, t) = (εx0, . . . , εxn, ε
kt), k ∈ Z. Now let q : Q → X be the Gm-bundle

corresponding to OPr (k) |X for some k ∈ {2, . . . , d−2} relatively prime with d, and let a, b ∈ Z be such that ak−bd = 1.
Then one checks that the following isomorphism

Φ̃ : X̃ ×T
2 = X̃ × Spec(C[t±1

1 , u±1
1 ])

∼
→ X̃ ×T

2 = X̃ × Spec(C[t±1
2 , u±1

2 ]), (t1, u1) 7→ (t2, u2) = (tk1u1, t
bd
1 u

a
2)
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of schemes over X̃ is equivariant for the actions, say µd,1 and µd,k, of µd defined respectively by ε ·(x0, . . . , xr, t1, u1) =

(εx0, . . . , εxr, εt1, u1) and ε ·(x0, . . . , xr, t2, u2) = (εx0, . . . , εxr, ε
kt2, u2). It follows that Φ̃ descends to an isomorphism

Φ : (X̃ ×T
2)/µd,1 ≃ P × A

1
∗

∼
→ Q× A

1
∗ ≃ (X̃ ×T

2)/µd,k

of schemes over X ≃ X̃/µd.

2.2. Non-cancellation for smooth factorial affine surfaces. Since the Picard group of a smooth affine curve C
of log-general type is either trivial if C is rational or of positive dimension otherwise, there no direct way to adapt the
previous construction using principal Gm-bundles over algebraic curves to produce 2-dimensional candidate counter-
examples for cancellation by A

1
∗. Instead, we will use locally trivial A1

∗-bundles over certain orbifold curves C̃ which
arise from suitably chosen A

1
∗-fibrations π : S → C on smooth affine surfaces S.

2.2.1. Let S be a smooth affine surface S equipped with a flat fibration π : S → C over a smooth affine rational
curve C whose fibers, closed or not, are all isomorphic to A

1
∗ over the corresponding residue fields when equipped with

their reduced structure1. It follows from the description of degenerate fibers of A1
∗-fibrations given in [15, Theorem

1.7.3] that S admits a relative completion into a P
1-fibered surface π : S → C obtained from a trivial P

1-bundle
pr1 : C × P

1 → C with a fixed pair of disjoint sections H0 and H∞ by performing finitely many sequences of
blow-ups of the following type: the first step consists of the blow-up of a closed point ci ∈ H0, i = 1, . . . , s, with
exceptional divisor E1,i followed by the blow-up of the intersection point of E1,i with the proper transform of the
fiber Fi = pr−1

1 (pr1(ci)), the next steps consist of the blow-up of an intersection point of the last exceptional divisor
produced with the proper transform of the union of Fi and the previous ones, in such a way that the total transform of
Fi is a chain of proper rational curves with the last exceptional divisors produced, say Ei,ni

, as the unique irreducible
component with self-intersection −1. The projection pr1 : C × P

1 → C lifts on the so-constructed surface S to a
P
1-fibration π : S → C and S isomorphic to the complement of the union of the proper transforms of H0 and H∞

and of the divisors Fi ∪Ei,1 ∪ · · · ∪Ei,ni−1, i = 1, . . . , s. The restriction of π to S is indeed an A
1
∗-fibration π : S → C

with s degenerate fibers π−1(pr1(ci)) isomorphic to Ei,ni
∩ S ≃ A

1
∗ when equipped with their reduced structure and

whose respective multiplicities depend on the sequences of blow-ups performed.

2.2.2. It follows in particular from this construction that S admits a proper action of the multiplicative group Gm

which lifts the one on (C × P
1) \ (H0 ∪H∞) ≃ C × A

1
∗ by translations on the second factor. The local descriptions

given in [6] can then be re-interpreted for our purpose as the fact that the A
1
∗-fibration π : S → C factors through an

étale locally trivial A1
∗-bundle π̃ : S → C̃ over an orbifold curve δ : C̃ → C obtained from C by replacing the finitely

many points c1, . . . , cs over the which the fiber π−1(ci) is multiple, say of multiplicity mi > 1, by suitable orbifold
points c̃i depending only on the multiplicity mi. More precisely, C̃ is a smooth separated Deligne-Mumford stack of
dimension 1, of finite type over C and with trivial generic stabilizer, which, Zariski locally around δ−1(ci) looks like
the quotient stack [Ũci/Zmi

], where Ũci → Uci is a Galois cover of order mi of a Zariski open neighborhood Uci of ci,
totally ramified over ci and étale elsewhere [2].

