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An Approximation of the Riccati Equation
in Large-Scale Systems
with Application to Adaptive Optics

Paolo Massioni, Henri-Frangois Raynaud, Caroline Kalcdéan-Marc Conan

Abstract—The problem of finding linear optimal controllers  [33], [32] or the sparsity of the system matrices [8], [26],
and estimators, like linear quadratic regulators (LQRs) or [16], [15]. In this article we will focus on large-scale sgsts

Kalman filters, is solved by means of a matrix Riccati equatio.  \ynich do not have these features, but for which an abundance
A bottleneck of such an approach is that the numerical solves . . .
of low-noise measurements is available.

for this equation are computationally intensive for systens with . i T
a high number of states, making it difficult if not impossible This assumption is justified for one of the benchmark

to apply optimal (minimum-variance) control and/or estimation ~examples of large-scale systems, namely adaptive opti©3 (A
methods to large-scale systems. A specific example is adagti systems employed on ground-based telescopes. The resoluti
optics (AO) systems for the next generation of extremely l@e ot thage telescopes is significantly limited by the presence
telescopes, for which the number of states to be estimated ky f th t h th front of the liaht collected
Kalman filter is in the order of the tens of thousands, making he 0 e a_mOSp er_e, a§ _e waveiront o e light co ec_ e
numerical solution of the Riccati equations problematic. h this at the primary mirror is distorted due to turbulence, which
article, we show that for a special class of state-space sgats, causes blur in the images. Adaptive optics [35] is a tectaiqu
the discrete-time algebraic Riccati equation can be simpfied with  that allows the real-time correction of the turbulence afe
an approximation which leads to a closed-form solution, whih on the image formation, by means of a deformable mirror
can be computed more quickly and used as an alternative to DM ting f t,h front distorti | i
standard numerical solvers. The class of systems for whichhis (DM) compensating for ] € waveiront distortions. n preet
approximation holds includes a class of models widely empjed the DMs are often considered to have no dynamics, so the
in AO, namely autoregressive models of order 1 or 2 (AR1, key point in the efficient control of an AO system is the
AR2). We verify a posteriori the accuracy and applicability of  minimum variance estimation of the phase distortion from th
the proposed solution. measurements coming from a wavefront sensor (WFS). For
the turbulence, a dynamic model can be assumed in order
) _ _ to approximate at best the physics of the problem; a common
ﬁlt(';r‘i‘rj]ex I:r”g?; gliagt"s’tee%ps“c;}Ci‘;tt?r:gaif‘%'xe models, Kalman ¢pgice nowadays is given by autoregressive (AR) models [30]
g.'arg y ' q ' [32]. Under the hypothesis of an underlying dynamic model,
the asymptotically optimal solution of the estimation gesb
. INTRODUCTION on the infinite horizon is given by the steady-state Kalman

. . S filter [21].
Recent technological developments in miniaturization an o . _
. : . .- The use of the Kalman filter implies solving the associated
microsystems have made it possible to construct systents wit S . . .
; screte algebraic Riccati equation (DARE) [20], which can
a huge number of actuators and sensors. For this reason, the .~ - : !
be quite time-consuming for the next generation of extrgmel

system and control community has started devoting signitficefarge telescopes, even for very simple autoregressive ksode

efforts on the topic of the so-called large-scale systerig. [2 Frgr example, the envisioned European extremely large tele-

These systems have a high dlmens,lonahty_ for which stam_dascOpe (E-ELT) [18] will feature #9.3 m primary mirror and
control techniques might be too computationally demandin

1o slow or 5|mply unfeasible. T_yp|_cally, the SFUdy of la.rgeaddition to this, the changing atmospheric conditions rayri
scale system relies on the exploitation of certain properf

the system itself in order to simplify the analysis / synthesa long-exposure will require a regular updating of the esti

) . . H1ator, at least once every minute, which makes it a critical
problem: the features that can be used to this effect arereit . T
a special structure, symmetry or invariance of the systdm [éeqwrement o h"’?"e a _fast metho‘?' for _computlng it. Although
' " “methods for solving high dimensionality DAREs have been
The work of the first author has been partially supported byNbtherlands recently developed [6]’_ [7]' they a_re not appl!cablt_a in this
Organization for Scientific Research (NWO) and the Mariei€@OFUND case as they are applicable onlyafl the matrices in the

Action through a Rubicon grant. This work has also been suppdy the equation are sparse; this is not the case in AO applications,

French National Research Agency (ANR) through the projedABERSOA . . . .
ANR-09-BLAN-0162-01. gency (ANR) g pro) due to the non-sparsity of the spatial correlation of atrhesig

P. Massioni is with Laboratoire Ampére, UMR CNRS 5005, INSAturbulence.
de lLyon, U”‘YGVSiFé@de Ly?”» 69?21 Villeurbanne  CEDEX, @@ |n this article, we propose a new and simple approach
paol 0. massi oni nsa-tyon.t1r . . . . . .

