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S U M M A R Y
We analyse the statistics of phase fluctuations of seismic signals obtained from a temporary
small aperture array deployed on a volcano in the French Auvergne. We demonstrate that
the phase field satisfies Circular Gaussian statistics. We then determine the scattering mean
free path of Rayleigh waves from the spatial phase decoherence. This phenomenon, observed
for diffuse wavefields, is found to yield a good approximation of the scattering mean free
path. Contrary to the amplitude, spatial phase decoherence is free from absorption effects and
provides direct access to the scattering mean free path.

Key words: Surface waves and free oscillations; Coda waves; Statistical Seismology; Wave
scattering and diffraction.

1 I N T RO D U C T I O N

In heterogeneous media, after a sufficient amount of time of prop-
agation, waves enter the multiple scattering regime. In this regime
waves bounce on several heterogeneities before reaching the re-
ceivers. The characteristic length (resp. time) after which such a
regime can be observed is the scattering mean free path � (resp.
time), defined as the distance (resp. time) between two succes-
sive scattering events. This distance also refers to the characteristic
distance of attenuation of the coherent wave front. The coherent
wave, rigorously defined as the wave that resists ensemble aver-
aging, roughly corresponds to the direct (or ballistic) wave. The
scattering mean free path � reflects the degree of heterogeneity of
the medium: the longer the scattering mean free path, the weaker
the scattering. � depends on two features: the intensity of the fluctu-
ations of the mechanical properties in the medium, and the spatial
extension of the fluctuations. In nature, � is found to vary over sev-
eral orders of magnitude, depending on the frequency, and also on
the nature of the material at test.

The multiple scattering regime can be observed in many fields
of wave physics. It was, for instance, demonstrated in optics and
in acoustics with the observation of the coherent backscattering ef-
fect (or weak localization; van Albada & Lagendijk 1985; Wolf &
Maret 1985; Tourin et al. 1997). Seismic waves are also known to
exhibit long lasting wave trains that follow ballistic P or S waves: the
so-called seismic coda. Since the pioneering works of Aki (1969),
the coda is known to be reproducible and has been recognized to
possibly originate from multiple scattering effects. Among other
applications, scattering parameters are excellent candidates for re-

motely characterizing geological media at depth, which is a key
challenge in geosciences (Margerin & Nolet 2003). Nevertheless,
in most practical cases it is very hard to discriminate scattering
effects from intrinsic absorption effects. For instance, the Spatial
Auto-Correlation (SPAC) technique, widely used in near-surface
geophysics (Aki 1957), consists in fitting the seismic wave spatial
correlation by the product of a Bessel function and an exponen-
tial decay whose physical interpretation remains debated (Prieto
et al. 2009; Tsai 2011; Nakahara 2012). At longer distance from
the source, it is also possible to study the envelope of the diffu-
sive coda, which in principle allows one to evaluate the scattering
and intrinsic attenuation (Hoshiba 1993; Carcolé & Sato 2010). In
continental areas however, an unbiased estimation of these two pa-
rameters may become difficult when the leakage of scattered waves
is dominant (Margerin et al. 1999). Although a possible remedy has
been recently proposed (Del Pezzo & Bianco 2010), evaluating the
scattering mean free path of a complex material without the bias of
intrinsic absorption remains a challenging issue.

Recently, Anache-Ménier et al. (2009) studied the phase fluc-
tuations in the coda of earthquakes recorded during a temporary
experiment at the Pinyon Flats Observatory in California. They
proved that seismic coda waves obey Gaussian statistics in certain
frequency bands, and suggested to use the correlation of the spatial
phase derivative measured in the coda to estimate the scattering
mean free path. The key point of their approach is that the phase
fluctuations are caused by random phase shifts acquired at each
scattering event, and are therefore independent of the absorption
structure. Note that the quantity of physical interest is the spatial
phase difference (or derivative) and not the phase itself, because the
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latter is dominated by a trivial ωt dependence, with ω the circular
frequency. The determination of the scattering mean free path at
Pinyon Flats was not completely conclusive because the aperture of
the experimental network was less than one wavelength.