Example 8. Let Gm act on A
2
∗ = Spec(C[x, y]) \ {(0, 0)} by t · (x, y) = (t2x, t5y). The quotient P(2, 5) = A

2
∗/Gm

is isomorphic to P
1 and the quotient morphism q : A2

∗ → P
1 = A

2
∗/Gm is an A

1
∗-fibration with two degenerate fibers

q−1([0 : 1]) and q−1([1 : 0]) of multiplicities 5 and 2 respectively, corresponding to the orbits of the points (0, 1) and
(1, 0). In contrast, the quotient stack [A2

∗/Gm] is the Deligne-Mumford curve P[2, 5] obtained from P
1 by replacing

the points [0 : 1] and [1 : 0] by “stacky points” with respective Zariski open neighborhoods isomorphic to the quotients
[A1/Z5] and [A1/Z2] for the actions of Z5 and Z2 on A

1 = Spec(C[z]) given by z 7→ exp(2iπ/5)z and z 7→ −z. The
quotient morphism q : A2

∗ → P
1 factors through the canonical morphism q̃ : A2

∗ → P[2, 5] which is an étale local trivial
A

1
∗-bundle, and the induced morphism δ : P[2, 5]→ P

1 = A
2
∗/Gm is an isomorphism over the complement of the points

[0 : 1] and [1 : 0].

In the next paragraphs, we construct two smooth affine surfaces S1 and S2 with an A
1
∗-fibration πi : Si → A

1,
i = 1, 2, factoring through a locally trivial A1

∗-bundle π̃ : Si → A
1[2, 5] over the affine Deligne-Mumford curve A

1[2, 5]
obtained from the one P[2, 5] of Example 8 above by removing a general scheme-like point.

1In particular, π is an untwisted A
1

∗
-fibration in the sense of [15].
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P
2

∞

0

Ly

Lx

LzD1

S̃1

D10

H∞,1 = E∞,4

−1

E∞,3

−2

E∞,1

−3

Lx
−1

E0,1

−2

E0,2

−3

H0,1 = E0,4

−1

E∞,2−3

Lz−1

Ly−2

E0,3−2

P
1

ξ̃1

Figure 2.1. Minimal resolution of the pencil ξ1 : P2
99K P

1. The exceptional divisors E0,i and
E∞,i, i = 1, . . . , 4, over the respective proper base points 0 = [0 : 0 : 1] and ∞ = [0 : 1 : 0] of ξ1 are
numbered according to the order of their extraction.

F3
C0

C1

CF0D2

•
p0

S̃2

H∞,2 = E∞,2

−1
E∞,1

−2

F0
−2

E0,1

−2

E0,2

−2

E0,3

−2

E0,4 −2

C1

−1

E0,5
−6

H0,2 = E0,10

−1

C0
−5

C−1

E0,6−2

E0,7−2

E0,8−2

E0,9−2

D20

P
1

ξ̃2

Figure 2.2. Minimal resolution of the pencil ξ2 : F3 99K P
1. The exceptional divisors E∞,1, E∞,2

and E0,i, i = 1, . . . , 10, over the respective proper base points ∞ = F0 ∩ C0 and 0 = p0 of ξ2 are
numbered according to the order of their extraction.
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2.2.3. The first one S1 is equal to the complement in P
2 = Proj(C[x, y, z]) of the union of the cuspidal curve D1 =

{

x5 − y2z3 = 0
}

and the line Lz = {z = 0}. Equivalently, S1 is the complement in A
2 = Spec(C[x, y]) = P

2 \Lz of the
curve D1 ∩A

2 = {x5 − y2 = 0}. This curve being an orbit with trivial isotropy of the Gm-action t · (x, y) = (t2x, t5y)
on A

2, the composition of the inclusion S1 →֒ A
2
∗ with the canonical morphism q : A2