H-F. Raynaud and C. Kulcsar are with Laboratoire CharleWhiCh makes it possible to skip the numerical solution of
Fabry - CNRS, Institut d'Optique Graduate School, RD 1281271 the Riccati equation by using an approximated closed-form
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Sctuators and sensors in the range of the tens of thousands. |



optimization and control [1], [10], [23]. The linearizatias for its solution. A Riccati equation has in general multiple

made possible by a set of assumptions which are typicaiglutions, one of which is positive definite under a certain

satisfied for AO systems, namely an abundance of low-noiset of conditions [20]. The solution we are interested in for

measurement channels. We will apply the technique to a félae Kalman filtering is the positive definite one, so from now

test cases, and we will verifg posteriorithe accuracy of the on we will consider this solution only when we wrife and

approximations in terms of performance. The results of thisatrices deriving from it.

article extend the ones in [24], where we considered only a

special case featuring the simplest state-space modedahbt

be applied to AO. ) o _
The article is organized as follows. Section Il describes th [N order to obtain the simplified solution, we assume the

approximation of the Riccati equation and the assumptiof@llowing hypotheses.

under which such an approximation is valid. Section Il 1) (A,C) is detectable(A,E},/Q) is controllable,>, > 0

introduces adaptive optics and its dynamic models, and Sec- and,, > 0.

tion IV contains an evaluation of performance of the propose 2) A andC can be partitioned as:

B. Hypotheses

approximation method for representative turbulence andme A, A
models. Finally, Section V presents some conclusions. A= { Al Au ] ,C=[C 0] (5)
21 2
Il. APPROXIMATE SOLUTION TO THE MINIMUM-VARIANCE with A, € Rm>™ andC; € R™*", where(C is full
ESTIMATION PROBLEM column rank (i.eC; has rankny, which implies thatC
A. Discrete-time dynamical systems is a “tall” matrix, with r > n1).

3) ¥, = 023, whereo? is a scalar and> > 0; if the
measurement noise for each channel is at the same level
of intensity and there is no cross-correlation between

z(k +1) = Az (k) + Bu(k) + v(k) 1 channels, theit = 1.

(k) = Ca(k) + w(k) @ . . SUU—

Yy ’ The first hypothesis implies that the Riccati equation has a
wherez(k) € R" is the state vectom (k) € R™ is the input unique strictly positive definite solutiof [20]. The fact that
vector, y(k) € R” is the output vector and: € Z is the C4 is full column rank means that the first part of the state
discrete-time index. The vectos$k) € R andw(k) € R” are vector (the one corresponding to the matdix) can be directly
respectively the process and measurement noises, andrthey@éconstructed with the pseudoinverse(f. The hypotheses
assumed to be uncorrelated zero-mean Gaussian white noigas also account for the case of = n, for which As, A2
with covariance matrice§, andX,,. The estimation DARE and A,; degenerate to zero-dimension matrices.
associated with such a system is the following:

P=APAT +%, — APCT (CPCT +%,) ' cPA”T, (2) C- Linearization of the DARE
where P € R™" is the unknown. The positive definite If\_/ve assume that the variance of the measureme_nt noise is
tending to zero, then we can write a Taylor expansion of the

solution P> of the Riccai equation for the standard stead inverse terms in the Riccati equation, based on the assompti

state Kalman filter is the asymptotic value of the covariancfﬁatag 32 is small compared with the solutidh. This, together

matrix of the state estimation errar(k + 1|k) — a(k + 1), with a few additional hypotheses on the system, will evelijtua

lead to a simplified formula for the solution. Nevertheldhs,

Riccati equation does not have a solution &gy = 0; in fact

we will be looking for an asymptotic or limit value that the

solution assumes wherf, — 0. We then remind thai(z) for

which is equivalent to z — c indicates a quantity for whichim,_,. "(j) = 0. With
K- A(Pfl n CTZQIC)*ICTE,;I @) this notation, the following well-known results hold.

