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Abstract –Langevin’s twin experiment does not lead to a contradiction within the frame of special 

relativity. Though, such is not the case of one of is variants, the forwards and backwards movement, 

relative to a Galilean space, of a thin elastic spinning cylinder. The crucial difference is that the space 

between the ‘motionless’ part and the one ‘making the journey’ is always bridged by some continuous 

portion of the cylinder. The study of the cylinder’s behaviour and of its changes of shape shows that the 

experiment can be run with zero intrinsic twist and with intrinsic angular speeds of sections remaining 

constantly equal to the same value ω. Then, if we calculate the numbers m and n of turns around the 

axis that two particular points M and N make, we prove n−m is both a zero and a non-zero integer. 

 

 

1. Presentation of the experiment. – It is run with a 
‘thin’ cylinder, that is, the thickness of which is 
infinitesimal1. The material it is made of is not rigid (in the 
sense of infinitely rigid): its shape changes when actions 
are exerted on it2. We suppose it is elastic: its mechanical 
properties remain invariable throughout the experiment.    

 
The first part of the experiment goes on in a ‘totally 

uniform’ frame. The cylinder (C) is globally motionless 
relative to the Galilean space (E0), and freely spinning 
around its axis. So, at this moment of the experiment, and 
only at this moment, it has an invariable shape.  

(E) is another G.s. (Galilean space), relative to which (C) 
is in globally uniform translatory movement along its axis 
(D). So this axis is motionless both in (E) and (E0), as is the 
common support of the 𝑥 and 𝑥’ axes in the usual 

                                                             
1 Therefore, it is a limit case we examine. The hypothesis of thinness  

makes the experiment use an arbitrarily small quantity of material, and 
so legitimates using the ‘flat’ frame of special relativity. 

2 It has long been known, through various thought experiments, that 

the rigid body is incompatible with special relativity, as physical actions 

should be instantaneously propagated through it. No harm is done to 

special relativity, because rigid bodies just do not exist [1]. 
3 We call generatrix of (C) a set of points on its surface which, in this  

early stage of the experiment, when the movement of (C) is totally 
uniform in all its components, and when (C) is observed from the Galilean 
space (E0) in which it is globally motionless, make a straight line parallel  
to the axis. The generatrix is ‘engraved’: in a second stage of the 
experiment, when (C) will be subjected to an action, this cylinder will lose 
its prime shape, for no rigid body exists, and therefore (G) will also lose 

presentation of the Lorentz transformation.  
(G) is a generatrix3 of (C), ‘engraved’ on it. (G) 

intersects a plane (P) motionless in (E) and perpendicular 
to (D) at a point N which plays the role of the first twin. The 
second twin’s role is played by the point M, which is fixed – 
‘engraved’, also – on (G)4. The global translatory speed of 
(C) relative to (E) is 𝑣, and its intrinsic5 angular speed, that 
is the one observed in (E0), is 𝜔.  

When (C) is in uniform movement relative to (E), one of 
its generatrix (G), described in (E), is at every instant not a 
straight line, but a regular helix, because two sections6 (S1) 
and (S2),  when considered at the same instant relative to 
(E), are considered in (E0) under a temporal gap which, 
since (C) spins on its axis, generates an angular lag : there 
is an extrinsic twist, that is not linked to any physical 
change of shape.   

its prime shape at the same time (C) does. 
4 One should be wary of confusing N with the orthogonal projection, in 

the Galilean space (E0) or in another one, of M onto (P). Instead of the 
definition which has been given, this erroneous one refers to the 
simultaneity of that space. Moreover, it cuts out the continuous material  
link between M and N, which is crucial. 

5 When an object can be considered as motionless (or globally  
motionless if it is spinning) relative to a given Galilean space, we call its  
characteristics relative to this space intrinsic;  relative to another 
Galilean space, we call them extrinsic. Thus the intrinsic angular velocity 
of (C) is that observed from (E0). 