∗ → P[2, 5] = [A2
∗/Gm] defines

a locally trivial A1
∗-bundle π̃1 : S1 → P[2, 5] \ q(D1 ∩ A

2
∗) ≃ A

1[2, 5]. The rational pencil ξ1 : P2
99K P

1 induced by
π1 = δ◦ π̃1 : S1 → A

1 coincide with that generated by the pairwise linearly equivalent divisors D1, 5Lx and 3Lz+2Ly,
where Lx, Ly and Lz denote the lines {x = 0}, {y = 0} and {z = 0} in P

2 respectively. A minimal resolution
ξ̃1 : S̃1 → P

1 of ξ1 is depicted in Figure 2.1. A relatively minimal SNC completion (S1, B1) of S1, with boundary
B1 = D1 ∪H∞,1 ∪H0,1 ∪E∞,3 ∪E∞,1 ∪E0,1 ∪E0,2 ∪E∞,2 ∪E0,3, on which π1 extends to a P

1-fibration π1 : S1 → P
1

is then obtained from S̃1 by contracting the proper transform of Lz.

2.2.4. The second surface S2 is obtained as follows. In the Hirzebruch surface ρ : F3 = P(OP1 ⊕OP1(−3))→ P
1 with

exceptional section C0 of self-intersection −3, we choose a section C of ρ in the linear system |C0 + 4F |, where F
denotes a general fiber of ρ, and a section C1 in the linear system |C0 + 3F | intersecting C with multiplicity 4 in a
unique point p0. The fact that such pairs of sections exists follows for instance from [4, Lemma 3.2]. Let ξ2 : F3 99K P

1

be the pencil generated by the linearly equivalent divisors C0 + 5C and 6C1 + 2F0 where F0 = ρ−1(ρ(p0)). Let D2

be a general member of ξ and let S2 ⊂ F3 be the complement of C0 ∪ C1 ∪D2. A minimal resolution ξ̃2 : S̃2 → P
1

of ξ2 : F3 99K P
1 is depicted in Figure 2.2. A relatively minimal SNC completion (S2, B2) of S2 with boundary

B2 = D2 ∪H∞,2 ∪H0,2 ∪ E∞,1 ∪ E0,5 ∪ C0 ∪
⋃9
i=6E0,i, on which π2 extends to a P

1-fibration π2 : S2 → P
1 is then

obtained from S̃2 by contracting successively the proper transform of C1, E0,4, E0,3, E0,2 and E0,1. By construction,
the restriction of ξ2 to S2 is an A

1
∗-fibration π2 : S2 → A

1 = P
1 \ ξ(D2) with two degenerate fibers: one of multiplicity

5 supported by C ∩ S2 ≃ A
1
∗, and one of multiplicity 2 supported by F0 ∩ S2 ≃ A

1
∗. So by virtue of § 2.2.2, π2 factors

through a locally trivial A1
∗-bundle π̃2 : S2 → A

1[2, 5].

Proposition 9. The surfaces S1 and S2 are smooth affine rational and factorial. They are non isomorphic but S1×A
1
∗

is isomorphic to S2 × A
1
∗.

Proof. Since S1 is a principal open subset of A2, it is smooth affine rational and factorial. The smoothness and the
rationality of S2 are also clear. Since D2 belongs to the linear system 6C0+20F , it is ample by virtue of [10, Theorem
2.17]. This implies in turn that C0 + C1 +D2 is the support of an ample divisor, whence that S2 is affine. Since the
divisor class group of F3 is generated by C0 and F , the identity F ∼ 7C1 − C0 −D2 in the divisor class group of F3

implies that every Weil divisor on S2 is linearly equivalent to one supported on the boundary F3 \S2 = C0 ∪C1 ∪D2.
So S2 is factorial. By construction, S1 and S2 both have the structure of locally trivial A1

∗-bundles π̃i : Si → A
1[2, 5].

The fiber product W = S1 ×A1[2,5] S2 thus inherits via the first and the second projection respectively the structure
of an étale locally trivial A1

∗-bundle over S1 and S2. Since H1
ét(Si,Gm) ≃ H1(Si,Gm) by virtue of Hilbert’s Theorem

90 and Si is factorial, it follows that W is simultaneously isomorphic to the trivial A1
∗-bundles S1 × A

1
∗ and S2 × A

1
∗.