Let us consider a stochastic discrete-time dynamical syste
in standard state-space form:

where(k + 1|k) is the estimate of the statgk + 1) based
on the information at timé:. The gain of the Kalman filter is
then

K =APCT(CPCT +%,)7! ©)

Lemma 1 (Matrix inversion lemma [19]) Consider four

thanks to a well-known matrix identity [28]. @atricesX, Y, U and V. Then the following equality holds:

The solution forP can be obtained by means of standar
solvers, for example employing Schur-type algorithms [ZLX + va)—l —xl_x"1yy (yfl + VXflU)*l vXx—!
[22]. These methods however can be very time consuming (6)

(or even unfeasible) for high dimensional systems, as thefovided that the matrix dimensions are compatible and that
computational complexity grows with the third power of théhe indicated matrix inverses exist.

size of the matrices involved. The fast iterative altemti ) ) ) )
directions implicit (ADI) methods recently developed [§]] LémMma 2. Let X be an invertible matrixY” a square matrix
are alas not applicable for AO systems%s s in general a of the same dimensions anda scalar. Then forz — 0 it

full matrix with no constraints on its rank. holds that:

For this reason, we propose an approximation of the Riccati (X + 2Y)™! = X! - X" lyx-!
equation that will yield a simplified closed-form expressio +22X 7Y XY XL 4 0(2?)

()



Proof: the expressions can be derived by noticing thathe hypotheses of these special cases lead to the following
(X +2Y)" ' = (I +2X"1Y)"1X~! and then applying the theorems.
matrix identity (I + A)™' = I — A+ A% — A3 + ... =
Yoo o(—A)" [38], which holds true if the spectral radius of
A is smaller thanl (so it does forz — 0).

Theorem 4. Consider (9) fora2 — 0, under the hypotheses
of Section II-B. IfA;5 = 0 and X, is invertible, then

_ 2 T —1 —1 AT 2
We then introduce a partition fo and %, as well, P =%, 40,4 (C{ X7 °C) A +o(02) (13)

according to the one defined in (5): Piy = Sy1o402 A1 (CTS 10 ) (S5 8012 AT+ AT ) 40(02).
P = PT _ P1 P12 D ET o 21)1 2'U12 (14)
= = Plj; P2 ) v T v 23)"12 ZUQ

. . . - , ) (8)  Theorem 5. Consider (9) fora?2, — 0, under the hypotheses
where P, is strictly positive definite (and so invertible) due to ¢ gaction 11-B. IfAy = 0, $,5 = 0 and $y1 = 0, then

the fact thatP is strictly positive definite. Notice that with the

hypotheses of the previous sectighPC? = C,P,CT. Then P = Y1 + 0, Ai(C{Z710) 1 AT (15)
(2) can be rewritten as: +05,A12 A (CTE71C1) 1 A AT, + o(07,)
P=APAT + 3%, Py =02 A (CTS7101) AL + o(02). (16)
P,
_A[P” CT (C\PCT+02%)71CL [P Prp |AT. Proof: both theorems can be proven by applying Lemma 3
12 (9) to (13). [ ]

We can then derive the following lemma, which concerns Thege theorems can be used to derive a very simple approx-
the term subject to matrix inversion in (9). imation of P, and Py, by taking the first-order terms in2;
Lemma 3. Consider (9), under the hypotheses of Section I1-BOth cases are of practical interest for our applicationit as
for o2 — 0. Then will be shown in Section Ill. Notice that the main result of

Y . e [24] is a special case of Theorem 4, in the case wheis a
B Cq 2(01_11310% + ‘{ME) ) Cilz 5 (10) scalar times the identity matrix{(= ar1); Theorem 5 is not
=P —o, Py (CT1E7°C1) 7 Py +o(oy,). present in [24].
Proof: first apply the matrix inversion lemma (Lemma 1)
to (C1PCT + 02 %)~t. This yields D. Kalman filter gain with first-order approximation
cr (C1P101T+ 012“2)*101 =o,° (cngflcl If we approximate the matrix’ with its first-order expan-

—crs—1ey (P2 + Cng—lcl)—lcsz—lcl). 1) sion in o2, then in both cases (Theorem 4 and Theorem 5)
_ o _ _ _ the approximate Kalman gain is given by:
Notice thatC{¥~1C is invertible, due toX being strictly

positive definite and’; full column rank. Then use Lemma 2, ¢, — A1Pry+ A12P1;2,1 CT (C1PLACT +02%)
for which: A21Pry+ APy an
(P o2 +CTe—1o) ! = whereP; ; and P, ; are the first-order approximations &%

= (CTs=10y) ™t — o2 (CFs~1Cy) Py HOTS71C)™  and Py, defined in (13) and (14) (or (15) and (16) according
+ot(CTs—te)~tpyH(CFs=1ey) =t Pr (O S~1C1)™!  to the case). Notice thak’; does not depend of%, which
+o(ol). therefore does not need to be computed.

