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An Approximation of the Riccati Equation
in Large-Scale Systems

with Application to Adaptive Optics
Paolo Massioni, Henri-François Raynaud, Caroline Kulcs´ar, Jean-Marc Conan

Abstract—The problem of finding linear optimal controllers
and estimators, like linear quadratic regulators (LQRs) or
Kalman filters, is solved by means of a matrix Riccati equation.
A bottleneck of such an approach is that the numerical solvers
for this equation are computationally intensive for systems with
a high number of states, making it difficult if not impossible
to apply optimal (minimum-variance) control and/or estimation
methods to large-scale systems. A specific example is adaptive
optics (AO) systems for the next generation of extremely large
telescopes, for which the number of states to be estimated bya
Kalman filter is in the order of the tens of thousands, making the
numerical solution of the Riccati equations problematic. In this
article, we show that for a special class of state-space systems,
the discrete-time algebraic Riccati equation can be simplified with
an approximation which leads to a closed-form solution, which
can be computed more quickly and used as an alternative to
standard numerical solvers. The class of systems for which this
approximation holds includes a class of models widely employed
in AO, namely autoregressive models of order 1 or 2 (AR1,
AR2). We verify a posteriori the accuracy and applicability of
the proposed solution.

Index Terms—Adaptive optics, autoregressive models, Kalman
filtering, large-scale systems, Riccati equation.

I. I NTRODUCTION

Recent technological developments in miniaturization and
microsystems have made it possible to construct systems with
a huge number of actuators and sensors. For this reason, the
system and control community has started devoting significant
efforts on the topic of the so-called large-scale systems [27].
These systems have a high dimensionality for which standard
control techniques might be too computationally demanding,
too slow or simply unfeasible. Typically, the study of large-
scale system relies on the exploitation of certain properties of
the system itself in order to simplify the analysis / synthesis
problem: the features that can be used to this effect are either
a special structure, symmetry or invariance of the system [3],
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[33], [32] or the sparsity of the system matrices [8], [26],
[16], [15]. In this article we will focus on large-scale systems
which do not have these features, but for which an abundance
of low-noise measurements is available.

This assumption is justified for one of the benchmark
examples of large-scale systems, namely adaptive optics (AO)
systems employed on ground-based telescopes. The resolution
of these telescopes is significantly limited by the presence
of the atmosphere, as the wavefront of the light collected
at the primary mirror is distorted due to turbulence, which
causes blur in the images. Adaptive optics [35] is a technique
that allows the real-time correction of the turbulence effects
on the image formation, by means of a deformable mirror
(DM) compensating for the wavefront distortions. In practice
the DMs are often considered to have no dynamics, so the
key point in the efficient control of an AO system is the
minimum variance estimation of the phase distortion from the
measurements coming from a wavefront sensor (WFS). For
the turbulence, a dynamic model can be assumed in order
to approximate at best the physics of the problem; a common
choice nowadays is given by autoregressive (AR) models [30],
[32]. Under the hypothesis of an underlying dynamic model,
the asymptotically optimal solution of the estimation problem
on the infinite horizon is given by the steady-state Kalman
filter [21].

The use of the Kalman filter implies solving the associated
discrete algebraic Riccati equation (DARE) [20], which can
be quite time-consuming for the next generation of extremely
large telescopes, even for very simple autoregressive models.
For example, the envisioned European extremely large tele-
scope (E-ELT) [18] will feature a39.3 m primary mirror and
actuators and sensors in the range of the tens of thousands. In
addition to this, the changing atmospheric conditions during
a long-exposure will require a regular updating of the esti-
mator, at least once every minute, which makes it a critical
requirement to have a fast method for computing it. Although
methods for solving high dimensionality DAREs have been
recently developed [6], [7], they are not applicable in this
case as they are applicable only ifall the matrices in the
equation are sparse; this is not the case in AO applications,
due to the non-sparsity of the spatial correlation of atmospheric
turbulence.

In this article, we propose a new and simple approach
which makes it possible to skip the numerical solution of
the Riccati equation by using an approximated closed-form
solution, which allows significant savings in terms of compu-
tational time. The result is obtained with a Taylor expansion,
a tool of perturbation analysis, which has a rich history in
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optimization and control [1], [10], [23]. The linearization is
made possible by a set of assumptions which are typically
satisfied for AO systems, namely an abundance of low-noise
measurement channels. We will apply the technique to a few
test cases, and we will verifya posteriori the accuracy of the
approximations in terms of performance. The results of this
article extend the ones in [24], where we considered only a
special case featuring the simplest state-space model thatcould
be applied to AO.

The article is organized as follows. Section II describes the
approximation of the Riccati equation and the assumptions
under which such an approximation is valid. Section III
introduces adaptive optics and its dynamic models, and Sec-
tion IV contains an evaluation of performance of the proposed
approximation method for representative turbulence and sensor
models. Finally, Section V presents some conclusions.