6 We call section of (C) its cutting by a plane perpendicular to its axis.  
Sections, like generatrices, are ‘engraved’ on (C).  A slice of (C) is the set 
of the points that are within range made by two sections. 
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A cylinder (C’) identical to (C), the movement of which 
being also uniform in all its components, and spinning 
around (D) at the intrinsic angular speed 𝜔, will strike (C).  

The experiment, described relative to (E), begins at the 
instant 𝑖 of (E) when the point M crosses the plane (P) 
forwards and coincides instantaneously with the point N. 

 
 
 

 
 
 
  

 
 
 

 

The second part of the experiment begins when (C’) 
strikes (C). Their movements then stop being uniform in all 
their components. A complex process starts, which will 
make (C) go backwards relative to the G.s. of reference (E). 
Since actions are propagated at a finite speed, this reversal 
is not immediate. The shape of (C) changes and its sections 
no longer go at the same speed7. For instance, immediately 
after the impact, because the head section (Sh) has just been 
struck by (C’), whose speed relative to (E) is superior to 
that of (C), the sections close to (Sh) are already going 
backwards, while those further are still going forwards. 

The movement of (C) is no longer uniform; but we shall 
continue to analyse it relative to a Galilean system of 
reference, as is necessary. The idea that special relativity 
must be confined to uniform movements is erroneous: we 
are only obliged to use Galilean systems of reference. For 
instance, when Langevin’s traveller twin turns back, he 
experiences an acceleration8.   

 
 
 
 
 
 
 
 
 
 
 

 
 

M goes through (P) backwards at the (E)-instant 𝑗, at 
which the experiment finishes. This point then coincides 

                                                             
7 A body whose parts are in the same uniform movement loses its shape 

if and only if its parts cease to be in that same uniform movement. 
8 We find in manuals of special relativity the formulae giving how 

acceleration changes when the Galilean system of reference changes .  

Moreover, no physical experiment can be run in a universe where all the 

movements are uniform.  
9 When a material system can at a certain instant be considered as made 

of  points all going at the same speed, we call  G.s. tangent to its 

movement of translation  the unique G.s. in which its speed is zero at 

this  instant. 

again with N.  Because (C) does not entirely goes through 
(P), the  point N exists at each instant of the interval [𝑖, 𝑗] of 
the duration of the experiment, at the end of which M has 
made 𝑚 turns around (D) and N 𝑛 turns.  

 
 

 

 
 
 

 

 

 
 

 
 

2. Intrinsic twist and mechanical twist. – During the 
forwards and backwards experiment, the system maintains 
its symmetry of revolution. Nevertheless, some twist 
phenomena may or may not happen, which do not alter in 
any manner this symmetry of revolution. 

 
 
 

 
 
 
 

Intrinsic twist. In order to define it, generatrices must 
have been previously engraved on (C) when it spins freely 
on its axis, globally motionless in a certain G.s. This cylinder 
has an intrinsic twist at the level of a section (S) if, when 
observing this tube from the Galilean space tangent to 
the movement of translation of one of its points M9, we 
state – for instance with a set square, or by any process 
equivalent in theory – that the angle between (S) and the 
generatrix passing through M is not a right angle10.  The 
choice of M does not matter, because of the symmetry of 
revolution. The absence or existence of any intrinsic twist 
is a local characteristic: the set square is theoretically 
infinitesimal, and nevertheless of an infinite accuracy.  

Let (ES) be the G.s. tangent to the movement of 
translation of (S)11. The movement of (EM) relative to (ES) 
is collinear to the tangent at M to (S), and the Lorentz 
transformation changes a straight line perpendicular to the 
direction of the movement into a straight line 
perpendicular to the direction of the movement, so:  

The intrinsic twist at the level of one section (S) is zero 
if and only if (S) is, in the G.s. tangent to its movement of 
translation, perpendicular to the generatrices.  