It remains to check that S1 and S2 are not isomorphic. Suppose on the contrary that there exists an isomorphism
ϕ : S1

∼
→ S2 and consider its natural extension as a birational map ϕ : S1 99K S2 between the smooth SNC completions

(S1, B1) and (S2, B2) of S1 and S2 constructed above. Then ϕ must be a biregular isomorphism. Indeed, if either ϕ or

ϕ−1, say ϕ, is not regular then we can consider a minimal resolution S1
σ
← X

σ′

→ S2 of it. By definition of the minimal
resolution, there is no (−1)-curve in the union B of the total transforms of B1 and B2 by σ and σ′respectively which
is exceptional for σ and σ′ simultaneously, and σ′ consists of the contraction of a sequence of successive (−1)-curves
supported on B. The only possible (−1)-curves in B which are not exceptional for σ are the proper transforms of D1

and of the two sections H0,1 and H∞,1 of the P
1-fibration π1 : S1 → P

1, but the contraction of any of these would
lead to a boundary which would no longer be SNC, which is excluded by the fact that B2 is SNC. It follows that every
isomorphism ϕ : S1

∼
→ S2 is the restriction of an isomorphism of pairs (S1, B1)

∼
→ (S2, B2). But no such isomorphism

can exist due the fact that the intersection forms of the boundaries B1 and B2 are different. Thus S1 and S2 are not
isomorphic, which completes the proof. �

3. complements and Open questions

3.1. Non-cancellation for higher dimensional tori. Continuing the same idea as in section 2 above, it is possible
to construct more generally pairs of principal homogeneous T

n-bundles over a given smooth variety X whose total
spaces become isomorphic after taking their products with T

n but not with any other lower dimensional tori. For
instance, one can start with two collections {[p1], . . . , [pn]} and {[q1], . . . , [qn]} of classes in H1(X,Gm) which generate
the same sub-group G of H1(X,Gm) and consider a pair of principal homogeneous T

n-bundles p : P → X and q :
Q→ X representing the classes ([p1], . . . , [pn]) and ([q1], . . . , [qn]) in H1(X,T) ≃ H1(X,Gm)⊕n. Since G is contained
in the kernels of the natural homomorphism p∗ : H1(X,Gm) → H1(P,Gm) and q∗ : H1(X,Gm) → H1(Q,Gm) (see
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Lemma 11), it follows that as a locally trivial Tn×T
n-bundle over X, P ×XQ is simultaneously isomorphic to P ×T

n

and Q × T
n. Then again, it remains to make appropriate choices for X, P and Q which guarantee that for every

n′ = 0, . . . , n− 1, P ×T
n′

and Q×T
n′

are not isomorphic as abstract algebraic varieties.

Theorem 10. Let r ≥ 2, let d ≥ r + 2 be a product n ≥ 1 distinct prime numbers 5 ≤ d1 < · · · < dn and
let X ⊂ P

r be the complement of a smooth hypersurface D of degree d. Let [pi], [qi] ∈ H1(X,Gm) ≃ µd, i =
1, . . . , n, be the classes corresponding via the isomorphism µd ≃

∏n
i=1 µdi to the elements (1, . . . , exp(2π/di), . . . , 1)

and (1, . . . , exp(2πki/di), . . . , 1) for some ki ∈ {2, . . . , di − 2} and let p : P → X and q : Q → X be principal
homogeneous T

n-bundles representing respectively the classes ([p1], . . . , [pn]) and ([q1], . . . , [qn]) in H1(X,Tn).

Then for every n′ = 0, . . . , n− 1, the varieties P ×T
n′

and Q×T
n′

are not isomorphic while P ×T
n and Q×T

n

are isomorphic as schemes over X.

