
HAL Id: hal-01075125
https://hal.science/hal-01075125

Submitted on 16 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GraphSeq Revisited: More Efficient Search for Patterns
in Mobility Traces

Pierre André, Nicolas Rivière, Hélène Waeselynck

To cite this version:
Pierre André, Nicolas Rivière, Hélène Waeselynck. GraphSeq Revisited: More Efficient Search for Pat-
terns in Mobility Traces. 14th European Workshop on Dependable Computing, May 2013, Coimbra,
Portugal. pp.88 - 95, �10.1007/978-3-642-38789-0_8�. �hal-01075125�

https://hal.science/hal-01075125
https://hal.archives-ouvertes.fr


GraphSeq Revisited: More Efficient Search for

Patterns in Mobility Traces

Pierre André1,2, Nicolas Rivière1,2, and Hélène Waeselynck1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France,
2 Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France,

pierre.andre@laas.fr nicolas.riviere@laas.fr helene.waeselynck@laas.fr

Abstract. GraphSeq is a graph matching tool previously developed in
the framework of a scenario-based test approach. It targets mobile com-
puting systems, for which interaction scenarios must consider the evolu-
tion of the spatial configuration of nodes. GraphSeq allows the analysis
of test traces to identify occurrences of the successive configurations of
a scenario. This paper presents a recent improvement made to the tool,
to allow for better performance in the average cases. It consists in re-
arranging the configuration patterns extracted from the scenario, so that
the most discriminating nodes are matched first. The improvement is as-
sessed using randomly generated graphs and a test trace from a case
study in ad hoc networks.

Keywords: Graph matching, Performance, Testing, Mobile computing
systems

1 Introduction

Mobile computing systems involve devices (handset, PDA, laptop, intelligent car,
...) that move within some physical areas, while being connected to networks by
means of wireless links. Compared to “traditional” distributed systems, such
systems execute in an extremely dynamic context. The movement of devices
yields an unstable topology of connection. Links with other mobile devices or
with infrastructure nodes may be established or destroyed depending on the
location. Moreover, mobile nodes may dynamically appear and disappear as
devices are switched on and off, run out of power or go to standby.

Our work addresses a passive testing approach for such systems. Passive
testing (see e.g., [1]) is the process of detecting errors by passively observing the
execution trace of a running system. In our case, the properties to be checked are
specified using graphical interaction scenarios. Figure 1 gives a schematic view
of the approach. The system under test (SUT) is run in a simulated environ-
ment, using a synthetic workload. The SUT may involve both fixed nodes and
mobile devices. The movement of the latter ones is managed according to some
mobility model, a context simulator being in charge of producing location-based
data. Execution traces are collected, including both communication messages
and location-based data. The traces are then automatically analysed with re-
spect to predefined scenarios, representing test requirements or test purposes.



 

!"#$%&'(&)#"%#*"+,(-)%

!  .,/#0"#%,%("1'-("2"+$%#*"+,(-)3%

!  4)5"(#%,%$"#$%&'(&)#"%#*"+,(-)3%

6"1'-("2"+$%#*"+,(-)%

78"*'/)+%

#'&&)($%
78"*'/)+%

#'&&)($%

.9!%

:"$;)(<%

#-2'=,$)(%

4)+$"8$%

#-2'=,$)(%

>)?-=-$@%

2)A"=%

!"#$%$(,*"%
B*)22'+-*,/)+%A,$,%C%

=)*,/)+D?,#"AE%*)+$"8$',=%A,$,F%

Fig. 1: Overview of the scenario-based approach

Test requirements specify mandatory (positive requirement) or forbidden (nega-
tive requirement) interactions. Any observed violation of a requirement must be
reported. Test purposes specify interactions of interest, which we would like to
observe at least once during testing. If the interaction appears in the trace, the
test purpose is reported as covered.