10 (S) is considered here as a curve and not as a plane. For intrinsic twist 

can also exist  when the changes of shape of (C) make its radius vary, so 

that this cylinder may have, in the neighbourhood of (S), a form equivalent 

to that of a portion of a cone. The criterion for (S) and (G) being 

perpendicular is then the one for two curves, and not the one for a curve 

and a plane.  
11 We call G.s. tangent to the movement of translation of a section 

the unique G.s. in which its translatory speed is zero at the (E)-instant it 
is considered. The section is then globally motionless relative to this 
space, although spinning on its axis. 

M = N (C) 

(G) (D) 

(C’) 

(P) 
(E) 

Fig. 1: Beginning of the experiment: M = N. 

 

(C’) 

(P) 

M= N 

(C) 

(G) (D) 

(E) 

Fig. 3: End of the experiment: M = N. 

 

Fig. 4: Twist of (G). 

 

? 
M 

(S) (G) 

(P) 

M  N  

(C) 

(G) 

(D) 

(C’) 

(E) 

Fig. 2: Beginning of the second part of the experiment: (C’) 

strikes (C). 
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Mechanical twist. We say that (C) shows at a certain 
instant a mechanical twist at one of its sections (S) if the 
slices on each part of (S) exert torque12 on each other.  

 
Relationship between mechanical twist and intrinsic 

Twist. In order to know whether mechanical twist is 
present at the level of a section (S) at the instant 𝑡 of the 
system of reference, we have a simple test: we can consider 
a situation exactly identical, but in which (S) is replaced by 
a zero thickness cutting-line, which divides (C) into two 
consecutive parts (C1) and (C2). The operation replaces (S) 
by two adjacent faces (S1) and (S2), that we suppose to be 
perfectly slippery. Since the strike is compressive, they 
remain adjacent in the instants immediately after 𝑡. 

Two possibilities may occur in these instants: 
a) (S1) and (S2) begin spinning at different angular 

speeds13. Because they turn at the same speed when (C) has 
not been cut, we conclude the existence of mechanical twist 
at (S), in a direction given by the sign of the difference of 
the angular speeds.  

b) (S1) and (S2) still turn at the same speed. We 
conclude there is no mechanical twist at (S). 

Mechanical twist at (S) will not be present at the 
instant 𝑡 if and only if a perfectly slippery cut of (C) at (S) 
is such that the adjacent faces still spin at the same 
velocity during the instants immediately after 𝑡.   

 

However, we can also know if there is any mechanical 
twist at (S) by studying how the shape of (C) is changed in 
the neighbourhood of (S). 

 By the symmetry of revolution of the situation, the 
manner the shape is changed is the same at every point of 
(S). So it is sufficient to study it at any of its points.  

The specific shape of (C) in the neighbourhood of a 
point M of (S), considered in the Galilean space tangent to 
the movement of this point, is indicative of the existence or 
non-existence of mechanical twist at (S).  

Under the principle of relativity, the local intrinsic 
properties of the elastic material of which (C) is made do 
not depend on its translatory speed. Thus, for a 
neighbourhood of M, being such that an instantaneous 
slippery cut along (S) may or may not make the two parts 
immediately glide one on the other, this fact depends only 
on the intrinsic shape of this neighbourhood, and not on its 
translatory movement.  

So let us consider the case where angular speed is zero. 
In any possible interaction with a cylinder (C’) the angular 
speed of which is also zero, the initial situation shows a 
symmetry about the plane containing (D) and the 
generatrix (G) passing through M. This symmetry will 
remain for the length of the interaction. So the changes of 

                                                             
12 The torque exerted by one slice on the other is the quantity (actual or 

virtual) of angular momentum they exchange per unit of time, that is to 

say its time derivative.  It depends on the system of reference gliding along 

(D) that we chose, for the angular momentum does not depend on this  

choice (well-known consequence of the principle of relativity) while the 

time depends on the choice. But its being zero do not depend on it.  

shape of (G) will in every case be such that (G) remains 
included in that plane, and thus perpendicular to (S). On the 
other hand, as the angular speeds of all the sections are 
zero, the exchanges of angular momentum are constantly 
zero, and so is the mechanical twist.      