In this paper, we pursue the work of Anache-Ménier et al. (2009)
and communicate the results of a temporary field experiment that
was specially designed to measure the scattering mean free path
from spatial phase decoherence. The field experiment was set up at
the foot of a recent (late pleistocene and holocene) but inactive vol-
cano in the French Auvergne in 2010. A volcanic area is particularly
convenient for the study, as areas with tectonic and/or volcanic ac-
tivity are highly heterogeneous and known to produce long-lasting
coda waves (Aki & Chouet 1975; Goodman 1985; Abubakirov &
Gusev 1990; Aki & Ferrazzini 2000). Larose et al. (2004) studied
the weak localization of seismic waves at this site and found an
estimate of 200 m for the mean free path for seismic waves around
20 Hz. This gives us a typical order of magnitude of the scattering
mean free path that we can expect in our experiment.

In Section 2 we first give an overview of the theoretical aspects
that underlie our study. Then, in Section 3 we describe the field
experiment; prove that our signal obeys circular Gaussian statistics,
the requirement to determine the scattering mean free path � from
spatial phase decoherence; and show the good estimate of � that we
obtain with our experiment (Section 3.5).

2 T H E O R E T I C A L A S P E C T S

2.1 Definition of the phase

To define unambiguously the phase of the seismic wavefield u(t, r)
recorded at position r and time t, we introduce the associated ana-
lytic signal as follows :

�(t, r) = u(t, r) + iHu(t, r), (1)

where i is the imaginary unit and Hu(t) = P.V.
∫ u(t ′)dt ′

t−t ′ denotes the
Hilbert transform of the field u(t). Using the polar representation of
complex numbers, the field � can be expressed as:

�(t, r) = A(t, r)exp(i�(t, r)), (2)

where �(t, r) is the wrapped phase of the field which takes values
in (−π : π ]. By correcting the phase � for the 2π jumps that occur
at ±π , one obtains the unwrapped phase �u, which is a contin-
uous function taking values in R. The unwrapping operation can
be performed either in the time or in the spatial domain. In this
work, the field is analysed on a linear array of seismic stations,
which calls for the spatial unwrapping of the phase. In general,
the unwrapping operation is not topologically invariant, that is, it
depends on the path from the initial to the final point. In our ex-
periment, the path is dictated by the linear geometry of the array.
Note that the phase of narrowly bandpassed signals is dominated by
the term ωt—ω, the central frequency—which does not convey any
interesting information on the medium. By evaluating the ‘phase
difference’ between two nearby stations, this trivial ωt dependence
is removed and the interesting fluctuations of the phase caused by
the presence of heterogeneities in the medium become accessible.
Motivated by this observation, we introduce two possible definitions
of the phase difference. The first one, denoted by �� ∈ (−2π , 2π ],
is obtained by subtracting the wrapped phases measured at two ad-
jacent stations. The second one, denoted by ��u, is obtained by
unwrapping the phase spatially at each time step. Due to the finite
separation between stations, it is impossible to distinguish between

a large physical jump of the phase from an artefact caused by its
mathematical definition. To circumvent this cycle skipping prob-
lem, we impose that the absolute value of a phase jump between
two nearby stations cannot exceed π , that is, ��u takes values in
(−π , π ]. Using this convention, the following relations between the
two definitions of the phase difference can be established:

��u = ��, �� ∈ (−π, π ],

��u = �� − 2π, �� ∈ (π, 2π ],

��u = �� + 2π, �� ∈ (2π,−π ]. (3)

2.2 Circular Gaussian statistics

Although Gaussianity is a standard hypothesis in statistical wave
propagation problems, we give some heuristic arguments in support
of this assumption. In the multiple scattering regime, the field u
measured at a point can be considered as a superposition of a large
number of partial waves ψα that propagated along independent
paths:

u = Re
∑

α

ψα = Re
∑

α

aαexp(iφα), (4)

where the subscript α labels the different trajectories. The hypothe-
sis that the partial waves follow independent paths is valid when the
average distance between two scattering events, that is, the mean
free path �, is much larger than the wavelength λ. Due to the phase
shift that occurs at each scattering event, after a few scattering mean
free paths, the phases of the partial waves become random and uni-
form in the interval (−π : π ]. In these conditions, we may apply the
central limit theorem, which stipulates that the arithmetic mean of
a large number of identically distributed and independent random
variables will be approximately normally distributed. Hence, we
conclude that the seismic coda wavefield u(t) recorded at an arbi-
trary point of the medium can be modelled as a centred Gaussian
random variable with variance σ 2(t) = I(t), where I(t) is the intensity
of the coda. Because the Hilbert transform is a linear operator, it
can be demonstrated that the imaginary part of the associated ana-
lytic signal obeys the same Gaussian distribution and is independent
from the real part (Goodman 1985). A complex random variable,
which verifies the properties just enunciated is known as Gaussian
circular. Based on this observation, we now ‘assume’ that the com-
plex analytic signals recorded at an arbitrary number of points at
time t in the coda are jointly Gaussian circular:

P(u1, v1, . . . , uN , vN ) = P(�1, . . . , �N )

= 1

π N det(C)
exp

⎡
⎢⎢⎢⎣−(�∗

1 . . . �∗
N )C−1

⎛
⎜⎜⎜⎝

�1

...