Scenarios are described using a formal UML-based language called TERMOS
(Test Requirement Language for Mobile Settings). TERMOS is a specialization
of UML Sequence Diagrams [7]. Its genesis can be found in our earlier work
[5,6,11]. We first noticed that the spatial configurations of nodes should be a
first class concept [5]. As a result, a scenario should have both (i) a spatial
view, depicting the dynamically changing topology of nodes as a sequence of
graphs, and (ii) an event view representing the communications between nodes.
To account for both views, the checking of test traces against scenarios should
combine graph matching [6] and event order analysis [11]. In this paper, we focus
on the graph matching part, which was implemented by a tool called GraphSeq.

The spatial configurations of a scenario provide a sequence of graphs (the
patterns) and GraphSeq search for all occurrences of this sequence of patterns
in mobility traces. The addressed graph matching problem is inherently costly,
with a worst case complexity exponential in the size and number of the patterns.
We present a functionality added to the original version of GraphSeq, in order to
improve performance of the average cases. It consists in re-arranging the order of
nodes in the patterns, so that GraphSeq tries to match the most discriminating
nodes first. The improvement is measured using random graphs and a test trace
from a case study in ad hoc networks.

Section II of this paper gives an overview of the TERMOS language. Section
III describes the re-arrangement functionality we implemented. Section IV gives
performance results. Section V discusses related work. Section VI concludes.

2 Overview of TERMOS

Figure 2 shows an exemplary TERMOS scenario, with its spatial and event
views. Note that the shown syntax is not exactly the UML-based one presented
in [11]. We adopt here a more compact representation that conveys the same



concepts. The scenario is extracted from a Group Membership Protocol (GMP)
case study we performed [10]. In this GMP, groups split and merge according to
the location of mobile nodes. The protocol uses the concept of safe distance to
determine which nodes should form a group. Figure 2 presents a negative require-
ment (indicated by a false assertion). It describes a pathological interleaving of
concurrent split and merge operations that should never occur.

The spatial view contains a set of spatial configurations for the nodes of the
scenario. In [11], we depicted them using UML diagrams, but conceptually they
consist of labelled graphs. The modeller chooses the labels that are meaningful
for the target application. Edge labels characterize the connection of nodes,
while node labels (not shown here) are used for contextual attributes of nodes.
In Figure 2(a), nodes can have two types of connection, depending on their
distance: Safe and NotSafe. Wildcards ‘*’ indicate don’t care connection types.

The event view shows the interaction of nodes. Lifelines are drawn for the
nodes and the partial orders of their communications are shown. The successive
spatial configurations underlying the communications are made explicit: the sce-
nario has an initial configuration and configuration change events are represented
(e.g., a change from C1 to C2 in Figure 2(b)).

We interpret TERMOS scenarios as generic patterns, instances of which are
searched for in the execution trace. In Figure 2, the nodes ni are symbolic. Any
subset of four SUT nodes can match them during execution, by exhibiting the
proper spatial configurations and communication events. The search for scenario
instances involves two steps:

1. Determine which physical nodes of the trace exhibit the sequence of config-
urations of the scenario, and when they do so.

2. Analyze the order of events in the identified SUT configurations.

n1 n2

n3

n4

*

*

notSafe

*

S
a
fe

S
a
fe

C1

n1 n2

n3

n4

*

*

Safe

*

S
a
fe

n
o
t
S
a
fe

C2

(a) Spatial view

n1! n2! n3!

GetLeader!

LeaderAddress!

GroupInfo!

GroupChange!

GroupChange!

Configuration changes from C1 to C2 

hello!
from n2! hello!

from n2!

hello!

n4!

GroupChange!

hello !
from n2!