(12)  using (4), K, can be equivalently rewritten as
Replacing (12) into (11) and simplifying yields the statatne S . S
of the lemma (remember thato? )02 = 0(c2)). LI oy (02 Pl [ Cix—Cy 0 D [ Cry
w 0 0 0 '
This lemma shows that it is possible to linearize a part 18)

of the Riccati equation under the hypotheses of Section Il-Bhjs formulation involves the inversion of a matrix of sizex
Nevertheless, developing the Riccati equation (9) with la fy, whereas (17) requires the inversion(dflPMClT + 012“2),
matrix A leads to a block expression of the equation whicjhich is » x . So this second formulation is in general
does not have a simple solution. However, we can pinpoint tVM@mputationa”y Cheaper Considering our hypothesig« of
special cases of practical interest for which the linedisra 5, Moreover, notice thatP, will be simplified from the
of Lemma 3 yields a very simple expression forwhich can  computations even if we use (18), as we know from (17) that
be used for approximating the solution of the equation.  the result does not depend on it.
1) A5 = 0; this implies that the second block of the state This first-order Kalman filter gaik; can be used to imple-
is non observable, making (5) coincide precisely witment an observer on the system that approximates the optimal
the canonical observability decomposition. Kalman filter. There is no guarantee that the estimator will
2) A, =0, X2 = 0 andX,12 = 0; this implies that the be stable, but the stability can be easily verifeegosteriori
second block of the state is just a delayed/scaled versionpractice, the approximation is applicable whef is small
of the first block, yielding a vector-valued second-ordezompared with the singular values Bf,, which represent the
system. intensity of the process noise.



I1l. ADAPTIVE OPTICS 7o
- /A5 0005): ba B
AO systems compensate for the phase distortion of the light : ;... 0
at the telescope pupil using a deformable mirror (Figure ). 0> 222000000 I s
The distortion is caused by the passage of light throughi - ::iii7i0! :
the atmosphere, which turns the once flat incoming opticaf - - <+ - <=2 1 .
wavefront into a non-flat smooth surface. USSP Pc d

Fig. 2. Sensor geometry. The black dots represent the phaggliag points,
and the gray areas represent the lenslets or subapertutie sénsor.

As a consequence, the output equation for the whole system
flat wavefront can be written as

A — bul y(k) = Go(k) +w(k), (20)
/%@—/ turbulence

wherey(k) is the measurement outpu®; is the matrix that

—d "~~~ distorted wavefront expresses the gradient formula in (19) for all the points in
v v the pupil andw(k) is a white measurement noisé, can be
derived directly from (19). Each sensor channel is affected
by a noise that can be assumed to have the same statistical
properties and to be uncorrelated from the other channels, s

N Y » that the covariance ofo(k) is o21. The output matrix is a
corrected gradient operator, so there are two modes of the phase that
’ wavefront yield a zero output all the timgs, being thus unobservable.
\ > - These are the piston mode, with constant phase on all the
‘ / pupil (for which ¢, = ¢, = ¢. = ¢q) and the waffle mode
g (for which ¢, = —¢, = —¢. = ¢q in each subaperture). The
Yy - matrix GG is therefore not full column rank; it is in general
ﬂ“ . ” 1 H
control wavefront tall’, because we hav<_a appr_oxmately twc_) gradlent measure
system sensor per each phase sampling point=£ 2n), but it is not full rank

due to the presence of the invisible modes (piston and waffle)
Fig. 1. Scheme of an AO system.
B. Turbulence models

The complete AO system model requires also a model
of atmospheric turbulence. A well-established option is Vo
A. Wavefront sensing Karman’s model [35], from which it is possible to compute t

In classical AO systems, the phase distortion is assume relation of the phase distortion in two points of the lage

to be caused by a single equivalent turbulent layer locat® unction of their distance and a couple of parameters dkpen

at the ground level, and such a distortion is measured wiftg ©n the weather conditions, namely the Fried paramter
a single WFS monitoring the light from a single guide sta nd t.he outer spaléo [11]. The Ened paramgter 'S & length
(either natural or laser). We consider a Shack-Hartmann W tis r°“9.“'¥ mversely propor.t|onal (o the Intensity bkt
[31], consisting of an array of small lenses (or lensletsjcivh turt_)ulence, it is the maximum size Of. a telescope primary for
partitions the light beam according to a regular grid. Eaé’Mh'Ch the turbulence effects are negligible, so that thegesa

lenslet focalises its beam on a photon sensor; the posiﬁona(se diffraction-limited. The oqte_r scale is the maximunesit
PP]e turbulent structures. Defining @gk) the column vector

the local image of the guide star depends on the local gradié .