�N

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ , (5)

where P denotes the probability density, u1 = Re�1, v1 = Im�1

and C = 〈�i�
∗
j 〉 is the covariance matrix. (� i. . . �N) are N differ-

ent measurements of the field after application of a normalization
procedure to be detailed below. In this work, we do not test the
validity of eq. (5) in its full extent. Instead, we will derive marginal
distributions for the phase and its derivative based on assumption
(5), and compare the experimental measurements with the theoret-
ical predictions to obtain estimates of the wavenumber and mean
free path under the array. We also assume that different times in the
coda correspond to different realizations of the underlying random
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process and that temporal and statistical averaging are equivalent
(ergodic hypothesis).

To complete our definition of the statistical properties of the
wavefield, the covariance matrix C must be specified. Each ele-
ment of the matrix depends on the two-point correlation function
of the recorded wavefield u, narrowly bandpassed around circu-
lar frequency ω. In the multiple-scattering regime, the field–field
correlation function in the coda may be approximated as follows:

〈u(R + x/2, t)u(R − x/2, t)〉 = S(ω)e−R2/4Dt−t/ta

(4π Dt)d/2
ImGd (ω, |x|),

(6)

where S(ω) is proportional to the source spectrum, R is the position
vector connecting the source to the midpoint of the two receivers,
D is the diffusion constant of the waves, ta is their absorption time
and Gd is the average Green’s function of the multiple-scattering
medium. The subscript d represents the space dimension and | · | the
corresponding Euclidian distance. In our experiment u represents
the vertical component of the ground displacement. Formula (6)
has been demonstrated for scalar waves by Barabanenkov & Ozrin
(1991) based on an eigenfunction expansion of the Bethe–Salpeter
equation. Extensions to vectorial fields such as electromagnetic
waves or coupled P and S waves have also been published (Baraba-
nenkov & Orzin 1995; Margerin 2013). Physically, eq. (6) expresses
the diffusive transport of the energy from the source to the array, and
displays explicitly the proportionality between field–field correla-
tions and the imaginary part of the Green’s function. In seismology,
the successful extraction of the surface wave part of Green’s func-
tion between two stations from coda waves has been previously
reported by Campillo & Paul (2003) and Paul et al. (2005). A very
important point to be noted is that the Green’s function, which ap-
pears in eq. (6), depends solely on the mean free path, at least for
sufficiently weak absorption. We must now determine the correct
form of Gd to be inserted in eq. (6). From our previous coherent
backscattering experiment in the same area (Larose et al. 2004),
we concluded on the dominance of Rayleigh waves in the coda. In
particular, by measuring the lateral extension of the backscattering
enhancement spot as a function of frequency, we were able to esti-
mate the dispersion law of Rayleigh waves, in excellent agreement
with independent estimates based on classical seismic techniques.
After normalization of the two-point correlation function by the
intensity received in the coda, we can write the elements of the
covariance matrix as:

〈�i�
∗
j 〉 = C̄(|x j − xi |) = J0(k|x j − xi |)e−|x j −xi |/2l , (7)

where k and � denote the wavenumber and mean free path of the
Rayleigh waves under the array, respectively. The function C̄ is
recognized as the normalized two-point correlation function of the
wavefield. The underlying 2-D character of the propagation is appar-
ent in eq. (7). Note that the details of the intensity normalization are
unimportant because the distribution of energy in the coda is spa-
tially homogeneous at the scale of the linear array. While relation (7)
gives in principle access to the mean free path �, the oscillatory char-
acter of the Bessel function J0 makes it difficult to extract the rate of
decay of the exponential term in practice. The key of the method pro-
posed by Anache-Ménier et al. (2009) is to remove the oscillatory
term by considering the correlation of the phase derivative. The main
properties of the phase and of its derivative are therefore outlined
in the next paragraph.