False 

assert 

Initial config: C1 

(b) Event view

Fig. 2: a TERMOS scenario for groups of mobile nodes



(id1, v1, *) (id2, 1, 2)

(id3, v1, *)

Safe

*

Fig. 3: A pattern graph with various forms of label

Step 1 amounts to a graph matching problem: we search for a sequence of
graph patterns (coming from the scenario) to appear in a sequence of SUT con-
figurations (retrieved from the location-based data in the trace). Step 2 requires
an interpretation of the event view in terms of partial orders of events. The TER-
MOS semantics encodes the partial orders in a symbolic automaton to categorize
trace fragments as valid, invalid or inconclusive.

In the processing of a scenario, the costliest part is Step 1. For example,
we had a GMP execution with 15 nodes moving according to the Reference
Point Group Mobility model, during 15 minutes. We checked the logged trace
against the scenario of Figure 2. It took about one hour and fifty minutes for the
graph matching, while less than five seconds for the event checking in all found
configurations. Clearly, an improvement of the graph matching performance is
the key for better efficiency.

3 Improvement: Re-arranging Patterns

GraphSeq takes as input two sequences of graphs: (1) a sequence of pattern
graphs coming from a scenario description, (2) a sequence of concrete configu-
ration graphs extracted from an execution trace. It compares the two sequences
of graphs and returns all matches for the pattern sequence. A match identifies a
subset of concrete nodes that exhibit the searched sequence of patterns.

The patterns may involve label variables and wildcards, as illustrated by
Figure 3. Nodes have at most three labels. The first one is mandatory and has
the form of a variable; it is a symbolic id to be matched by the concrete id
of a physical node. The other two labels may be used to represent additional
contextual attributes. They may have the form of constant values, variables or
wildcards. In Figure 3, the pattern indicates that the concrete nodes playing the
role of id1 and id3 have their first optional attribute at unknown, but identical,
values. Each instance of the pattern determines a valuation for the variables.
GraphSeq will explore all possibilities, with a sequential reasoning to account for
successive patterns. The worst cases are exponential in the size and number of
patterns. They occur when every pattern node can be mapped to every concrete
node, and the choices made at some point of the sequence of graphs does not
restrict the choices for the rest of the sequence.

Fortunately, such worst cases are unlikely to correspond to meaningful sce-
narios. Rather, the specified patterns should possess some specificities that make
them of interest for the application. An idea is then to re-arrange the patterns
so that the most discriminating nodes are matched first. To introduce the idea,



let us take the example of the C1 pattern in Figure 2(a). In the encoding sup-
plied to GraphSeq, the first node of the pattern is n1. This node has don’t care
values for its optional labels (like have other nodes in this example) and also
has don’t care values for most of its connections to other nodes of the pattern.
It is thus not discriminating: many concrete nodes are likely to match n1, and
GraphSeq will explore all possibilities. If the pattern is re-arranged so that n2
appears first, GraphSeq will have fewer possibilities to explore, because n2 is
more discriminating as regards its connections to other nodes.

We thus introduce a pre-processing step in GraphSeq. Given a pattern, a
fitness score rewards the discriminative power of each node appearing in it.
Then, the pattern is re-arranged so that the nodes are sorted in descending
order of fitness, making the graph matching algorithm consider the fittest nodes
first. Algorithm 1.1 shows the computation of the fitness score of a node. It
rewards pre-determined attribute values and a high number of pre-determined
connection types with other nodes.

Fitness = 0;

// Reward the node if optional labels are discriminating
for each optional label li

if li is a constant value or a variable that appeared in a previous pattern then
Fitness += 2;

endif
endfor

// Reward the node if its connection types with other nodes are discriminating
for each other node nk of the pattern

if connection to nk is not a don’t care then
Fitness += 1;

endif
endfor

Algorithm 1.1: Fitness score for a node appearing in pattern Pi

4 Experimental results

The functionality optimizing the order of nodes in patterns was integrated into
GraphSeq, in such a way that it can be activated/deactivated by the user. This
allows us to assess its effect on the efficiency of the search for matches. Given
two sequences of graphs to be compared, we successively run the tool with and
without activation of the functionality to compare the obtained durations.