Because the local intrinsic shape is an indicator for local 
mechanical twist14:  

 There is mechanical twist at a section (S) if and only if 
there is intrinsic twist at (S). 

 

3. Interactions between two thin rings. − A sufficient 
condition so that two interacting rings do not exert torque 
on each other. Let (A) and (A’) be two identical elastic rings, 
which have the same axis (D), and of which the width and 
thickness are infinitesimal. Both of them are free from 
mechanical twist.  

 

 

 
 
 

 
 
 
 

They move towards each other, strike and go backwards. 
As the situation between (A) and (A’) is symmetrical, they 
do not exchange any angular momentum during the 
interaction. So the torque one exerts on the other is always 
zero. This result does not depend upon the speed of one 
ring relative to the other. 

 By reason of symmetry, their angular speeds are 
identical during the interaction, and so the points of them 
that coincide at the very first instant of the impact still 
coincide during the whole interaction: the rings do not slip 
on each other. Their adjacent surfaces may be either 
perfectly slippery or rough, that makes no difference.   

The common intrinsic angular speed of the two rings is ω 
at the beginning of the impact; but this value might vary 
during the interaction, because their angular momentum μ 
remains unchanged, though their temporary changes of 
shape could make their intrinsic moment of inertia J vary, 
and thus make their intrinsic angular speed  μ/J vary. 

We shall prove further the possibility of interaction 
with invariable moments of inertia, so we shall restrict our 
analysis to this case. Let us substitute for the ring (A’) a thin 
elastic ring (Z) of the same size, moving like (A’) at a 
uniform translatory speed along (D), and spinning at the 
angular speed 𝜔′. Like (A), it is made of a homogeneous and 
isotropic material, of which other characteristics may be 
different. It has no intrinsic twist before being struck.  

Let us study how the situation depends on 𝜔′, 
beginning with the case 𝜔′ < 𝜔.  

13 In other words, if ∆t is a positive duration neighbouring zero, for case 
a) ∆𝜔~𝑘∆𝑡 , with 𝑘 ≠ 0 ; for case b) ∆𝜔 = 𝑜(∆𝑡). 

14 Our reasoning seems to ignore centrifugal forces, but actually it does  
not, because they take part at their own exact rate to the generation of the 

local shape of (C). 

(D) 

(A) 

(A’) 

Fig. 5: Interaction between two rings. 
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First, let us suppose that the sides that are adjacent 
during the interaction are perfectly slippery. The exchange 
of angular momentum is thus zero throughout the impact. 

An observer carried along the movement of (A), staying 
close to the contact area, watches the situation. If the 
intrinsic angular speed of (Z) were 𝜔, he would, according 
to what we have just established, see at the instant when 
begins the interaction the points of (Z) turning at the same 
speed as those of (A). But the intrinsic angular speed of (Z) 
is strictly inferior to 𝜔, so he sees the points of (Z) sliding 
along (A) in the opposite direction to the rotation of (A). He 
concludes that if there were friction, (Z) would act against 
the rotation of (A), that is to say it would exert a torque 
contrary to this movement.  

Similarly, if  𝜔′ > 𝜔 and the friction were not zero, (Z) 
would exert on (A) a torque acting in the direction of its 
movement.  

As the torque exerted by (Z) on (A) continuously 
depends on 𝜔′, the intermediate value theorem states that 
it is zero when 𝜔′ = 𝜔 and friction is not zero. 

When two thin rings in translation along the same axis 
and spinning around it at the same intrinsic angular 
velocity interact in such a manner that their intrinsic 
momenta of inertia constantly remain invariable, then,   
throughout their interaction, 

– they exchange no angular momentum, 
– they do not exert torque on each other, 
– their intrinsic angular speed is constant. 