2.3 Statistical properties of the phase

We first discuss briefly the one-point statistics (N = 1). We remind
the reader that the real and imaginary part of the field are indepen-
dent and normally distributed with zero mean and equal variance
σ 2 = I(t), which depends on the time in the coda. Although our
paper focuses on the properties of the phase, it is worth recalling
the marginal probability densities of other quantities derived from
the complex field �, as they are readily measured experimentally:

(i) The amplitude A follows a Rayleigh distribution:

P(A) = 2A

〈I 〉exp

(
− A2

〈I 〉
)

, (8)

where 〈I〉 = 〈A2〉 is the average intensity. Using a large data set from
northern Japan, Nakahara & Carcolé (2010) have demonstrated that
the amplitude of coda waves is described by Rayleigh statistics with
very good accuracy.

(ii) The distribution of intensity is described by a decaying ex-
ponential law:

P(I ) = 1

〈I 〉 exp

(
− I

〈I 〉
)

, (9)

which follows straightforwardly from eq. (8) after introduction of
the new variable I = A2.

(iii) Finally, as previously remarked, the phase � exhibits a uni-
form probability distribution:

P(�) = 1

2π
. (10)

As any oscillating signal shows a uniform phase distribution, the
last property does not constitute a conclusive test of Gaussianity. In
addition, we wish to point out that a wavefield obeying one-point
circular Gaussian statistics does not necessarily result from multiple
scattering. On the one hand, in a single scattering medium with
low-contrast inclusions, the phase of the waves is not significantly
modified upon scattering, and remains essentially equal to ωt, which
annihilates the independent and random character of the phase.
On the other hand, in a dilute scattering medium containing high-
contrast inclusions, each scattering event introduces a possibly large
phase shift which depends on the scattering angle, the geometry
and the physical properties of the obstacle; since the phase of the
singly or doubly scattered partial waves may also be considered
as random, the resulting wavefield may obey Gaussian statistics
and exhibit fluctuations similar to those observed in the high-order
multiple scattering regime.

We now explore in more details the two-point statistics (N = 2).
Consider two wavefields (�1 = A1ei�1 , �2 = A2ei�2 ), recorded at
geophones separated by a distance δ. Our objective is to derive the
statistical properties of the phase difference �� = �2 − �1, of the
unwrapped phase difference ��u, and of the phase derivative �′.
The correlation matrix has the following simple form:

C =
(

1 g

g 1

)
, (11)

where 0 < g = C̄(δ) < 1. The determinant and inverse of this ma-
trix are readily calculated. Inserting these results into eq. (5), one
obtains the joined distribution of the two fields:

P(�1, �2) = e−|�1|2−|�2|2+2gRe�1�∗
2

π 2(1 − g2)
. (12)
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Introducing the new variables (A1, A2, �1, �2) and integrating out
the phase �1 yields:

P(A1, A2, ��) = A1 A2(2π − |��|)
π 2(1 − g2)

e
−A2

1−A2
2+2A1 A2 g cos ��

1−g2 , (13)

where �� ∈ (−2π , 2π ]. To eliminate the remaining variables A1

and A2, it is convenient to introduce polar coordinates A1 = r cos θ ,
A2 = r sin θ with θ ∈ [0, π/2]. The integration over (r, θ ) is a
straightforward computational exercise and the final result is:

P(��) = N (1 − g2)

1 − f 2

(
1 + f arccos − f√

1 − f 2

)
, (14)

where N = (2π − |��|)/4π 2. Note that the distribution of the
unwrapped phase difference ��u is easily obtained using relations
(3), and is formally identical to that of �� with N = 1/2π . In
the limit δ → 0, we may expand the phase difference �� ≈ �′δ
and the correlation coefficient g ≈ 1 − Qδ2/2, where �′ represents
the first spatial derivative of the phase and Q = −C̄ ′′(0). Note that
since the correlation function C̄ is even, the correlation coefficient
g must be expanded to second-order in the small parameter δ. Upon
reporting these approximations into eq. (13), and applying a Taylor
series expansion around δ = 0, we obtain the statistics of the first
phase derivative:

P(�′) = Q

2(Q + �′2)3/2
. (15)

Remarkably, the first spatial derivative of the phase depends on only
one parameter Q. Using the expression (7) for C̄ , we obtain Q =
k2/2(1 − 2/(kl)2) ≈ k2/2. The last approximation is valid because
the mean free path is in general much larger than the wavelength.
This means that within the experimental accuracy, the measurement
of Q does not put constraints on the mean free path. For sufficiently
large values of the phase derivative, the probability density (15)
is independent of the parameter Q and follows a power-law decay
P(�′) ∼ �′−3/2, characteristic of circular Gaussian statistics.