All experiments were performed on the same platform, a computer with two
2.26GHz quad core and 48GB of ram. The current implementation of GraphSeq
is not multi-threaded and uses only one core. Some runs required an amount of
memory greater than the available RAM. In such cases, we decided to forbid the
use of virtual memory, which would anyway considerably decrease performance.
A run is stopped whenever it consumes more than 90% of memory or its duration
exceeds three hours.

We first considered the GMP scenario of Figure 2. We ran again the analysis
of the GMP mobility trace, using the new version of GraphSeq with the optimiza-
tion deactivated. The trace involves 15 concrete nodes exhibiting a sequence of
850 concrete configurations. It took GraphSeq 6600.78 seconds to analyze them
and find 59 matches for the scenario. With the optimization activated, it took



GraphSeq only 40.63 seconds to find the same matches, more than 160 times
faster than previously.

To further assess the improvement, we used randomly generated sequences
of graphs. A generation function was available from previous work: when we
developed the GraphSeq algorithms, we also developed a test tool to verify the
correctness of the matching. The tool generates pairs of pattern and concrete
configuration sequences, and by construction there is at least one match for each
pair. It can then be verified whether this match is correctly found by GraphSeq.
The size and number of graphs can be tuned. The test tool proved very useful to
debug GraphSeq and perform regression testing of its successive versions. Here,
we use it for evaluation purposes.

Table 1 shows the results of running GraphSeq on randomly generated se-
quences of graphs. The first column indicates some generation parameters. For
example, quadruplet (5, 5, 5..35, 700..2100) means that:

– the generated pattern graphs have 5 nodes;
– the lenght of the pattern sequences is of 5 successive graphs;
– the concrete configuration graphs have a number of nodes in the range of

5..35;
– the lenght of the concrete configuration sequence is in the range of 700...2100

graphs.

We generated 20 pairs of sequences for each experimental quadruplet, yielding
20 runs of GraphSeq without and with optimization. The table gives the number
of aborted runs in each case, due to either excessive memory consumption or
excessive time duration. It was never the case that a run successfully completes
with the optimization deactivated while being aborted with optimization. For the
longest pattern sequences (second and fourth row of the table), the optimization
proved very effective to allow completion of runs that had to be stopped in the
original version of GraphSeq.

The duration values of completed runs could be compared. The tables give
the mean, median and standard deviation we observed. The high value of σ

♯ Aborted runs
Duration of completed runs in

seconds: µ(σ)[median] p-Value
w/o opt opt w/o opt opt

(5, 5, 5..35,
700..2100)

Mem: 2
Time: 0

Mem: 0
Time: 0

1110.29 (2335.47)
[140.14]

382.55 (1369.86)
[18.72]

< 10−5

(5, 10, 10..40,
700..2100)

Mem: 7
Time: 3

Mem: 0
Time: 0

511.82 (635,93)
[226.50]

213.18 (31.96)
[207,76]

0.037

(10, 5, 5..35,
1200..3600)

Mem: 0
Time: 2

Mem: 0
Time: 1

909.22 (1786.19)
[43.38]

259.93 (799.54)
[39.68]

0.001

(10, 10, 10..40,
1200..3600)

Mem: 6
Time: 8

Mem: 0
Time: 0

281.92(396.61)
[95.67]

47.07(6.16)
[47.33]

0.031

Table 1: Runs with random sequences of graphs. Graph generation is character-
ized by a quadruplet (number of nodes per pattern, number of patterns, range
for the number of nodes per concrete configurations, range for the number of
concrete configurations). There are 20 runs in each experimental setting.



indicates that, for a given setting of the graph generation, the difficulty of the
generated matching problems still largely varies. Moreover, the mean and median
could be quite different indicating the values are not normally distributed. We
observed lower mean and median when GraphSeq had optimization activated.
To determine whether the improvement is statistically significant, we performed
a paired difference test. We used the Wilcoxon T test since a normal distribution
cannot be assumed. The p-values are reported in the tables.The null hypothesis
can be rejected with a 95% confidence level for all experiments.

