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CNRS 5224, bp 53X, F38041 Grenoble, France,

{Jean-Guillaume.Dumas,Jean-Baptiste.Orfila}@imag.fr.

Abstract

Block ciphers, such as the AES, correspond to a very important family
of secret-key cryptosystems. The security of such systems partly relies on
what is called the S-box. This is a vectorial Boolean function f : Fn

2 →֒ F
n

2 ,
where n is the size of the blocks. It is often the only non linear opera-
tion in the algorithm. The most well-known attacks against block ciphers
algorithms are the known-plaintext attacks called differential cryptanal-
ysis [4, 10] and linear cryptanalysis [11]. To protect such cryptosystems
against linear and differential attacks, S-boxes are designed to fulfill some
cryptographic criteria (balancedness, high nonlinearity, high algebraic de-
gree, avalanche, or transparency [2, 12]) and are usually defined on finite
fields, like F2n [7, 3].

Unfortunately, it seems difficult to find good S-Boxes, at least for
bijective ones: random generation does not work [8, 9] and the one used
in the AES or Camellia are actually variations around a single function,
the inverse function in F2n . Would the latter function have an unforeseen
weakness (for instance if more practical algebraic attacks are developped),
it would be desirable to have some replacement candidates.

For that matter, we propose to weaken a little bit the algebraic part
of the design of S-Boxes and use finite semi-fields instead of finite fields
to build such S-Boxes. Finite semi-fields relax the associativity and com-
mutativity of the multiplication law. While semi-fields of a given order
are unique up to isomorphism, on the contrary semi-fields of a given order
can be numerous: nowadays, on the one hand, it is for instance easy to
generate all the 36 semi-fields of order 24, but, on the other hand, it is
not even known how many semi-fields are there of order 28. Therefore,
we propose to build S-Boxes via semi-fields pseudo extensions of the form
S
2

24
, where S24 is any semi-field of order 24, and mimic in this structure

the use of the inverse function in a finite field.
We report here the construction of 10827 S-Boxes, 7052 non CCZ-

equivalent, with maximal nonlinearity, differential invariants, degrees and
bit interdependency. Among the latter 2963 had fix points, and among
the ones without fix points, 3846 had the avalanche level of AES and 243
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the better avalanche level of Camellia. Among the latter 232 have a better
transparency level than the inverse function on a finite field.

1 Introduction

A substitution-box (abbreviate as s-box), is a tool used in symmetric ciphers
in order to increase their resistance against known attacks, such as linear and
differential cryptanalysis by breaking cipher linearity. Sboxes are commonly
represented by boolean functions i.e. S : Fn

2 → F
m
2 , whose dimensions n,m are

depending on the cipher. For example, the AES sbox uses n = m = 8, views the
finite field with 256 elements as a vector space on its base field, and is generated
by:

T : F28 → F28

0 7→ 0
a 7→ a−1

(1)

Once T is computed, an affine transformation is applied [7], and it results
in an excellent s-box from the point of view of security characteristics. More
precisely, in the following, we will use the list of criteria described in [2]. These
criteria measure s-boxes robustness with respect to possibles attacks. Among
bijective s-boxes, only AES and Camellia’s s-boxes have good scores on this
measure and both are build on a modified inverse computation. Thus, would
the latter function have an unforeseen weakness (for instance if more practical
algebraic attacks are developped), it would be desirable to have some replace-
ment candidates.

Rather than trying different constructions, some works [2], [8] have been
made on random searches among the 256! possibilities of bijective s-boxes. An-
other approach is to design s-boxes via the use of chaotic maps [9]. Unfortu-
nately, none of the s-boxes build from these searches have the resistance of AES
against linear nor differential attacks.

Our idea is different, we replace the algebraic structure of AES and Camel-
lia (namely viewing the vector space as a finite field) by another structure, a
semifield. First, there exists different semifields of a given order up to isomor-
phism. Even when considering the more restrictive notion of isotopy [1], the
semifields are still non unique. Therefore there could be several choices of un-
derlying structure, even with a single function. Second, the nonzero elements of
semifields still form a multiplicative group. Therefore an inverse-like function
could very well preserve good cryptographic properties.