Proof. Our choices guarantee that for every 0 ≤ n′ < n, the classes ([p1], . . . , [pn], [1], . . . [1]) and ([q1], . . . , [qn], [1], . . . [1])

in H1(X,Tn×T
n′

) belong to distinct GLn+n′(Z)-orbits. Since d ≥ r+2, X is of general type and Aut(X) acts trivially
on H1(X,Gm) (see the proof of Theorem 6). So the fact that P ×T

n′

and Q ×T
n′

are not isomorphic as abstract
algebraic varieties follows again from Corollary 5. On the other hand, since the classes [p1], . . . , [pn] and [q1], . . . , [qn]
both generate H1(X,Gm), P ×T

n and Q ×T
n are isomorphic X-schemes by virtue of the previous discussion. Al-

ternatively, one can observe that choosing ai, bi ∈ Z such that aiki + bidi = 1 for every i = 1, . . . , n, the following
matrices A and B in GL2n(Z)

A =





















1 0 0

0
. . . 0 0n

0 0 1
k1 0 0 1 0 0

0
. . . 0 0

. . . 0
0 0 kn 0 0 1





















B =





















a1 0 0 1 0 0

0
. . . 0 0

. . . 0
0 0 an 0 0 1
1 0 0

0
. . . 0 0n

0 0 1





















map respectively the classes ([p1], . . . , [pn], [1], . . . [1]) and ([q1], . . . [qn], [1], . . . , [1]) onto the one ([p1], . . . , [pn], [q1], . . . [qn]),
providing isomorphisms P ×T

n ≃ P ×X Q and Q×T
n ≃ P ×X Q of Zariski locally trivial T2n-bundles over X. �

The following Lemma relating the Picard group of the total space of principal homogeneous T
n-bundle with the

Picard group of its base is certainly well known. We include it here because of the lack of appropriate reference.

Lemma 11. Let X be a normal variety, let [p1], . . . , [pn] be a collection of classes in H1(X,Gm), and let p : P → X
be the principal homogeneous T

n-bundle with class ([p1], . . . , [pn]) ∈ H
1(X,Tn) = H1(X,Gm)⊕n. Then H1(P,Gm) ≃

H1(X,Gm)/G where G = 〈[p1], . . . , [pn]〉 is the subgroup generated by [p1], . . . , [pn].

Proof. The Picard sequence [14] for the fibration p : P → X reads

0→ H0(X,UX)→ H0(P,UE)→ H0(Gnm,UGn
m
)
δ
→ H1(X,Gm)→ H1(P,Gm)→ H1(Gnm,Gm) = 0

where for a variety Y , UY denotes the sheaf cokernel of the homomorphism C
∗
Y → Gm,Y from the constant sheaf C∗

on Y to the sheaf Gm,Y of germs invertible functions on Y . We may choose a basis (e1, . . . , en) of H0(Gnm,UGn
m
) ≃ Z

n

in such a way that the connecting homomorphism δ maps ei to [gi] for every i = 1, . . . , n. The assertion follows. �

3.2. Non Cancellation for smooth factorial affine varieties of low Kodaira dimension ? Recall that by [12,
Theorem 3], cancellation for T

n holds over smooth affine varieties of log-general type. On the other hand, since they
arise as Zariski locally trivial A1

∗-bundles over varieties of log-general type, it follows from Iitaka [12] and Kawamata-
Viehweg [13] addition theorems that all the counter-examples X constructed in subsection 2.1 have Kodaira dimension
dimX − 1 ≥ 2. Similarly, the examples constructed in Theorem 10 as well as their products by low dimensional tori
have Kodaira dimension at least 2. One can also check directly that the two surfaces constructed in subsection 2.2 have
Kodaira dimension equal to 1. This raises the question whether cancellation holds for smooth factorial affine varieties
of low Kodaira dimension, in particular for varieties of negative Kodaira dimension. The following Proposition shows
that if counter-examples exist, they must be at least of dimension 3:

Proposition 12. Let S and S′ be smooth factorial affine surfaces. If S × A
1
∗ and S′ × A

1
∗ are isomorphic and κ(S)

(or, equivalently, κ(S′)) is not equal to 1, then S and S′ are isomorphic.