of the wavefront. For this reason, the WFSs cannot meas&%‘ta.mmg the.vglues of the_turbulent phase on a Iaygr ata

the wavefront directly, but only its gradient in a number 0tilme instantk, it is then possible to construct the covariance
: SR : o of the turbulent phase vectat, = E[¢(k)o(k)"].

points. We employ here a “zonal basis” for the turbulent pha

6(k), which means that we consider it as sampled on a regularWhile the determination of the spatial correlations of the

square grid. For the Shack-Hartmann sensors, the outmﬂlsi%rbmence is a well-established field, the choice of a dyinam

is the gradient of the phase sampled at the center of theesgju qdel that describes the temporal evolution of the pha_lsn_él!s N
object of research (see for example the recent contribution

delimited by four sample points of the phase (Figure 2). if fo[ . :
5] and the survey on AO control-oriented models in [21]).
Zxamzls ;?1/2 ;?! ;ir;?]tpgtatsheaf L;?r?t fg:r: Ezrré%;rﬁké’sfa ggd The use of Kalman filtering for the estimation of the turbtlen
@ wavefront requires assuming an underlying linear model for
. 11 (dp + ¢a) — (¢ + &) (19) its dynamics, whose accuracy in portraying the turbulesce i
2| (Pat Pb) — (P +a) |- then a key element for the efficiency of AO control. A very



popular model choice, both for simplicity and effectivesi@s Notice that both (24) and (25) involve only sparse matrices,

given by discrete-time autoregressive models, either déior which can considerably boost the speed of the computations.

1 (AR1) [30], [32] or order2 (AR2) [13]. 2) AR2 turbulence modelThe AR2 turbulence model takes
1) AR1 turbulence modelThe AR1 turbulence model is into account2 past values of the state:

given by the expression 6k +1) = Ar1o(k) + Arao(k — 1) + v1 (k). (26)

¢k +1) = Arg(k) + v(k), (21) The matricesdgr; and Ag, are again chosen as diagonal, with

whereuv(k) is a white process noise. The matrbg, is chosen _the same diag_onal entry for each layer. This can be trauislate
as diagonal. If we assume a single turbulence layler,has into the following state-space model:

the same autoregression coefficieft (with |ag| < 1) in all ok +1) Ari Ao (k) I

its diagonal entries, selg = arl: the coefficient has to be { (k) } = { I 0 } [ ok —1) ] + { 0 } v1 (k)
chosen equal for all the phase points as the turbulence is a k

spatially homogeneous phenomenon. If we consider muItipIé(’f) = [ G 0 } ok —1) + w(k).

turbulence layers located at different altitudes, thensit i (27)

possible to assign a different coefficient for each layelicvh An empirical formula for obtaining the coefficients has been
can be us_ed to take into account d_ifferent dynamics_ (efgroposed in [29]. The covariance matii, consistent with
different wind speeds) at different altitudes. The covar@a ¥, is slightly more complicated to compute compared with
matrix ¥, of the process noise must be consistent with the AR1 case. It can be obtained from the Lyapunov equation:
chosenX . Computing the covariance of both sides of (21),
we simplgb/ obtairllo ’ ) o Be| _ [Ar Are] [Ze Ze] [Ap, T
v5 T I 0 ||Z 3] AL, O
Y, =N — ARYpAL. (22) N [ Yo
0 0}’
We can discard the invisible modes from the zonal basis (28)
by employing an invertible state transformatiéhsuch as \here Y4 = Elp(k)p(k)T] = E[p(k — 1)¢(k — 1)7] and

[0 dpu]” = S¢. where ¢y, is the vector containing the s, — (4 (k)¢(k—1)7]. In the special case oz and A s
piston and waffle modes, anglis a vector of modes that arediagonal, with entries g, ;, ar.,; respectively in the diagonal,
orthogonal to the invisible ones; then the systemAdar= ar! e have that the entries in positigh j) of X, are simply:
can be turned into the form of Theorem 4,@$~! = [C 0]

and SAS~ = aglI. This allows the use of Theorem 4 to (Sg)yy = ks T OR2IORL) (5 (29)
approximate the solution of the Riccati equation by takimg t 1 —apsiara,;
first-order truncation. where(X,),; is the entry in positior{i, j) of X4. In the even