We now outline the derivation of the correlation function of the
spatial phase derivative along the array. The method is analogous to
the one employed to derive eq. (14) but the calculations are far more
complex. We provide the key ingredients and refer the interested
reader to the work of van Tiggelen et al. (1999) for more details.
The first step is the calculation of the correlation matrix of four
fields � i (i = 1, 2, 3, 4) acquired at four positions: x1, x1 + δ, x3, x3

+ δ. Using expression (7), we obtain:

C(x, δ) =

⎛
⎜⎜⎜⎜⎜⎝

1 C̄(δ) C̄(x) C̄(x + δ)

−C̄(δ) 1 C̄(x − δ) C̄(x)

−C̄(x) −C̄(x − δ) 1 C̄(δ)

−C̄(x + δ) −C̄(x) −C̄(δ) 1

⎞
⎟⎟⎟⎟⎟⎠,

(16)

where x = x3 − x1. Using a perturbation approach, the eigenvec-
tors and associated eigenvalues of the matrix (16) are calculated
to first and second order in the small parameter δ, respectively. In
this way, the joint probability distribution of the fields and of their
spatial derivatives (�(x1),�(x3),� ′(x1),� ′(x3)) can be calculated.
Introducing the polar representation �(xi ) = A(xi )ei�(xi ), the joint
probability distribution P(A1, A′

1, A3, A′
3, �1, �

′
1, �3, �

′
3) of the

amplitude and phase at x1 and x3 together with their spatial deriva-
tives is obtained. Note that this probability density depends on
x = x3 − x1 only. After integration over the amplitudes, ampli-
tude derivatives and phases, the correlation function of the phase

derivative may be expressed as (van Tiggelen et al. 2006):

C�′ (x) =
∫∫ +∞

−∞
P(�′

1,�
′
3)�′

1�
′
3d�′

1d�′
3

= 1

2
log(C̄(x))′′(log(1 − C̄(x)2)). (17)

For sufficiently large x, the exact expression (17) can be approxi-
mated as follows:

C�′ (x) ≈ e−|x |/ l

2|x | . (18)

As anticipated, the oscillatory term J0(k|x|) does not show up in
eq. (18). Using numerical simulations, Anache-Ménier et al. (2009)
have demonstrated that the convenient formula (18) applies for
x > λ/5. Hence, correlations of the spatial derivative of the phase
provide direct access to the mean free path. Two very important
remarks must be made at this point. To derive eq. (18), we have
implicitly assumed that translational invariance applies. If the sta-
tistical properties vary under the array, the result (18) may well
be invalid. The second point pertains to the evaluation of the spa-
tial derivative of the field. Throughout the derivation of eq. (18),
we have assumed that the derivatives are evaluated in the direction
of the array. The correlation function of the ‘directional’ deriva-
tive of the phase at an angle α with respect to the array direc-
tion gives a quite different result. In particular the undesirable
oscillations of the correlation C̄ are not suppressed in this case
(Ghysels 2005).

3 E X P E R I M E N T A N D R E S U LT S

3.1 Experiment setup and data acquisition

We work at the foot of the neighbouring volcanic craters ‘Grand
Sarcoui’ and “Puy des Goules” in the French Auvergne. Larose
et al. (2004) could show the evidence ofthe weak localization of
seismic waves in this area (at 20 Hz) and gave hence a proof of mul-
tiple scattering. To measure the scattering mean free path from phase
decoherence, we set up an experiment that simultaneously fulfills
two conditions: (1) The intergeophone spacing must be sufficiently
small to ensure a good correlation of the signals at neighbouring
geophones; (2) The total aperture of the array should not be too
small compared to the mean free path. From numerical simulations
with a finite difference code (Derode et al. 2003), we observed
that the intergeophone spacing δ should be δ ≤ λ/10, where λ is
the Rayleigh wavelength, and that an increasing number of geo-
phones significantly increases the precision of the determination
of �.