II. A PPROXIMATE SOLUTION TO THE MINIMUM-VARIANCE

ESTIMATION PROBLEM

A. Discrete-time dynamical systems

Let us consider a stochastic discrete-time dynamical system
in standard state-space form:

{

x(k + 1) = Ax(k) +Bu(k) + v(k)
y(k) = Cx(k) + w(k),

(1)

wherex(k) ∈ R
n is the state vector,u(k) ∈ R

m is the input
vector, y(k) ∈ R

r is the output vector andk ∈ Z is the
discrete-time index. The vectorsv(k) ∈ R

n andw(k) ∈ R
r are

respectively the process and measurement noises, and they are
assumed to be uncorrelated zero-mean Gaussian white noises,
with covariance matricesΣv andΣw. The estimation DARE
associated with such a system is the following:

P = APAT +Σv −APCT
(

CPCT +Σw

)−1
CPAT , (2)

where P ∈ R
n×n is the unknown. The positive definite

solution P of the Riccati equation for the standard steady-
state Kalman filter is the asymptotic value of the covariance
matrix of the state estimation error̂x(k + 1|k) − x(k + 1),
wherex̂(k + 1|k) is the estimate of the statex(k + 1) based
on the information at timek. The gain of the Kalman filter is
then

K = APCT (CPCT +Σw)
−1 (3)

which is equivalent to

K = A(P−1 + CTΣ−1
w C)−1CTΣ−1

w (4)

thanks to a well-known matrix identity [28].
The solution forP can be obtained by means of standard

solvers, for example employing Schur-type algorithms [2],
[22]. These methods however can be very time consuming
(or even unfeasible) for high dimensional systems, as their
computational complexity grows with the third power of the
size of the matrices involved. The fast iterative alternating
directions implicit (ADI) methods recently developed [6],[7]
are alas not applicable for AO systems asΣv is in general a
full matrix with no constraints on its rank.

For this reason, we propose an approximation of the Riccati
equation that will yield a simplified closed-form expression

for its solution. A Riccati equation has in general multiple
solutions, one of which is positive definite under a certain
set of conditions [20]. The solution we are interested in for
the Kalman filtering is the positive definite one, so from now
on we will consider this solution only when we writeP and
matrices deriving from it.

B. Hypotheses

In order to obtain the simplified solution, we assume the
following hypotheses.

1) (A,C) is detectable,(A,Σ1/2
v ) is controllable,Σv > 0

andΣw > 0.
2) A andC can be partitioned as:

A =

[

A1 A12

A21 A2

]

, C =
[

C1 0
]

(5)

with A1 ∈ R
n1×n1 , andC1 ∈ R

r×n1 , whereC1 is full
column rank (i.e.C1 has rankn1, which implies thatC1

is a “tall” matrix, with r > n1).
3) Σw = σ2

wΣ, whereσ2
w is a scalar andΣ > 0; if the

measurement noise for each channel is at the same level
of intensity and there is no cross-correlation between
channels, thenΣ = I.

The first hypothesis implies that the Riccati equation has a
unique strictly positive definite solutionP [20]. The fact that
C1 is full column rank means that the first partx1 of the state
vector (the one corresponding to the matrixA1) can be directly
reconstructed with the pseudoinverse ofC1. The hypotheses
can also account for the case ofn1 = n, for which A2, A12

andA21 degenerate to zero-dimension matrices.

C. Linearization of the DARE

If we assume that the variance of the measurement noise is
tending to zero, then we can write a Taylor expansion of the
inverse terms in the Riccati equation, based on the assumption
thatσ2

wΣ is small compared with the solutionP . This, together
with a few additional hypotheses on the system, will eventually
lead to a simplified formula for the solution. Nevertheless,the
Riccati equation does not have a solution forσ2

w = 0; in fact
we will be looking for an asymptotic or limit value that the
solution assumes whenσ2

w → 0. We then remind thato(z) for
z → c indicates a quantity for whichlimz→c

o(z)
z = 0. With

this notation, the following well-known results hold.

Lemma 1 (Matrix inversion lemma [19]). Consider four
matricesX , Y , U andV . Then the following equality holds:

(X + UY V )
−1

= X−1−X−1U
(

Y −1 + V X−1U
)

−1
V X−1

(6)
provided that the matrix dimensions are compatible and that
the indicated matrix inverses exist.

Lemma 2. Let X be an invertible matrix,Y a square matrix
of the same dimensions andz a scalar. Then forz → 0 it
holds that:

(X + zY )−1 = X−1 − zX−1Y X−1

+z2X−1Y X−1Y X−1 + o(z2)
(7)
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Proof: the expressions can be derived by noticing that
(X + zY )−1 = (I + zX−1Y )−1X−1 and then applying the
matrix identity (I + A)−1 = I − A + A2 − A3 + . . . =
∑

∞

i=0(−A)i [38], which holds true if the spectral radius of
A is smaller than1 (so it does forz → 0).