An additional simplification can be employed in the ARLimpler case ofAr; = agril and Ars = agrol, we have
case; according to [14], [12], the inverse &f; can be X, =agri(l—agr2) 'S.
approximated by the fourth-order derivative operator, e The system in (27) fits into the hypotheses of Theorem 5 if
square of the Laplacian operatcii‘;1 ~ aV*, (see [14] for the invisible modes (piston and waffle) are extracted (by the
indications on how to compute the constant This implies, same state transformatiéf) and discarded (this leads from the
through (22), that, = o/(1—a})V* = yV4. Itis important non-full rankG to a full-column rankC;). As we have already
to remark thatV* is sparse. By using Lemma 2, we carstated, the piston does not influence the images and the waffle
then write the first-order approximation of the inversefgf is of very low power, so this approximation is acceptabldsTh
(according to Theorem 4) as allows the use of the formulas of Theorem 5 for getting a first-

order approximation of the Riccati equation.
Pl gVt — 022V A (CTE100) ATV + o(02). PP d

(23)
We then neglect the piston and waffle terms, which does )
not degrade significantly the result, as the piston does riot Performance evaluation method
influence the quality of the images and the waffle is of very low In this section, we will evaluate the effectiveness of the-pr
power according to Von Karman’s model. Neglecting pistorposed method on two test cases by estimating the theoretical
and waffle is the same as takigg = C, which is sparse, and loss of performance due to the use of the proposed observer
P, = P. If we truncate the expression to the zero-order, wigstead of the standard Kalman filter. As the piston compbnen

IV. RESULTS

can arrive at the following for the inverse &f: of the phase does not influence the image quality, we have to
. 4 remove the piston contribution from the covariance matnix i
By =i+l (24)  order to have a meaningful evaluation of performance. We

in which the termsI, with § > 0 an arbitrary small number, definell, as the projection matrix that removes the piston

is a regularisation term that needs to be added in order@gntribution, andC, as the output matrix which returns the

have the right hand side of (24) invertible. Then from (18) thPhasep from the stater of the system, so that(k) = Cyz (k)
zero-order Kalman gain is given by (Cy = I for ARL models and’;, = [I 0] for AR2).

. When using the exact Kalman filteE is the variance of
Ko=ar (CTS'C+olPy") CTE L (25) the state estimation error. So the mean variance of the phase



estimation error (without piston) is simply the averageted t o Standard Kalman filter, computed using Matlab@ar e
entries in the diagonal df[pC(bPC(ng: function. The cost oflar e is approximatelyrsn? float-
ing point operations (FLOPS) [22], so we can estimate

Oorr, i = mean(diag(IL,Cy PCILT)). (30) that the total cost of computing the Kalman gain, includ-
This quantity determines the quality of the image. If a diffet ing (3), is 81n*> FLOPS. If we consider that the block
observer is used, like the one featuring the g&inthat can CT¥~!C can be pre-computed only once (it depends
be obtained with the proposed method, then the covariance of Only on the geometry and technology of the telescope
the state estimation errdr(k + 1|k) — z(k + 1) will assume and not on the atmospheric conditions), the number of
a value that we calPg, ; under the hypotheses of using the  total FLOPS reduces to9n°.
turbulence temporal models of Section IIl, we have e Minimum mean square estimator (MMSE), the

- minimume-variance static estimator [4], [39], according to
(A= Ki1C) Py, (A = K1C)" = Pr (31) which the estimate of the phase is

+02 KiK{ + (1 —a})%, = 0.
2 1y (" Ty—1 2
The expected covariance of the phase estimation error fis the Oanasp(klk—1)=(CT X7 Cto

w

2,7 ICTE y(k-1).

simply: (34)
' The cost of computing the estimator can be evaluated to
o2k, = mean(diag(IL,Cy P, C2TIL)). (32) be6n® FLOPS, or onlyin® if CT£~1C is pre-computed

. L once and for all.
In an AO system, the residual phase (the one determining | rjrs¢ order Kalman filter , computed with the formulas

the image quality) is given by the phase of the light of Theorem 4 and (18). The total computational cost
entering the p_up|l plus a correction tergn generated by the for obtaining the Kalman gairk; is 8.33n3 FLOPS.
deformable mirror: If CT'v-1Cy and (CT2~1Cy)~! are pre-computed, the

oe(k) = (k) + pe(k). (33) total cost is only4n?, rpughly the same as the MMSE.