We see that it is essential to know the Rayleigh wavelength in
the area of interest. Therefore, in a preliminary study, we shot 20
refraction seismic profiles (hammer source) in the area of interest.
We then computed the dispersion curves: once by determining the
wavenumbers from the field correlation (eq. 7) at different cen-
tral frequencies, and once from a frequency–wavenumber analysis.
From these analysis, we could determine an approximated wave-
length of 24 m at 10 Hz, 11 m at 20 Hz and 7.5 m at 30 Hz.

We hence decided to work at high frequencies (30 Hz) and set
up a linear array of 48 geophones along an unpaved road at the
foot of the volcanoes with an intergeophone spacing of δ = 60 cm
(≈λ/10). The total length of the array is 28.8 m, which is approx-
imately four times the dominant wavelength at 30 Hz. To decrease
the ambient noise, we buried the geophones at 20 cm depth. We
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Seismic phase statistics on a volcano 439

Figure 1. Area of interest in Auvergne. The blue line marks the array of 48 geophones with 0.6 m spacing. The red stars mark the positions of the 18 explosive
sources placed around the geophones.

placed 18 explosives on unpaved roads around the receiver ar-
ray to excite energy from all directions. The experimental setup
is shown in Fig. 1. The acquired data show long-lasting coda
waves with a high signal-to-noise ratio for the first 20 s in the coda
(Fig. 2).

For our analysis we assume a 2-D medium. This approach is valid
as long as the vertical component of our signals is largely dominated
by Rayleigh waves (Larose et al. 2004).

Figure 2. (a) Raw data from an explosive source, showing a coda of 20 s.
The square indicates the chosen time window in the coda. (b) Dimensionless
energy of the signal.

3.2 Test of one-point Circular Gaussian Statistics

To begin with, we test that the seismic coda waves that we acquired
obey Circular Gaussian Statistics. Therefore, we filter the data with
a narrow second-order bandpass filter of 5 per cent around a central
frequency of 30 Hz.

We selected a short time window of 1.5 s starting after the surface
wave arrivals. We compute the imaginary part (Hilbert transform)
of the recorded signals u(t, r) that gives us access to the phase from
the complex analytical signals (eq. 4). We can define:

(i) The wrapped phase �, which is the argument of the complex
field u in the range (−π , π ].

(ii) The unwrapped phase �u, that is obtained by correcting for
the 2π jumps that occur when � goes through ±π . The result is a
continuous function.

We then test the criteria for Circular Gaussian Statistics, as men-
tioned in Section 2.2. The results for the different tests are shown
in Fig. 3 together with the theoretical predictions. We can see that:

(i) The real and imaginary part of the field follow a Gaussian
distribution (Figs 3a and b) and are independent (Fig. 3c).

(ii) The amplitude presents a Rayleigh distribution (Fig. 3d).
There are only small discrepancies for larger amplitudes that result
from superimposed noise.

(iii) The intensity is calculated as the squared amplitude of the
Hilbert transformed signal. Its distribution clearly follows a decay-
ing exponential probability function (Fig. 3e).

(iv) The probability distribution of the phase is uniform with a
value of 1/2π (Fig. 3f).
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Figure 3. Criteria for a signal that obeys circular Gaussian statistics:
(a) Gaussianity of the real part; (b) Gaussianity of the imaginary part;
(c) circular dependence of real and imaginary part; (d) Rayleigh distribution
of the amplitude; (e) intensity distribution follows a decaying exponential
probability function and (f) uniform phase distribution.

We mentioned in Section 2.2 that the phase distribution is an
ambiguous test for the Gaussian character of a signal, as every
oscillating signal shows a uniform phase distribution. We will hence
also test the phase derivative distribution to verify that the seismic
coda obeys Circular Gaussian Statistics.

3.3 Field correlation

We compute the field correlation (eq. 7) for all possible receiver
combinations. As the length of our whole array is only four wave-
lengths, this might not be enough to average over the heterogeneities,
and result in a lack of translation symmetry. In Fig. 4 we display
the field correlation averaged over three shots that showed simi-
lar behaviour. From the zero passage of the wave we can deter-
mine a wavelength of 8 m, which is in good agreement with the
results from the preliminary analysis. From Fig. 4 we can also de-
termine the correlation coefficient C(δ) = 〈�(r − δ/2)�∗(r + δ/2)〉

Figure 4. Field correlation. The zero passage reveals a wavelength of about
8 m. From the correlation coefficient between adjacent receivers (0.6 m), we
can obtain the parameter g = 0.93.