We then introduce a partition forP and Σv as well,
according to the one defined in (5):

P = PT =

[

P1 P12

PT
12 P2

]

, Σv = ΣT
v =

[

Σv1 Σv12

ΣT
v12 Σv2

]

,

(8)
whereP1 is strictly positive definite (and so invertible) due to
the fact thatP is strictly positive definite. Notice that with the
hypotheses of the previous section,CPCT = C1P1C

T
1 . Then

(2) can be rewritten as:

P =APAT +Σv

−A

[

P1

PT
12

]

CT
1

(

C1P1C
T
1 +σ2

wΣ
)

−1C1

[

P1 P12

]

AT.

(9)
We can then derive the following lemma, which concerns

the term subject to matrix inversion in (9).

Lemma 3. Consider (9), under the hypotheses of Section II-B,
for σ2

w → 0. Then

CT
1

(

C1P1C
T
1 + σ2

wΣ
)

−1C1 =
= P−1

1 − σ2
wP

−1
1 (CT

1 Σ
−1C1)

−1P−1
1 + o(σ2

w).
(10)

Proof: first apply the matrix inversion lemma (Lemma 1)
to (C1P1C

T
1 + σ2

wΣ)
−1. This yields

CT
1

(

C1P1C
T
1 + σ2

wΣ
)

−1C1 = σ−2
w

(

CT
1 Σ

−1C1

−CT
1 Σ

−1C1(P
−1
1 σ2

w + CT
1 Σ

−1C1)
−1CT

1 Σ
−1C1

)

.
(11)

Notice thatCT
1 Σ

−1C1 is invertible, due toΣ being strictly
positive definite andC1 full column rank. Then use Lemma 2,
for which:

(P−1
1 σ2

w + CT
1 Σ

−1C1)
−1 =

= (CT
1 Σ

−1C1)
−1 − σ2

w(C
T
1 Σ

−1C1)
−1P−1

1 (CT
1 Σ

−1C1)
−1

+σ4
w(C

T
1 Σ

−1C1)
−1P−1

1 (CT
1 Σ

−1C1)
−1P−1

1 (CT
1 Σ

−1C1)
−1

+o(σ4
w).

(12)
Replacing (12) into (11) and simplifying yields the statement
of the lemma (remember thato(σ4

w)σ
−2
w = o(σ2

w)).

This lemma shows that it is possible to linearize a part
of the Riccati equation under the hypotheses of Section II-B.
Nevertheless, developing the Riccati equation (9) with a full
matrix A leads to a block expression of the equation which
does not have a simple solution. However, we can pinpoint two
special cases of practical interest for which the linearization
of Lemma 3 yields a very simple expression forP , which can
be used for approximating the solution of the equation.

1) A12 = 0; this implies that the second block of the state
is non observable, making (5) coincide precisely with
the canonical observability decomposition.

2) A2 = 0, Σv2 = 0 andΣv12 = 0; this implies that the
second block of the state is just a delayed/scaled version
of the first block, yielding a vector-valued second-order
system.

The hypotheses of these special cases lead to the following
theorems.

Theorem 4. Consider (9) forσ2
w → 0, under the hypotheses

of Section II-B. IfA12 = 0 andΣv1 is invertible, then

P1 = Σv1 + σ2
wA1(C

T
1 Σ

−1C1)
−1AT

1 + o(σ2
w) (13)

P12 = Σv12+σ2
wA1(C

T
1 Σ

−1C1)
−1(Σ−1

v1 Σv12A
T
2 +AT

21)+o(σ2
w).

(14)

Theorem 5. Consider (9) forσ2
w → 0, under the hypotheses

of Section II-B. IfA2 = 0, Σv2 = 0 andΣv12 = 0, then

P1 = Σv1 + σ2
wA1(C

T
1 Σ

−1C1)
−1AT

1

+σ2
wA12A21(C

T
1 Σ

−1C1)
−1AT

21A
T
12 + o(σ2

w)
(15)

P12 = σ2
wA1(C

T
1 Σ

−1C1)
−1AT

21 + o(σ2
w). (16)

Proof: both theorems can be proven by applying Lemma 3
to (13).

These theorems can be used to derive a very simple approx-
imation of P1 andP12 by taking the first-order terms inσ2

w;
both cases are of practical interest for our application, asit
will be shown in Section III. Notice that the main result of
[24] is a special case of Theorem 4, in the case whereA is a
scalar times the identity matrix (A = aRI); Theorem 5 is not
present in [24].