In Section 2, we recall the definition of semifields and propose a construction
of a degree 2 pseudo-extension of semifields of order 16. From this construction
we deduce bijective s-boxes over F256, that mimic the behavior of the function (1)
above. We also present some efficient algorithms for semifields constructions in
Section 3. Then we recall in Section 4, the criteria that we use to rank the
obtained s-boxes. Finally, we show in Section 5 that our construction indeed
yields novel s-Boxes that match the resistance of the best known ones.
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2 Semi-fields pseudo-extensions

In this section, after defining semifields, we describe the construction of pseudo-
extensions of semifields containing 16 elements.

Definition 1. A finite semifield (S,+,×) is a set S containing at least two
elements, and associated with two binaries laws (addition and multiplication),
such that:

1. (S,+) is a group with neutral 0

2. ∀a, b ∈ S, ab = 0 ⇒ a = 0 or b = 0

3. ∀a, b, c ∈ S : a(b + c) = ab+ ac and (a+ b)c = ac+ bc

4. ∀a ∈ S, ∃ a neutral element for × denoted as e which satisfies: ea = ae = a

Ideally, we would like to construct s-boxes using:

T ′ : S28 → S28

0 7→ 0
a 7→ a−1

Unfortunately, we do not know the complete classification of these semifields
for the moment. Currently, the largest classification in characteristic 2 is of order
64 [13]. Thus, in order to obtain build s-boxes with 256 elements, we mimic
the finite fields construction, based on a quotient structure: F28 = F24 [X ]/P2.
However, the same notion of polynomial irreducibility is more difficult to define
in semifields, due to the possible non-associativity.

Actually, we just need to build a bijection T ′ : (S24)
2 → (S24)

2 as close as
possible to the inverse function, in order to take advantage of its cryptographic
properties. Therefore, we have to find an equivalent characterization to the
polynomial irreducibility notion on in finite fields, applicable on semifields. Let
P (X) = X2 + αX + β, with α, β ∈ F24 , be an irreducible polynomial of degree
2. Elements of F28 viewed as F24 [X ]/P are polynomials of degree 1 of the form
aX + b, denoted as couple (a, b) ∈ F

2
24 . Over the finite field F28 , the inverse

of 0X + b is 0X + u, where u = b−1 ∈ F24 if b 6= 0. Then if a 6= 0, we let
γ ∈ F24 be such that γ = a−1b, in order to obtain an unitary couple and thus
simplify the following computations. Then, the inverse of aX + b is denoted
c′X + d′ and we have (aX + b)(c′X + d′) = 1 ⇔ a(X + γ)(c′X + d′) = 1 or also
(X + γ)(cX + d) = 1, with c′ = a−1c and d′ = a−1d.
After degree identification, and replacing X2 = −αX − β, we obtain:

{

dγ − cβ = 1
cγ + d− cα = 0

(2)

Finally, we have:
{

c = [(α − γ)γ − β]−1

d = c(α− γ)
(3)
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From the previous equations, it is now easy to deduce the following alterna-
tive characterisation of irreducible polynomials of degree 2 over finite fields:

Lemma 1. Let P : X2 + αX + β,∈ F24 [X ], P is irreducible if and only if
∀γ ∈ F24 , [(α− γ)γ − β] 6= 0.

Using Lemma 1, we thus propose the following definition over semifields:

Definition 2 (Pseudo-irreducibility). Let P = X2 + αX + β ∈ S24 [X ], P is
pseudo-irreducible if and only if ∀γ ∈ S24 , [(α− γ)γ − β] 6= 0.