 
Possibility of an interaction with invariable intrinsic 

moments of inertia. Let us now prove we can make a ring be 
neutral, that is to say, whose moment of inertia remains 
unchanged during the impact. It suffices to exert on (A) a 
lateral pressure that cancels out the variations of its 
moment of inertia. In order to do that, let us bombard (A) 
during the interaction with a continuous flow of particles 
that all strike it all at the same angle and at the same speed, 
respecting its symmetry of revolution. If we want to cancel 
out an increase of the intrinsic moment of inertia, they will 
strike the outside cylindrical surface; if a decrease, 
the inside cylindrical surface. Let us WLOG15 consider the 
first case. 

According to the way the flow arrives on (A), it can 
make the momentum relative to (E) increase or decrease, 
as it can also make the angular momentum increase or 
decrease. 

Let (R) be an infinitesimal rectangle on the outside 
cylindrical surface of (A), drawn from one edge to the other, 
and P be the centre of (R). 

 Let us observe the situation from the G.s. (EP) tangent 
to its movement.  The action exerted on (R) can be 
represented one-to-one by a vector the terminal point of 
which is P, parallel to the flow, and the length of which is 

                                                             
15 Without loss of generality. 
16 Special relativity is a geometrical theory, meaning that it is ruled by  

axioms the accuracy of which is not supposed to be approximate but 
perfect. So one can, as with geometry, produce reasoning whose precision 

proportional to its intensity. The original points of these 
vectors can be chosen everywhere in the half-space above 
(R). The flows making the momentum of (A) relative to (E) 
increase are characterised WLOG by a vector pushing (R) 
rightwards; and those making the momentum decrease, by 
a vector pushing (R) leftwards. This discrimination splits 
the original points of vectors into two regions separated by 
a revolution surface (SA) transversal to the axis of the ring. 
In a similar way, the flows that make the angular 
momentum increase and those that made it decrease are 
on opposite sides of a surface (SL) set along the axis. The 
two surfaces intersect on a curve (Γ), which characterizes 
the flows that modify neither the momentum of (A) relative 
to (E) nor its angular momentum.  

 
 
 
 
 
 
 
 
 
 
 
 
Among these flows, some have an intensity 𝐼 too weak 

to cancel out the increase of the moment of inertia: for 
instance, the flow zero.  

Let us decide from now on to run the experiment at 
‘very reasonable’ speeds of approach and rotation of the 
rings, that is to say in such a way that changes of shape and 
relativistic effects be ‘very tiny’, and even ‘negligible”. 
Without intending to neglect anything, on the contrary we 
want to reason with the absolute accuracy of geometry, 
which infinitely exceeds that of our actual experiments16. 
But, since these phenomena are ‘negligible’, we can, by 
acting on elastic material, overpower them. A sufficiently 
high intensity 𝐼 of the flow will have the effect of surpassing 
this ‘negligible’ and will make the momentum of inertia 
decrease. As it is continuously dependant on 𝐼, at every 
instant of the interaction, there exists an intermediate 
value of 𝐼 that exactly cancels out its variation.  

We can exert on (A) throughout the interaction a 
time-varying homogeneous pressure which, without 
transmitting to it momentum nor angular momentum, is 
such that its moment of inertia remains unchanged. 

 
4. Possibility of running a forwards and backwards 

experiment at constant intrinsic angular speed and 
with zero intrinsic twist. − Let us resume our analysis of 
the interaction of the two cylinders. The situation is studied 
from the G.s. (E). 

goes infinitely further than our actual ability to observe and verify; and in 

particular concerning bodies the velocity of which can be as low as we 

want, much slower than that of a snail. Mathematically speaking,  

relativistic effects are actual as soon as speeds are not zero.  

 

(EP) 

(R) 

(SL) 

(SA) 

(Γ) 

P 

(A) 

Fig. 6: Discrimination of the actions possibly exerted on (R). 
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Let us assume the mathematical induction hypothesis 
that at a certain (E)-instant 𝑡, we know the whole set of 
positions and speeds of the points of the cylinders, and that 

– each section turns at the angular speed ω; 
– there is no intrinsic twist anywhere;  
– the angular momentum of each infinitesimal slice is 

the same as it was the first time of the experiment, when 
the movement of (C) was uniform in all its components.  