D. Kalman filter gain with first-order approximation

If we approximate the matrixP with its first-order expan-
sion in σ2

w, then in both cases (Theorem 4 and Theorem 5)
the approximate Kalman gain is given by:

K1 =

[

A1P1,1 +A12P
T
12,1

A21P1,1 +A2P
T
12,1

]

CT
1

(

C1P1,1C
T
1 + σ2

wΣ
)−1

,

(17)
whereP1,1 andP12,1 are the first-order approximations ofP1

andP12, defined in (13) and (14) (or (15) and (16) according
to the case). Notice thatK1 does not depend onP2, which
therefore does not need to be computed.

Using (4),K1 can be equivalently rewritten as

K1 = A

(

σ2
wP

−1 +

[

CT
1 Σ

−1C1 0
0 0

])

−1 [
CT

1 Σ
−1

0

]

.

(18)
This formulation involves the inversion of a matrix of sizen×
n, whereas (17) requires the inversion of

(

C1P1,1C
T
1 + σ2

wΣ
)

,
which is r × r. So this second formulation is in general
computationally cheaper considering our hypothesis ofr >

n1. Moreover, notice thatP2 will be simplified from the
computations even if we use (18), as we know from (17) that
the result does not depend on it.

This first-order Kalman filter gainK1 can be used to imple-
ment an observer on the system that approximates the optimal
Kalman filter. There is no guarantee that the estimator will
be stable, but the stability can be easily verifieda posteriori.
In practice, the approximation is applicable whenσ2

w is small
compared with the singular values ofΣv, which represent the
intensity of the process noise.
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III. A DAPTIVE OPTICS

AO systems compensate for the phase distortion of the light
at the telescope pupil using a deformable mirror (Figure 1).
The distortion is caused by the passage of light through
the atmosphere, which turns the once flat incoming optical
wavefront into a non-flat smooth surface.

flat wavefront

turbulence

distorted wavefront

deformable 
mirror

corrected
wavefront

camera

wavefront
sensor

control 
system

Fig. 1. Scheme of an AO system.

A. Wavefront sensing

In classical AO systems, the phase distortion is assumed
to be caused by a single equivalent turbulent layer located
at the ground level, and such a distortion is measured with
a single WFS monitoring the light from a single guide star
(either natural or laser). We consider a Shack-Hartmann WFS
[31], consisting of an array of small lenses (or lenslets) which
partitions the light beam according to a regular grid. Each
lenslet focalises its beam on a photon sensor; the position of
the local image of the guide star depends on the local gradient
of the wavefront. For this reason, the WFSs cannot measure
the wavefront directly, but only its gradient in a number of
points. We employ here a “zonal basis” for the turbulent phase
φ(k), which means that we consider it as sampled on a regular
square grid. For the Shack-Hartmann sensors, the output signal
is the gradient of the phase sampled at the center of the squares
delimited by four sample points of the phase (Figure 2). If for
example we call the phase at the four cornersφa, φb, φc and
φd, then the gradient at that point can be expressed as

s =
1

2

[

(φb + φd)− (φa + φc)
(φa + φb)− (φc + φd)

]

. (19)

φa φb

φc φd

s

Fig. 2. Sensor geometry. The black dots represent the phase sampling points,
and the gray areas represent the lenslets or subapertures ofthe sensor.

As a consequence, the output equation for the whole system
can be written as

y(k) = Gφ(k) + w(k), (20)

wherey(k) is the measurement output,G is the matrix that
expresses the gradient formula in (19) for all the points in
the pupil andw(k) is a white measurement noise;G can be
derived directly from (19). Each sensor channel is affected
by a noise that can be assumed to have the same statistical
properties and to be uncorrelated from the other channels, so
that the covariance ofw(k) is σ2

wI. The output matrix is a
gradient operator, so there are two modes of the phase that
yield a zero output all the times, being thus unobservable.
These are the piston mode, with constant phase on all the
pupil (for which φa = φb = φc = φd) and the waffle mode
(for which φa = −φb = −φc = φd in each subaperture). The
matrix G is therefore not full column rank; it is in general
“tall”, because we have approximately two gradient measures
per each phase sampling point (r ≈ 2n), but it is not full rank
due to the presence of the invisible modes (piston and waffle).

B. Turbulence models

The complete AO system model requires also a model
of atmospheric turbulence. A well-established option is Von
Kármán’s model [35], from which it is possible to compute the
correlation of the phase distortion in two points of the layer as
a function of their distance and a couple of parameters depend-
ing on the weather conditions, namely the Fried parameterr0
and the outer scaleL0 [11]. The Fried parameter is a length
that is roughly inversely proportional to the intensity of the
turbulence; it is the maximum size of a telescope primary for
which the turbulence effects are negligible, so that the images
are diffraction-limited. The outer scale is the maximum size of
the turbulent structures. Defining asφ(k) the column vector
containing the values of the turbulent phase on a layer at a
time instantk, it is then possible to construct the covariance
of the turbulent phase vectorΣφ = E[φ(k)φ(k)T ].