Thus, in the case where S24 ≃ F24 , our pseudo-irreducibility notion reduces
to irreducibility. Now we are able to define our pseudo-inversion as:

Lemma 2. Let P : X2+αX+β,∈ S24 [X ] be a pseudo-irreducible polynomials.
The transformation:

T ′ : (S24)
2 → (S24)

2

(0, 0) 7→ (0, 0)
(0, b) 7→ (0, b−1)
(a, b) 7→ (a−1c, a−1d)

such that γ = a−1b, c = [(α − γ)γ − β]−1, and d = c(α− γ), is a bijection.

Proof. In the case where a = 0, T ′ is obviously one-to-one. Let us assume now
that a 6= 0.

For proving injectivity, we suppose that ∃γ1, γ2 ∈ S24 such that c(α− γ1) =
c(α− γ2). Then cα− cγ1 = cα− cγ2, so that c(γ1 − γ2) = 0 and thus c−1c(γ1 −
γ2) = 0. Finally γ1 = γ2.

Then, as S224 has a finite cardinality, any injective endofunction is bijective.

3 Semi-fields efficient generation

As a prerequisite for constructing pseudo-extensions, we need semifields of or-
der 24. In this section, we expose some results and optimizations about efficient
generation of semifields.

Recent results about semifields are detailed in [6] and in particular, they
show that we can represent semifields as matrix vector spaces:

Proposition 1 ( [6], Prop 3.). There exists a finite semifield S of dimension
n over Fq ⊆ S iff there exists a set of n matrices {A1, ...An} ⊆ GL(n, q) such
that:

• A1 is the identity matrix

•
n
∑

i=1

λiAi ∈ GL(n, q), ∀(λ1, ..., λn) ∈ F
n
q \{0}
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• The first column of the matrix Ai is the column vector with a 1 in the ith

position, and 0 everywhere else.

This proposition is fundamental, since it allows us to use efficients matrix
computations to discover new semifields. In our case, we restrict this proposition
for q = 2, and n ≤ 8.

In order to generate semifields, we use the algorithms described in [13].
The idea is to select lists of matrices extracted from GL(n, 2) with a prescibed
first column. It is thus necessary to check invertibility of all possibles linear
combinations, in order to gradually reduce the possible semifield candidates. In
practice, the invertibility check is done by a determinant computation. Then, in
order to accelerate the process, some combinations of matrices can be discarded,
as they can yield already found spaces. This is formalized via the notion of
isotopy of semifields:

Definition 3 (Isotopy). Let S1and S2 be two semifields over the same finite
field Fp, then an isotopy between S1 and S2 is a triple (F,G,H) of bijective
linear maps S1 → S2 over Fp such that H(ab) = F (a)G(b), ∀a, b ∈ S1

Definition 3 is used to define an equivalence relation between semifields,
which can be verified with the help of matrix multiplications, see [6, Prop. 2].

Even if only square matrices with small size are involved, semifield generation
remains complex for the large amount of computations involved. For instance,
generation of all matrices constituting GL(8, 2) could require 264 determinant
computations.

We thus propose in the following some optimzations for the computation of
the determinant and of matrix multiplication, based on tabulation and Gray
codes.

3.1 Optimizing determinant using Gray codes and tabu-

lations

Classical determinant computations use Gaussian elimination, with a O(23n
3)

complexity for a single determinant computation. Thus, in order to build
GL(n, 2) by testing all the possible matrices, we obtain an overall complexity

of O(23n
32n

2

). Here, we present two ways to reduce this complexity.
The first optimization is about tabulating the computations via the recur-

rence formula of the determinant:

• If A is 1× 1 matrix, det(A) = a, with A = (a).

• Otherwise, n ≥ 2,

det(A) =

n
∑

i=1

(−1)i+jajM1j

with M1j the determinant of the submatrix defined as A deprived of its
first row and of its jth column (we chose the first row deletion and the
column development arbitrarilly).
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More precisely, since we have to compute all determinants for each matrix
size, the idea is to store them in order to accelerate the computations of the
larger matrix dimension. By doing this, we replace a sub-determinant computa-
tion by a table access. The drawback of this method is the memory limitation,
and we succeeded to apply it for square matrices up to size 6. Indeed, for n = 7,
we should store 249 computations, that being around 500 Tb of data.