As we know the whole set of positions and speeds of the 
points of the system, and because this data, added to the 
complete knowledge of the mechanical characteristics, 
determines its evolution at this instant 𝑡, we are able, at 
least in theory, to calculate this evolution, and so to obtain 
the knowledge of the whole set of positions and speeds at 
the instant 𝑡 + 𝑑𝑡. But there is no reason why the induction 
hypothesis would still be valid at this new instant, because 
the changes of shape make the moments of inertia of 
infinitesimal slices vary. As a consequence, intrinsic 
angular speeds do not remain unchanged, thus phenomena 
of exchange of angular momentum occur, and thus so do 
phenomena of mechanical twist, that is to say, of intrinsic 
twist. In order to counteract this inconvenience, we have to 
interfere a little: exert on each infinitesimal slice of (C) and 
(C') the action we have just studied, which exactly cancels 
out the variations of its intrinsic moment of inertia. 

The successive infinitesimal slices making (C) are 
joined together, but that makes no change to the fact they 
then do not exert torque on each other. Indeed, let us 
suppose (C), at the instant 𝑡 when we study its behaviour 
at the level of any section (S), is suddenly cut in two parts 
along (S). The two adjacent cylinders thus obtained (that 
compression phenomena prevent from separating), 
considered at this instant in a neighbourhood of the 
cutting-line,  

– are turning at the same intrinsic angular speed 
everywhere,  

– have no intrinsic twist anywhere.  
So they do not exert torque on each other at this instant.  
The flow cancelling the variations of the moments of 

inertia also does not exert torque, thus no mechanical twist 
will appear in the instants immediately after 𝑡, and thus no 
intrinsic twist.   

As the intrinsic moments of inertia and the angular 
momenta remain unchanged, these neighbourhoods will in 
the instants immediately after 𝑡 continue turning 
everywhere at the unchanged intrinsic angular speed 𝜔 
and will not exert torque on each other. The adjacent sides 
can be rough or perfectly slippery, it does not matter. Two 
adjacent points on each side of the cutting-line will 
continue coinciding as they did when there was no cut, and 
that shows that torque is not exerted at (S) when there is 
no cut.  

As this is true wherever the cut is made, the induction 

                                                             
17 Our reasoning, using mathematical induction concerning an arithmetic 

progression with infinitesimal increments 𝑑𝑡, is legitimate in non-

hypothesis is true again at the instant 𝑡 +  𝑑𝑡: the inductive 
step is performed17. Because the basis is obviously true, in the 
first part of the experiment, we can state:   

It is possible to construct a forwards and backwards 
experiment throughout which the intrinsic angular speed of 
all sections remains what it was before the impact, and the 
intrinsic twist remains zero everywhere.    

From now on, we shall consider the experiment is done 
thus.  

 
5. Angular speed of N. − Let (S) be the section of (C)  

crossing (P) at the instant 𝑡 of (E) when we intend to 
determine this angular speed, (ES) be the G.s. tangent to the 
movement of translation of (S), and 𝑣 the speed of (ES) 
relative to (E). 

WLOG, we can chose two new systems of reference RG1 
for (E) and RG1

′  for (ES), placed according to the standard 
manner: relative to RG1, the equation of (D) is 𝑦 = 𝑧 = 0, 
relative to RG1

′ , it is 𝑦′ = 𝑧′ = 0; the coordinates of the 
event ‘the centre of (S) crosses (P)’ are (0, 0, 0, 0) relative 
to each system of reference ; the coordinates of N in RG1

′  at 
the instant 0 are (0, R, 0, 0). 