While the determination of the spatial correlations of the
turbulence is a well-established field, the choice of a dynamic
model that describes the temporal evolution of the phase is still
object of research (see for example the recent contributionin
[5] and the survey on AO control-oriented models in [21]).
The use of Kalman filtering for the estimation of the turbulent
wavefront requires assuming an underlying linear model for
its dynamics, whose accuracy in portraying the turbulence is
then a key element for the efficiency of AO control. A very
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popular model choice, both for simplicity and effectiveness, is
given by discrete-time autoregressive models, either of order
1 (AR1) [30], [32] or order2 (AR2) [13].

1) AR1 turbulence model:The AR1 turbulence model is
given by the expression

φ(k + 1) = ARφ(k) + v(k), (21)

wherev(k) is a white process noise. The matrixAR is chosen
as diagonal. If we assume a single turbulence layer,AR has
the same autoregression coefficientaR (with |aR| < 1 ) in all
its diagonal entries, soAR = aRI: the coefficient has to be
chosen equal for all the phase points as the turbulence is a
spatially homogeneous phenomenon. If we consider multiple
turbulence layers located at different altitudes, then it is
possible to assign a different coefficient for each layer, which
can be used to take into account different dynamics (e.g.
different wind speeds) at different altitudes. The covariance
matrix Σv of the process noise must be consistent with the
chosenΣφ. Computing the covariance of both sides of (21),
we simply obtain

Σv = Σφ −ARΣφA
T
R. (22)

We can discard the invisible modes from the zonal basis
by employing an invertible state transformationS such as
[φ φpw ]

T = Sφ, where φpw is the vector containing the
piston and waffle modes, andφ is a vector of modes that are
orthogonal to the invisible ones; then the system forAR = aRI
can be turned into the form of Theorem 4, asGS−1 = [C 0]
and SAS−1 = aRI. This allows the use of Theorem 4 to
approximate the solution of the Riccati equation by taking the
first-order truncation.

An additional simplification can be employed in the AR1
case; according to [14], [12], the inverse ofΣφ can be
approximated by the fourth-order derivative operator, i.e. the
square of the Laplacian operator:Σ−1

φ ≈ α∇4, (see [14] for
indications on how to compute the constantα). This implies,
through (22), thatΣv = α/(1−a2R)∇

4 = γ∇4. It is important
to remark that∇4 is sparse. By using Lemma 2, we can
then write the first-order approximation of the inverse ofP1

(according to Theorem 4) as

P−1
1 ≈ γ∇4 − σ2

wγ
2∇4A1(C

T
1 Σ

−1C1)
−1AT

1 ∇
4 + o(σ2

w).
(23)

We then neglect the piston and waffle terms, which does
not degrade significantly the result, as the piston does not
influence the quality of the images and the waffle is of very low
power according to Von Kármán’s model. Neglecting pistons
and waffle is the same as takingC1 = C, which is sparse, and
P1 = P . If we truncate the expression to the zero-order, we
can arrive at the following for the inverse ofP :

P−1
0 ≈ γ∇4 + δI (24)

in which the termδI, with δ > 0 an arbitrary small number,
is a regularisation term that needs to be added in order to
have the right hand side of (24) invertible. Then from (18) the
zero-order Kalman gain is given by

K0 = aR
(

CTΣ−1C + σ2
wP

−1
0

)−1
CTΣ−1. (25)

Notice that both (24) and (25) involve only sparse matrices,
which can considerably boost the speed of the computations.

2) AR2 turbulence model:The AR2 turbulence model takes
into account2 past values of the state:

φ(k + 1) = AR1φ(k) + AR2φ(k − 1) + v1(k). (26)

The matricesAR1 andAR2 are again chosen as diagonal, with
the same diagonal entry for each layer. This can be translated
into the following state-space model:
[

φ(k + 1)
φ(k)

]

=

[

AR1 AR2

I 0

] [

φ(k)
φ(k − 1)

]

+

[

I
0

]

v1(k)

y(k) =
[

G 0
]

[

φ(k)
φ(k − 1)

]

+ w(k).

(27)
An empirical formula for obtaining the coefficients has been
proposed in [29]. The covariance matrixΣv consistent with
Σφ is slightly more complicated to compute compared with
the AR1 case. It can be obtained from the Lyapunov equation:

[

Σφ Σφ′

ΣT
φ′ Σφ

]

=

[

AR1 AR2

I 0

] [

Σφ Σφ′

ΣT
φ′ Σφ

] [

AT
R1 I

AT
R2 0

]

+

[

Σv1 0
0 0

]

,

(28)
whereΣφ = E[φ(k)φ(k)T ] = E[φ(k − 1)φ(k − 1)T ] and
Σφ′ = E[φ(k)φ(k−1)T ]. In the special case ofAR1 andAR2

diagonal, with entriesaR1,i, aR2,i respectively in the diagonal,
we have that the entries in position(i, j) of Σφ′ are simply:

(Σφ′)ij =
aR1,i + aR2,iaR1,j

1− aR2,iaR2,j
(Σφ)ij , (29)

where(Σφ)ij is the entry in position(i, j) of Σφ. In the even
simpler case ofAR1 = aR1I and AR2 = aR2I, we have
Σφ′ = aR1(1 − aR2)

−1Σφ.
The system in (27) fits into the hypotheses of Theorem 5 if

the invisible modes (piston and waffle) are extracted (by the
same state transformationS) and discarded (this leads from the
non-full rankG to a full-column rankC1). As we have already
stated, the piston does not influence the images and the waffle
is of very low power, so this approximation is acceptable. This
allows the use of the formulas of Theorem 5 for getting a first-
order approximation of the Riccati equation.

IV. RESULTS

A. Performance evaluation method

In this section, we will evaluate the effectiveness of the pro-
posed method on two test cases by estimating the theoretical
loss of performance due to the use of the proposed observer
instead of the standard Kalman filter. As the piston component
of the phase does not influence the image quality, we have to
remove the piston contribution from the covariance matrix in
order to have a meaningful evaluation of performance. We
defineΠp as the projection matrix that removes the piston
contribution, andCφ as the output matrix which returns the
phaseφ from the statex of the system, so thatφ(k) = Cφx(k)
(Cφ = I for AR1 models andCφ = [I 0] for AR2).

When using the exact Kalman filter,P is the variance of
the state estimation error. So the mean variance of the phase
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estimation error (without piston) is simply the average of the
entries in the diagonal ofΠpCφPCT

φ Π
T
p :

σ2
err,K = mean(diag(ΠpCφPCT

φ Π
T
p )). (30)

This quantity determines the quality of the image. If a different
observer is used, like the one featuring the gainK1 that can
be obtained with the proposed method, then the covariance of
the state estimation error̂x(k + 1|k)− x(k + 1) will assume
a value that we callPK1

; under the hypotheses of using the
turbulence temporal models of Section III, we have

(A−K1C)PK1
(A−K1C)T − PK1

+σ2
wK1K

T
1 + (1 − a2R)Σφ = 0.

(31)

The expected covariance of the phase estimation error is then
simply:

σ2
err,K1

= mean(diag(ΠpCφPK1
CT

φ Π
T
p )). (32)

In an AO system, the residual phaseφr (the one determining
the image quality) is given by the phaseφ of the light
entering the pupil plus a correction termφc generated by the
deformable mirror:

φr(k) = φ(k) + φc(k). (33)

Under the hypothesis of being able to fully compensate for
the estimated values of the phase with the deformable mirror
(φc(k) = −φ̂(k|k − 1)), the variance of the residual phase
is the variance of the estimation error. The performance of
the tested algorithm is then evaluated in terms of additional
residual rms (root mean square) error with respect to the exact
Kalman filter, which is the theoretical optimal.

B. First test: AR1 turbulence model

We first consider a classical AO configuration with AR1
models stemming from standard classical AO situations with
typical atmospheric profiles. We have considered telescope
diameters from2 to 42 m (the size of the first E-ELT proposed
design), all of them with a phase sampling distance of0.5 m.
We have chosen a Fried parameterr0 = 0.53 m (at the imaging
wavelength), an outer scaleL0 = 25 m and an autoregression
parameteraR = 0.99; the WFS has a measurement noise
standard deviation ofσw = 45 nm rms. For the chosen
atmospheric condition, Von Kármán’s model predicts that
the standard deviation of the turbulence intensity is roughly
1900 nm rms, whereas the variance of the measurement signals
at each WFS lenslet is around460 nm rms. This confirms
the assumption of a relatively low measurement noise. The
controller runs at250 Hz, and there is a one-step delay
between the acquisition of the measurement and their use for
computations.

The standard deviation of the measurement noise, as well
as r0 andL0, have been taken from the specifications of the
CANARY project [9], [37], [36], [34]; this project consistsin a
small-scale demonstrator for the E-ELT, so the intensity ofthe
measurement noise that we have assumed can be considered
as representative of current technology.

In the tests, we compare performance and computational
times of the following methods.

• Standard Kalman filter , computed using Matlab’sdare
function. The cost ofdare is approximately75n3 float-
ing point operations (FLOPs) [22], so we can estimate
that the total cost of computing the Kalman gain, includ-
ing (3), is 81n3 FLOPS. If we consider that the block
CTΣ−1C can be pre-computed only once (it depends
only on the geometry and technology of the telescope
and not on the atmospheric conditions), the number of
total FLOPS reduces to79n3.

• Minimum mean square estimator (MMSE), the
minimum-variance static estimator [4], [39], according to
which the estimate of the phase is

φ̂MMSE(k|k−1)=(CTΣ−1C+σ2
wΣ

−1
φ )−1CTΣ−1y(k−1).