_ . o Zero-order Kalman filter, computed with (24) and

Under the hypothesis of being able to fully compensate for (25) which exploits the sparse approximation of the
the estimateAd Va|ueS Of the phase W|th the defOI’mable mirrOI’ inverse of the turbulence variance matrix. In princip|e,
(9c(k) = —¢(k|k — 1)), the variance of the residual phase  the computational cost of this estimator is of the order of
is the variance of the estimation error. The performance of 2 a5 all the matrices involved in the computations are
the tested algorithm is then evaluated in terms of additiona  gparse.

residual rms (root mean square) error with respect to thetexa , Distributed Kalman filter , another approximate method

Kalman filter, which is the theoretical optimal. based on a distributed control technique [25], [17], which
approximates the telescope aperture with an infinite-sized
B. First test: AR1 turbulence model one. The Kalman filter takes thus the form of a spatial

We first consider a classical AO configuration with AR1 ~ convolution:

models stemming from standard classical AO situations With (¢, ., (k+1|k) = a1, o, (k|k—1)

typical atmospheric profiles. We have considered telescope +z 2

diameters fron® to 42 m (the size of the first E-ELT proposed 30 ke —al ey Yoy ay(K) — Gt oy (k]R—1))
design), all of them with a phase sampling distanc®.6fm. ri=—zmh=—2 .

We have chosen a Fried parametge 0.53 m (at the imaging Uar 20 (K|k—1) = Fyy 2, (Pp(k|k—1))

wavelength), an outer scaley = 25 m and an autoregression (35)

parameterar = 0.99; the WFS has a measurement noise wherez, x5 are the two ortogonal spatial coordinates
standard deviation ofr, = 45 nm rms. For the chosen of the telescope aperture’s grid, = a1/ and Fy, .,
atmospheric condition, Von Karman's model predicts that is basically the gradient function which generates the
the standard deviation of the turbulence intensity is rapgh ~ WFS output. This method has the advantage of being of
1900 nm rms, whereas the variance of the measurement signals ordern®: the cost of computing the convolution kernel
at each WFS lenslet is arount$0 nm rms. This confirms kzy 2t 2,—ay IS the same for any size, being based on
the assumption of a relatively low measurement noise. The the infinite approximation. The only size-dependent cost
controller runs at250 Hz, and there is a one-step delay IS the one of reassembling the kernel in order to build the
between the acquisition of the measurement and their use for Kalman gain matrix.
computations. The computational times given above are approximated to the

The standard deviation of the measurement noise, as waljher order, and they have to be considered as a “worst
asry and Ly, have been taken from the specifications of thease”, as some special matrix structures could help reduce
CANARY project [9], [37], [36], [34]; this project consista a them. Parallelization of the solution algorithms mightoakse
small-scale demonstrator for the E-ELT, so the intensitthef used to speed up the computations. As a last remark, we point
measurement noise that we have assumed can be considetgdhat the reduction in the computational complexity does
as representative of current technology. not ease the problem of storing full, high dimension masjce

In the tests, we compare performance and computatiomdlich might be another bottleneck in dealing with largelsca
times of the following methods. systems.



The first set of results, in Figure 3, shows the computationato higher orders, which would feature a growing number
times that are required to compute the first- and zero-ord&rmatrix terms, would significantly reduce the computagion
approximation of the Kalman filter (with Theorem 4) comtime advantages.
pared with other methods, on a quad-core 3.6 GHz computerrhe zero-order method, as expected, is slightly faster to
(running Matlab). The experimental computational times agompute than the first-order one, at the cost of a little extra

the ones that are necessary to compute the Kalman gain, a@éitional error, but still it outperforms the MMSE.
they exploit, when possible, the possibility of pre-conipgt

some parts. : :

It is possible to verify that the exact Kalman filter is —9— MMSE
the slowest to compute. The first-order approximation has 5 Protorder 7
computational cost that is close to the one of the MMSE. Tt —+— Distributed KF