Let us first suppose the radius of (C) does not vary. 
Since (G) has no intrinsic twist, it is intrinsically 
perpendicular to (S), thus the spatiotemporal coordinates 
of a generic point P of (G) are, in (ES), at the instant 0: 
(𝑥′,  𝑅 + 𝑜(𝑥′), 𝑜(𝑥′),0). 

The points, being infinitely little, have no physical 
reality. Only their infinitesimal neighbourhoods do ‘exist’, 
whose acknowledgement as pertinent elementary physical 
entities having a certain speed presupposes the continuity 
of the speeds.  When 𝑥’ = 𝑡’ = 0 the speed of P relative 
to RG1

′  is (0, 0, 𝑅𝜔), thus the spatiotemporal coordinates of 
a generic point of (G) relative to RG1

′  are: 

(𝑥′ + 𝑜(𝑥′, 𝑡 ′),  𝑅 + 𝑜(𝑥′, 𝑡 ′), 𝑅𝜔𝑡′ +  𝑜(𝑥′, 𝑡′),  𝑡′) 
that is to say, replacing WLOG  𝑥′ + 𝑜(𝑥′, 𝑡 ′) by 𝑥’, 

(𝑥′,  𝑅 + 𝑜(𝑥′, 𝑡 ′), 𝑅𝜔𝑡′ +  𝑜(𝑥′, 𝑡′),  𝑡′). 
An ‘event’ of coordinates relative to RG1 (𝑥, 𝑦, 𝑧, 𝑡) is 

on the generatrix if and only if there exist 𝑥’ and 𝑡’ such that 
its image under the Lorentz transformation from RG1 to 
RG1

′  has the form shown above. As the 𝑜(𝑥’, 𝑡’) are some of 
𝑜(𝑥, 𝑡), this is equivalent to  

{
𝑦 = 𝑅 +  𝑜(𝑥, 𝑡)

𝑧 = 𝑅𝜔 𝛾 (𝑡 −
𝑣 𝑥

𝐶2
) + 𝑜(𝑥, 𝑡)

 

If we make 𝑥 = 0, we obtain {
𝑦 = 𝑅 +  𝑜( 𝑡)

𝑧 = 𝑅𝜔𝛾𝑡 + 𝑜(𝑡)
 

The angular speed of N in (E) is thus 𝜔𝛾. As it does not 
depend upon the radius R, this formula is still valid for a 
thick cylindrical tube, replacing (G) by an axial surface 
without intrinsic twist, and still valid again for all the thin 
revolution surfaces we can cut out of that thick tube.  So the 

standard analysis – the one we implicitly use when reasoning ‘like 

physicists”, in particular employing infinitesimals [2].  
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formula remains valid when the changes of shape of (C) 
make R vary.  

The angular speed of N relative to (E) is 

𝜔𝑁(𝑡) =  𝜔 𝛾𝑁 (𝑡) , in which formula 𝛾𝑁 (𝑡) is the Lorentz 
factor associated with the translatory speed of the section 
crossing (P) at the (E)-instant 𝑡. 

 
6. Angular speed of M – The section M belongs to is a 

clock turning at the intrinsic angular speed 𝜔, thus,  
according to a well-known result: 

The angular speed of M relative to (E) is 𝜔𝑀(𝑡) =
𝜔

𝛾𝑀 (𝑡)
 

in which formula 𝛾𝑀(𝑡) is the Lorentz factor – in general 
different from 𝛾𝑁(𝑡) – associated with the translatory speed 
of the section to which M belongs.  

 

7. An integer which is both zero and non-zero. – 
Because 𝛾𝑁 (𝑡) and 𝛾𝑀(𝑡), except for isolated instants, are 
strictly higher than 1, 𝜔𝑁 (𝑡) > 𝜔𝑀(𝑡). As these functions 

are continuous, ∫ 𝜔𝑁(𝑡) 𝑑𝑡
𝑗

𝑖
> ∫ 𝜔𝑀(𝑡) 𝑑𝑡

𝑗

𝑖
. So 𝑛 > 𝑚. 