(34)
The cost of computing the estimator can be evaluated to
be6n3 FLOPS, or only4n3 if CTΣ−1C is pre-computed
once and for all.

• First-order Kalman filter , computed with the formulas
of Theorem 4 and (18). The total computational cost
for obtaining the Kalman gainK1 is 8.33n3 FLOPS.
If CT

1 Σ
−1C1 and (CT

1 Σ
−1C1)

−1 are pre-computed, the
total cost is only4n3, roughly the same as the MMSE.

• Zero-order Kalman filter , computed with (24) and
(25), which exploits the sparse approximation of the
inverse of the turbulence variance matrix. In principle,
the computational cost of this estimator is of the order of
n2, as all the matrices involved in the computations are
sparse.

• Distributed Kalman filter , another approximate method
based on a distributed control technique [25], [17], which
approximates the telescope aperture with an infinite-sized
one. The Kalman filter takes thus the form of a spatial
convolution:























φ̂x1,x2
(k+1|k) = a1φ̂x1,x2

(k|k−1)

+

+z
∑

x′

1
=−z

+z
∑

x′

2
=−z

kx1−x′

1
,x2−x′

2

(

yx′

1
,x′

2
(k)− ŷx′

1
,x′

2
(k|k−1)

)

ŷx1,x2
(k|k−1) = Fx1,x2

(φ̂(k|k−1))
(35)

wherex1, x2 are the two ortogonal spatial coordinates
of the telescope aperture’s grid,A = a1I and Fx1,x2

is basically the gradient function which generates the
WFS output. This method has the advantage of being of
ordern0: the cost of computing the convolution kernel
kx1−x′

1
,x2−x′

2
is the same for any size, being based on

the infinite approximation. The only size-dependent cost
is the one of reassembling the kernel in order to build the
Kalman gain matrix.

The computational times given above are approximated to the
higher order, and they have to be considered as a “worst
case”, as some special matrix structures could help reduce
them. Parallelization of the solution algorithms might also be
used to speed up the computations. As a last remark, we point
out that the reduction in the computational complexity does
not ease the problem of storing full, high dimension matrices,
which might be another bottleneck in dealing with large-scale
systems.
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The first set of results, in Figure 3, shows the computational
times that are required to compute the first- and zero-order
approximation of the Kalman filter (with Theorem 4) com-
pared with other methods, on a quad-core 3.6 GHz computer
(running Matlab). The experimental computational times are
the ones that are necessary to compute the Kalman gain, and
they exploit, when possible, the possibility of pre-computing
some parts.

It is possible to verify that the exact Kalman filter is
the slowest to compute. The first-order approximation has a
computational cost that is close to the one of the MMSE. The
distributed method has an approximately constant computa-
tional complexity which becomes competitive for extremely
large diameters. Remember that the size of the state vector is
proportional to the square of the diameter (forD = 42 m,
the state has5540 entries). We can also remark that the time
needed for computing the first-order approximation is more
than two orders of magnitude smaller with respect to the
exact Kalman filter, whereas from the FLOPs computations
above we could have expected a difference of one order
of magnitude; this is probably due to Matlab’sdare being
slower than expected.
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Fig. 3. Computational times for the different methods, on a quad-core 3.6
GHz computer running Matlab (test #1).

For what concerns performance, Figure 4 shows the ad-
ditional residual error for the different approximate methods,
which achieve stability in all cases. In order to have an ideaof
the global error budget, we can say that the total residual error
due to the turbulence goes from94 nm rms (forD = 2 m) to
235 nm rms (forD = 42 m) for the exact Kalman filter case.
We can see that, after the exact KF, the best performance is
given by the first-order approximation proposed in this paper;
in particular, it performs better than the very fast distributed
technique. This also justifies the choice of taking a first-
order development without going further into higher orders:
performance is already quite good for order one, and going

into higher orders, which would feature a growing number
of matrix terms, would significantly reduce the computational
time advantages.

The zero-order method, as expected, is slightly faster to
compute than the first-order one, at the cost of a little extra
additional error, but still it outperforms the MMSE.
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Fig. 4. Additional residual error (with respect to the exactKalman filter),
for different approximation methods, forσw = 45 nm rms, classical AO with
an AR1 model (test #1).