Figure 5. Unwrapped P(��u) and wrapped P(��) phase difference dis-
tribution plotted together with the theoretical distribution and the analytical
phase derivative P(�′).

between adjacent receivers (δ = 0.6 m) as C(δ = 0.6 m) = 0.93 =g
(at 30 Hz). We will use this parameter g now as fitting parameter for
the finite difference calculation of the phase derivative.

3.4 First phase derivative distribution

As we cannot determine the phase derivative analytically from
our data, we use a finite-difference approach in space (P(�′) ≈
P(��)/δ). We can use both, the wrapped and the unwrapped phase,
to estimate the spatial derivative of the phase from the simple finite-
difference formula �′ ≈ ��/δ and �′

u ≈ ��u/δ, respectively. ��

and ��u are the differences of the phases between two seismome-
ters that are separated by a distance δ. We recall that the theoretical
formulation for the phase difference distribution is given in eq. (14).

In Fig. 5 we show the wrapped and unwrapped phase finite-
difference distributions, together with the theoretical phase differ-
ence distribution P(��) (eq. 14), and the analytical derivative dis-
tribution P(�′) (eq. 15). The distributions P(��) and P(��u) are
symmetric and therefore just represented for positive values in a
logarithmic scale. We note that the analytical derivative is followed
longer by the wrapped phase. We use the fitting parameters g =
0.93 (obtained from the field correlation), and Q ≈ 2π2

λ2 = 0.3 m−2

with λ = 8 m (from field correlation, preliminary seismic refraction
experiment). The agreement of the theoretical distributions and the
data is excellent and we can conclude that our field satisfies two-
point Circular Gaussian Statistics with good accuracy.

3.5 Phase derivative correlations

To compute the phase difference correlation, we work with the spa-
tially unwrapped phase �u, as the wrapped phase is dominated by
2π jumps of geometrical and not physical origin. We compute the
correlations between all possible receiver combinations, separately
for each shot, and then average correlations from the same receiver
distances. Anache-Ménier et al. (2009) have shown with numeri-
cal simulations, that the asymptotic exponential regime is already
reached for r > λ/5. As the aperture of our experimental network
is several wavelength in size, we can in principle measure the scat-
tering mean free path directly from the slope (−1/�) of the phase
derivative decay as a function of distance in logarithmic scale. How-
ever, since the fluctuations of our measurements are very large, we
do not attempt to determine exactly the value of �, but instead try
to provide an estimate of its order of magnitude.
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Figure 6. Phase difference correlation for 48 receivers with 0.6 m spacing
in logarithmic representation multiplied by the distance. Superimposed are
the theoretical distributions for three different scattering mean free paths
(� = 10, 100, 1000 m).

In Fig. 6 we plot the phase difference correlation in logarithmic
scale versus the distance. We multiplied the correlation with r,
so that the slope is directly proportional to −1/�. We superpose
theoretical predictions (eq. 18) for three scattering mean free paths
(10, 100 and 1000 m) on the data in Fig. 6. In spite of the large
fluctuations, we can reasonably exclude 10 m and 1000 m as possible
values for �. � ≈100 m seems to be a good approximation and is in
agreement with previous findings by Larose et al. (2004). A more
precise determination is unfortunately not possible with the limited
number of receivers and shots in our experiment.

4 C O N C LU S I O N

In this paper, we demonstrate that the correlation function of the
spatial derivative offers a new, promising opportunity to measure
directly the scattering mean free path � of a given heterogeneous
medium. This measurement is independent of the absorption length
and offers access to the scattering properties of the medium. In fu-
ture applications, the ideal configuration should consist of a much
larger number of receivers, to cover at least 10 λ. The interstation
distance of the order of λ/10 proved to be good enough to keep
a high correlation between two nearby stations and to reduce sys-
tematic errors in the derivatives. Our method may find applications
in various areas of seismology where the effects of scattering are
prominent and a knowledge of the scattering properties is necessary
to describe the propagation. As an example, an unbiased estimate
of the scattering mean free path is crucial for the localization of
changes in multiply scattering media, where a sensitivity kernel
based on diffusion theory is used (Larose et al. 2010; Obermann
et al. 2013a,b). Our experimental approach may also provide inde-
pendent estimates of the scattering mean free path in volcanic areas
where particularly strong scattering has been proposed, based on
the fitting of energy envelopes using energy transport approaches
(Wegler & Lühr 2001; Yamamoto & Sato 2010).
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