Our second optimization is about improving the way of passing through
all matrices. Since each matrix has a unique integer representation (using the
n2 bits as digits), the easiest method to go through all the determinants is to
increment this integer representation until its largest value. However, it implies
”random” modifications on the matrix binaries coefficients. By using a Gray
code, which allows to pass from a value to another by modifying only one bit
between them, we are thus able to pass from one determinant to the other by
modifying only one term in the sum: the idea is to cut the matrix in two parts,
the first row on the one hand, containing n bits, and the remainding n(n− 1)
coefficients, which we call the base, on the other hand. Then we apply two
distinct Gray codes, one for each hand. First, we fix a value for the base, and
then we go all over possibles values for the first row, following a Gray code on
this row. Second, we change the base value with another dedicated Gray code,
and go again through all possibles values from the first line. Memory exchange
is thus reduced because we only need to access the lower dimension table n
times for each possible submatrix determinant, but for 2n computations.

The complexity is also drastically reduced by linking successive computa-
tions. Indeed, by modifying only one bit between two values, the determinant
computation is reduced to the following formula: ∆k = ∆k−1⊕M1j , where M1j

is defined as in the previous formula, and ∆0 = 0, since in a Gray code the
first number is 0. Thus, we reduced the determinant computation, which would
normally requires n− 1 XOR operations to only one, for n ≤ 7.

Finally, we obtain the following lemma:

Lemma 3. Let n be the dimension of squares matrices, n ≤ 6, then the com-
plexity of the determination of GL(n, 2), using tabulation and Gray codes, is
bounded by Dn that satisfies:

Dn = 2n
2

+O(2n
2−n−2) (4)

Proof. The complexity of the above algorithm is obtained by counting XOR
operations and is given by the following recurrence formula:

{

D1 = 0

Dn = Dn−1 + 2n
2

− 1
(5)
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Therefore, we have:

Dn =
n
∑

i=2

(

2i
2

− 1
)

=
n−2
∑

j=0

2(n−j)2 − (n− 1)

= 2n
2
n−2
∑

j=0

2−2nj+j2 − (n− 1)

≤ 2n
2
n−2
∑

j=0

2−2nj+(n−2)j − (n− 1)

= 2n
2
n−2
∑

j=0

2(−n−2)j − (n− 1)

= 1−2(−n−2)(n−1)

1−2−n−2 − (n− 1)

≤ 2n
2

(1 + 1
2n+2−1 )− (n− 1)

We thus have a gain of a factor 2
3n

3 over the naive Gaussian elimination.

3.2 Optimization of matrix multiplication by tabulation

Similarly, we can optimize matrix multiplication with some tabulations. A first
step consists in computing and storing all possible products between all values
of the first row of the left matrix, and half the right one. Then, the matrix
product AḂ will simply be obtained by two table accesses per row of A (one for
each half of B). Therefore, for computing k products, we obtain a complexity
bound of O(2n+n⌈n

2 ⌉(n−1)+k2n). As comparison, if we used a scalars products
and transposition algorithms, we would have a complexity of O(kn2(n−1)). As

a conclusion, we see that our optimization are more efficient only if k > 2n+n⌈n

2
⌉

n2+ 2n
n−1

.

For semifields generation, the number of equivalence test is of the order of 2n
2

and the second term of the first complexity is therefore dominant. In this case
our optimization allows to gain a factor of n2 in the complexity bound.

4 S-boxes criterion

Several criteria have been defined to measure s-boxes resistance when faced to
different types of attacks. In order to select our s-boxes, we have chosen the
following criteria, following mostly [2]. We denote by S the s-box function.

1. Bijectivity. By construction we only look for bijective functions.

2. Fixed Points. We favor functions without any fix points nor reverse fix
points (as for the AES, this can be avoided by some affine transform on
the trial).
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3. Non-linearity. We return the linear invariant λS , defined as following:

λS = max
a,b∈F2n ,b6=0

{| − 2n−1 +#{x ∈ F2n : (a|x) ⊕ (b|S(x)) = 0}|}

4. XOR table and differential invariant. A XOR table of S is based on the
computation of δS(a, b) = {x ∈ F2n : S(x) ⊕ S(a ⊕ x) = b}, ∀a, b ∈ F

n
2 .