distributed method has an approximately constant compu
tional complexity which becomes competitive for extremel
large diameters. Remember that the size of the state vecto
proportional to the square of the diameter (for= 42 m,
the state has§540 entries). We can also remark that the timi
needed for computing the first-order approximation is mo
than two orders of magnitude smaller with respect to tt
exact Kalman filter, whereas from the FLOPs computatiol
above we could have expected a difference of one orc
of magnitude; this is probably due to Matlalkar e being
slower than expected.
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10" § & First-order KF E Fig. 4. Additional residual error (with respect to the exieiman filter),
—%— Zero-order KF ] for different approximation methods, fer,, = 45 nm rms, classical AO with
10° i —+— Distributed KF 1 an AR1 model (test #1).
10° | 3
Z 10t L ] We consider also the case of a higher measurement noise
£ level, namelyo,, = 90 nm rms which can considered as
g€ 10° | a worst-case scenario for an ELT ([34]). From the results,
g ] (Figure 5) we can see that the first- and zero-order filteraisho
g 107 a slight performance degradation, as the assumption of a low
° ] level of noise becomes less applicable.
10} E
107 3 —6— MMSE
—8&— First-order KF
107k 4 —%— Zero-order KF
E —#— Distributed KF
107 ; i i i i ; ; ;
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Fig. 3. Computational times for the different methods, onuadjcore 3.6 P00000000000000000090BEBEBEEIEEELE580

GHz computer running Matlab (test #1).

For what concerns performance, Figure 4 shows the &
ditional residual error for the different approximate nuzth,
which achieve stability in all cases. In order to have an iofea
the global error budget, we can say that the total residuaft er ol , , ]
due to the turbulence goes frotd nm rms (forD = 2 m) to ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

235 nm rms (forD = 42 m) for the exact Kalman filter case. 0 5 0 15 20 25 30 3% 40 45
Diameter [m]

We can see that, after the exact KF, the best performance ..

glven t_)y the f_wst-order approximation proposed in thls ,pap%ig. 5. Additional residual error (with respect to the exieiman filter),

in particular, it performs better than the very fast distté®l o gifferent approximation methods, fer,, = 90 nm rms, classical AO with

technique. This also justifies the choice of taking a firstn AR1 model (test #1).

order development without going further into higher orders

performance is already quite good for order one, and going

additional residual error [nm rms]




C. Second test: AR2 turbulence model applied it to the adaptive optics of astronomical imaging

We have also evaluated the loss of performance in the c&¥§€ms, where a Kalman filter can be used for reconstruct-
of an AR2 model, withAp; = 1.987 and Agy, = —0.997, N9 and predicting wavefront aberrations. We can foresee

and the same atmospheric parameteysand Lo as in th’e application in_o'Fher real-time imaging systems which are
previous case, and for, = 45 nm rms. In Figure 6, the gqverned by S|m|Iar_ models gnd similar output eqqathng;(e.
loss of performance of the MMSE is compared with the orf@ICroscopy or medical imaging). For the AO application, we
of the first-order approximation (with Theorem 5). We cafj@ve verifiedin arealistic test case that the proposeddiigs
see that in the AR2 case, the first-order approximation #Proximated solution is the most accurate compared with
verified to be stable again and with acceptable performanff¢ distributed approximation method, allowing subsgnti
whereas the MMSE performs very poorly as it neglects tff@Vings in computational times with respect to a standard
more complex dynamics. We have to stress that the MMss‘gI_ve.r. The gblht){ of quickly recomputing the Kglman filter
is heavily penalized here due to the significant differen&&in is Of critical importance in AO systems, as it allows the
between the implicit absence of dynamics that it assumes dfRfiate of the control system in real-time in order to take int
the AR2 model. In general the MMSE will have acceptab@ccount changes in the atmospheric conditions (eg. change o
performance in real on-sky applications [9]; nevertheléss wind velocny,_ temperature, etc.). Th(_a proposed n”_ne_thod can
has been noted through simulation that AR2 models can h4)€" be considered as a good candidate for obtaining a fast
better performance even when the turbulence is assumed g accurate solution of large-scale AO problems, allowing
the superimposition of translating frozen layers (the ated MOre trade-off choices between performance and speed of
Taylor's hypothesis), which models the reality better [THje  COMPutations in AO controller design. _

formulas of Theorem 5 (fom; = n/2), taking advantage Furth(_ar research might look mtolthe dugl optimal contn_olle
of precomputed blocks, require approximatein? ~ 1.2n3 synthesis problem, for systems with a high number. of input
FLOPs, compared with th&5n® FLOPs required by the channels anq a Iovx{ penalty on the control effort. I_nmdéyltal
Riccati solver. The distributed filter and the zero-ordeprag- S case might still be useful in AO systems: in fact the
imation have not been evaluated because they are not gire8ftiVeé MIrrors are systems with a number of input channels
applicable to the AR2 case, and we have not reached {feth® same order as the number of output channels of a
maximum diameter because the computations of the stand¥¥fS; moreover the control effort is not present in the AO
Kalman gain are now too intensive, compared with the firspst function, which is the variance of the residual phase.

case, as the order reachei)80 for 42 m.
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