Moreover, M and N coincide at the instants 𝑖 and 𝑗. The 
difference between the numbers of their turns is thus an 
integer.  

𝑛 − 𝑚 is a positive integer. 

 
All other things remaining unchanged, let us now vary a 

parameter: the position of (P), which is still motionless in 
(E) throughout the experiment, and still perpendicular to 
(D). This position is now characterized by the abscise 𝑥 of 
the point at which (P) intersects (D). The set of numbers 𝑥 
such that (C) – whose movement is strictly unchanged – 
crosses (P) but not entirely, and so generates a forwards 
and backwards experiment, is an ℝ-interval [𝑥1, 𝑥2].  

The longest possible experiment, in which the almost 
entire cylinder temporarily crosses (P), except for its last 
section, is run when 𝑥 = 𝑥1. The shortest one, in which the 
point M reaches (P) only at a single instant, at the furthest 
point of its movement, is run when  𝑥 = 𝑥2. 

For a given 𝑥 in [𝑥1 ,𝑥2], the experiment characterized 
by 𝑥 gives the two numbers of turns 𝑚(𝑥) and 𝑛(𝑥). An 
infinitesimal variation of 𝑥 can only induce an infinitesimal 
variation of 𝑚(𝑥) and 𝑛(𝑥), thus 𝑛(𝑥) − 𝑚(𝑥) continuously 
depends on 𝑥 belonging to the interval  [𝑥1,𝑥2]. As 
moreover 𝑛(𝑥) − 𝑚(𝑥) is an integer, it is constant on that 
interval. This constant is the value obtained above, the 
positive integer 𝑛 − 𝑚. It is also the value obtained when 
𝑥 = 𝑥2. Since the experiment has then a duration of zero, 
𝑚(𝑥2) = 𝑛(𝑥2) = 0. Thus:  

       𝑛 − 𝑚 = 0         

 
8. Temporary conclusion. − So the experiment, when 

analysed in accordance with special relativity, leads to 
contradiction. Concerning mathematics, it is a catastrophe. 
The theory, because asserting the existence of an integer 
which is both zero and non-zero, allows, by multiplying it 
by a an arbitrary number, to state that all the real numbers 

are zero, and thus are equal – which does not prevent us 
from stating, at the same time, that they are different from 
zero: when a theory is contradictory, one can prove both 
anything and its opposite.  

This situation looks similar to that which Greek 
mathematics seems to have known when their prime belief 
that all numbers be rational suddenly collapsed with the 
discovery that the square root of 2 is irrational. Because if 
we suppose that √2 =

𝑝
𝑞⁄  , with 𝑝 and 𝑞 as mutually prime 

integers, we can show that 𝑞 is both even and odd, and thus 
that 0 = 1. As a result, the theory collapses, which is unfair 
as well as incomprehensible considering the great many 
proofs it has already shown of its value. It is precisely due 
to this great number of proofs that the theory could not be 
scrapped. It was too efficient, too powerful to be ruined by 
a simple question of parity, completely outside the range of 
the experiment because rational numbers are dense among 
real numbers. There was necessarily a solution, which the 
Greeks finally discovered: to admit that not all numbers are 
rational. Once they had admitted this unconceivable 
solution, everything returned to normal. The old theorems 
recovered their prime solidity, and geometry, which had 
been ruined for a time, was reinforced by that temporary 
disaster. Moreover, mathematics were from now on 
enriched by an essential and fruitful knowledge, the 
existence of irrational numbers.   

  Like Euclidian geometry at that time, special relativity 
has given enough evidence of its adequacy to reality to 
survive the catastrophe, even if it has to be modified in at 
least one point [4]. As the modification is necessarily minor, 
we can consider it as being only a ‘detail’. But, since this  
‘detail’ is necessarily related to some erroneous 
conception, as was the naïve belief that all real numbers are 
rational, it is more than a simple ‘detail’ and must teach us 
something of interest  
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