We consider also the case of a higher measurement noise
level, namelyσw = 90 nm rms which can considered as
a worst-case scenario for an ELT ([34]). From the results,
(Figure 5) we can see that the first- and zero-order filters shows
a slight performance degradation, as the assumption of a low
level of noise becomes less applicable.
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Fig. 5. Additional residual error (with respect to the exactKalman filter),
for different approximation methods, forσw = 90 nm rms, classical AO with
an AR1 model (test #1).
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C. Second test: AR2 turbulence model

We have also evaluated the loss of performance in the case
of an AR2 model, withAR1 = 1.98I and AR2 = −0.99I,
and the same atmospheric parametersr0 and L0 as in the
previous case, and forσw = 45 nm rms. In Figure 6, the
loss of performance of the MMSE is compared with the one
of the first-order approximation (with Theorem 5). We can
see that in the AR2 case, the first-order approximation is
verified to be stable again and with acceptable performance,
whereas the MMSE performs very poorly as it neglects the
more complex dynamics. We have to stress that the MMSE
is heavily penalized here due to the significant difference
between the implicit absence of dynamics that it assumes and
the AR2 model. In general the MMSE will have acceptable
performance in real on-sky applications [9]; nevertheless, it
has been noted through simulation that AR2 models can have
better performance even when the turbulence is assumed to be
the superimposition of translating frozen layers (the so-called
Taylor’s hypothesis), which models the reality better [13]. The
formulas of Theorem 5 (forn1 = n/2), taking advantage
of precomputed blocks, require approximately10n3

1 ≈ 1.2n3

FLOPs, compared with the75n3 FLOPs required by the
Riccati solver. The distributed filter and the zero-order approx-
imation have not been evaluated because they are not directly
applicable to the AR2 case, and we have not reached the
maximum diameter because the computations of the standard
Kalman gain are now too intensive, compared with the first
case, as the order reaches11080 for 42 m.
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Fig. 6. Additional residual error (with respect to the exactKalman filter),
classical AO with an AR2 model, forσw = 45 nm rms (test #2).

V. CONCLUSIONS

In this paper we have shown that for discrete-time state-
space systems with abundance of low-noise measurements,
it is possible to obtain, through linearization, a simple ap-
proximate solution of the Riccati equation associated with
the minimum-variance estimation problem. The technique is
applicable to dynamical systems that can be modeled as
autoregressive stochastic processes; in this paper, we have

applied it to the adaptive optics of astronomical imaging
systems, where a Kalman filter can be used for reconstruct-
ing and predicting wavefront aberrations. We can foresee
application in other real-time imaging systems which are
governed by similar models and similar output equations (e.g.
microscopy or medical imaging). For the AO application, we
have verified in a realistic test case that the proposed first-order
approximated solution is the most accurate compared with
the distributed approximation method, allowing substantial
savings in computational times with respect to a standard
solver. The ability of quickly recomputing the Kalman filter
gain is of critical importance in AO systems, as it allows the
update of the control system in real-time in order to take into
account changes in the atmospheric conditions (eg. change of
wind velocity, temperature, etc.). The proposed method can
then be considered as a good candidate for obtaining a fast
and accurate solution of large-scale AO problems, allowing
more trade-off choices between performance and speed of
computations in AO controller design.

Further research might look into the dual optimal controller
synthesis problem, for systems with a high number of input
channels and a low penalty on the control effort. Incidentally,
this case might still be useful in AO systems: in fact the
active mirrors are systems with a number of input channels
of the same order as the number of output channels of a
WFS; moreover the control effort is not present in the AO
cost function, which is the variance of the residual phase.
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with FrIM. In Adaptive Optics: Analysis and Methods/Computational
Optical Sensing and Imaging/Information Photonics/Signal Recovery
and Synthesis Topical Meetings, Vancouver, Canada, 2007. OSA.

[5] A. Beghi, A. Cenedese, and A. Masiero. Stochastic realization approach
to the efficient simulation of phase screens.J. Opt. Soc. Am. A,
25(2):515–525, 2008.

[6] P. Benner. Solving large-scale control problems.IEEE Control Systems
Magazine, 24(1):44–59, February 2004.

[7] P. Benner and H. Fassbender. On the numerical solution oflarge-
scale sparse discrete-time Riccati equations.Advances in Computational
Mathematics, 35(2-4):119–147, November 2011.

[8] F. Borrelli and T. Keviczky. Distributed LQR design for identical
dynamically decoupled systems.IEEE Trans. Aut. Contr., 53(8):1901–
1912, 2008.

[9] M. Brangier, F. Vidal, T. Morris, E. Gendron, Z. Hubert, A. Basden,
G. Rousset, R. Myers, F. Chemla, A. Longmore, et al. CANARY MOAO
demonstrator: on-sky first results. InAdaptive Optics: Methods, Analysis
and Applications (AO), Toronto, Canada, 2011. OSA.
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Orsay in 1990. He has been involved since the early
2000s in the design of high-performance controllers
for adaptive optics systems in astronomy and retinal
imaging, and he is now a member of the adaptive
optics research team at Institut d’Optique. His re-

search interests include adaptive control, stochastic modeling, linear systems
theory, identification for control, fractional filters,H∞ control and non-linear
feedforward control, with applications to aerospace, industrial processes and
telecommunication systems.

Caroline Kulcsár is professor at Institut d’Optique
Graduate School, Université Paris 11. After grad-
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