The differential invariant δS is equal to max
a,b∈F

n

2 ,a 6=0
{δS(a, b)}.

5. Avalanche. Strict avalanche criterion of order k (SAC(k)) requires that
the function x 7→ S(x) ⊕ S(a ⊕ x) stays balanced for all a ∈ F2n of
weight inferior to k. The goal is to provide a 1/2 probability of outputs
modifications in case of k bits complemented for entries. In our case,
we measure the distance of the s-box to SAC(1), component function by
component function, and we denote by AS = maxi=1..8|2

n−1−
∑

x Si(x)⊕
Si(a⊕ x)| the maximum obtained.

6. Bit independance. Bit independancy is modelized by the computation of
SAC(1) on the function defined by the sum of any two columns or any
column of the matrix representation of S. As previously, we then measure
its distance to SAC(1), and we denote it by BS .

7. Transparency. This notion has been introduced by Prouff in [12], and
allows to measure the resistance of s-boxes against differential power anal-
ysis. The definition is the following:

TS = max
β∈F

n

2

(

|n− 2H(β)|

−
1

2n(2n − 1)

∑

a∈F
n

2

∣

∣

∣

∑

v∈F
n

2 ,H(v)=1

(−1)vβWDa,S(0, v)
∣

∣

∣

)

where WDa,S(u, v) =
∑

x∈F
n

2

(−1)v[S(x)+S(x+a)]+ux and H(x) is the hamming

weight.

By using this criteria, we are able to compare the efficiency of our s-boxes
with the already existing ones.

For instance, the s-boxes of AES and Camellia have minimal non-linearity
λAES = λCamellia = 16, minimal differential invariant among non-APN func-
tions, δAES = δCamellia = 4, very good bit independence BAES = BCamellia = 8
and avalanche criterion with Camellia slightly better on the latter: AAES = 8
and ACamellia = 6.

5 Results of s-boxes based on semifields pseudo-

extensions

We have implemented a simple matrix arithmetic using our optimizations, in
order to generate semifields of order 16 plus their pseudo-extensions. We have
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then constructed s-boxes with the help of the pseudo-inverse bijection, and apply
all the tests of Section 4.

We succeed to generate 19336 semifields of order 24 (with possible isomorphic
ones). By testing all possible pseudo-irreducible polynomials for each semid-
field, we obtained 10827 s-boxes, and 7052 were CCZ inequivalent [5], with
maximal nonlinearity, differential invariants, degrees and bit interdependency.

Among the latter 2963 had fix points, and among the ones without fix points,
3846 had avalanche=8 (as good as AES) and 243 had avalanche=6 (as good as
Camellia). Among them, 232 have a better transparency level than the inverse
function on a finite field.

6 Conclusion

In order to construct new efficient 8× 8 bijective s-boxes, we replace the usual
finite fields algebraic structure by semifields. However, our current knowledge
about this subject does not allow us to construct directly S28 . We therefore
build pseudo-extensions of degree 2 of S24 . Pseudo-extensions are based on the
notion of pseudo-irreducibility, derived from a characterisation of polynomial
irreducibility in finite fields. This allows us to define in the product of semi-
fields, a novel function as close as possible to the inverse function in a finite
field. We call it a pseudo-inverse and use it exclusively in the building of new
s-boxes. Many of the obtained s-boxes have then very good evaluations on
different criterion for cryptographic resitance. Indeed, we obtained 232 s-boxes
with better scores those of already known s-boxes, including AES and Camellia.

About bijective s-boxes, future search could be base on associativity vari-
ations of (3). It could also be interesting to try to adapt to semifields other
functions (bijective or not), as the ones described in [2, §6]. It would thus also
be worth to see if APN constructions over finite fields could be similarly adpated
over semifields.
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