Proof. In view of Iitaka-Fujita strong cancellation Theorem [12], we only have to consider the cases where κ(S) =
κ(S′) = −∞ or 0. In the first case, S and S′ are isomorphic to products of punctured smooth affine rational curves
with A

1 (see. e.g. [9]) and so, the assertion follows from a combination of the existing positive results for cancellation
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by A
1 and A

1
∗. Namely, let S = C × A

1 and S′ = C′ × A
1, where C and C′ are punctured affine lines. If either C

or C′, say C, is not isomorphic to A
1, then κ(C × A

1
∗) = κ(C) ≥ 0 and so, by Iitaka-Fujita strong cancellation for

A
1, every isomorphism between S ×A

1
∗ and S′ ×A

1
∗ descends to an isomorphism between C ×A

1
∗ and C′ ×A

1
∗. Since

cancellation by A
1
∗ holds for smooth affine curves, we deduce in turn that C and C′ are isomorphic, whence that S

and S′ are isomorphic.
In the case where κ(S) = κ(S′) = 0, we already observed that cancellation holds if every invertible function on

S or S′ is constant. Therefore, we may assume that S and S′ both have non constant units whence, by virtue
of [9, §5], belong up to isomorphism to the following list of surfaces: V0 = A

1
∗ × A

1
∗, and the complements Vk in

the Hirzebruch surfaces ρk : Fk → P
1, k ≥ 1, of a pair of sections H0,k and H∞,k of ρk with self-intersection k

intersecting each others in a unique point pk, and a fiber F or ρk not passing through pk. All the surfaces Vk,
k ≥ 1, admit an A

1
∗-fibration πk : Vk → A

1
∗ = Spec(C[x±1]) induced by the restriction of the pencil on Fk generated

by H0,k and H∞,k. The unique degenerate fiber of πk, say π−1
k (1) up to a linear change of coordinate on A

1
∗, is

irreducible, consisting of the union of the intersection with Vk of the exceptional section C0,k of ρk, and of the fiber
Fk of ρk passing through pk, counted with multiplicity k. Note that V0 does not contain any curve isomorphic to
A

1 whereas each surface Vk, k ≥ 1, contains exactly two such curves: the intersections Fk ∩ Vk and C0,k ∩ Vk. It
follows in particular that V0 × A

1
∗ cannot be isomorphic to any Vk × A

1
∗, k ≥ 1. Now suppose that there exists an

isomorphism Φ : Vk × A
1
∗

∼
→ Vk′ × A

1
∗ for some k, k′ ≥ 1. Since κ((Fk ∩ Vk) × A

1
∗) = κ((C0,k ∩ Vk) × A

1
∗) = −∞,

their respective images by Φ cannot be mapped dominantly on Vk′ by the first projection and since Fk′ ∩ Vk′ and
C0,k′ ∩ Vk′ are the unique curves isomorphic to A

1 on Vk′ , we conclude similarly as in the proof of Proposition 2 that
Φ map (π−1

k (1))red×A
1
∗ isomorphically onto (π−1

k′
(1))red×A

1
∗. This implies in turn that Φ restricts to an isomorphism

between the open subsets Uk = π−1
k (A1

∗ \{1})×A
1
∗ and Uk′ = π−1

k′ (A
1
∗ \{1})×A

1
∗ of Vk×A

1
∗ and Vk′ ×A

1
∗ respectively.

Now A
1
∗ \ {1} is of log-general tpe and since the restrictions of πk and πk′ to Uk and Uk′ are trivial A1

∗-bundles, we
deduce from Iitaka-Fujita strong cancellation Theorem [12] that the restriction of Φ to Uk descends to an isomorphism
ϕ : A1

∗ \ {1}
∼
→ A

1
∗ \ {1} for which the following diagram commutes

Uk × A
1
∗ ≃ (A1

∗ \ {1}) × A
1
∗ × A

1
∗

Φ //

πk◦pr1

��

(A1
∗ \ {1}) × A

1
∗ × A

1
∗ ≃ Uk′ × A

1
∗

π
k′◦pr1

��

A
1
∗ \ {1}

ϕ
// A

1
∗ \ {1}.

Summing up, if it exists, an isomorphism Φ : Vk × A
1
∗

∼
→ Vk′ × A

1
∗ must be compatible with the T

2-fibrations
πk ◦ pr1 : Vk × A

1
∗ → A

1
∗ and πk′ ◦ pr1 : Vk′ × A

1
∗ → A

1
∗. But this impossible since the mutliplicity of the irreducible

component Fk ∩ Vk of π−1
k (1) is different for every k ≥ 1. In conclusion, the surfaces Vk, k ≥ 0, are pairwise non

isomorphic, with pairwise non isomorphic A
1
∗-cylinders, which completes the proof. �
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