We conclude that the proposed pattern re-arrangement facility yields a sig-
nificant improvement of GraphSeq.

5 Related work

Subgraph isomorphism detection is a problem well studied in the literature [9,4].
In GraphSeq, the core functionality to check whether a pattern appears as a sub-
graph of a concrete configuration is reused from an existing graph tool developed
by colleagues at LAAS [3].

The salient feature of GraphSeq is its algorithm to match sequences of
graphs: the sequence of symbolic configurations of the scenario, and the sequence
of concrete configurations traversed during SUT execution. While the problem
of comparing two graphs has been extensively studied, there has been relatively
little work on the comparison of sequences of graphs (see [2] for a survey on
graph matching). The closest work we found is for the analysis of video images.
In [8], the authors search for sequences of patterns (called pictorial queries) into
a sequence of graphs extracted from video images. A difference with our work,
however, is that a pattern node corresponds to at most one object in an image.
In our case, several instances of a pattern may be found in a concrete configu-
ration, with different possible valuations for the variables (including node ids).
Hence, to the best of our knowledge, the sequential reasoning implemented by
GraphSeq is original.

6 Conclusion

In this paper, we have presented an improvement made to our graph matching
tool GraphSeq. Its principle is simple: reward pattern nodes according to their
discriminating power, and re-arrange the encoding of the patterns so that the
fittest nodes are matched first. While simple, the proposed optimization proved
very effective to improve performance. A mobility trace issued from a case study,
a group membership protocol in ad hoc networks, could be processed 160 times
faster than previously. These promising results were confirmed by experiments on
a sample of randomly generated sequences of graphs. The duration values were
found significantly higher with than without optimization. Moreover, for the
largest configurations we generated, the optimization made it possible to com-
plete a significantly higher number of runs than the original version of GraphSeq.
This of course does not change the theoretical limitation of the tool due to the



exponential complexity of the matching problem. But it improves our ability to
handle the cases we are targetting in practice, that is, scenarios with small-size
patterns that are unlikely to correspond to the worst cases (in the worst cases,
no node would be discriminating, hence jeopardizing the node re-arrangement
functionality).

GraphSeq is an important component of our scenario-based test platform
for mobile computing systems. It addresses the processing of the spatial view of
TERMOS scenarios, where the movement of nodes is abstracted by a sequence
of labelled graphs. Another tool, integrated into the Papyrus UML environment,
uses the outputs of GraphSeq to process the event view showing inter-node
communication. The complete processing of a TERMOS scenario is dominated
by the duration of the graph matching, which is the costliest part of test trace
analysis. By significantly improving the performance of GraphSeq, we thus also
significantly improve the overall approach.

References

1. Ana Cavalli, Stephane Maag, and Edgardo Montes de Oca. A passive conformance
testing approach for a MANET routing protocol. In Proceedings of the 2009 ACM
symposium on Applied Computing, SAC ’09, pages 207–211, New York, NY, USA,
2009. ACM.

2. Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years
of graph matching in pattern recognition. IJPRAI, 18(3):265–298, 2004.

3. Karim Guennoun and Khalil Drira. Using graph grammars for interaction style de-
scription: applications for service-oriented architectures. Comput. Syst. Sci. Eng.,
21(4), 2006.

4. Bruno T. Messmer and Horst Bunke. Efficient subgraph isomorphism detection:
A decomposition approach. IEEE Trans. Knowl. Data Eng., 12(2):307–323, 2000.

5. M.D. Nguyen, H. Waeselynck, and N. Rivière. Testing mobile computing applica-
tions: toward a scenario language and tools. In Proceedings of the 2008 interna-
tional workshop on dynamic analysis: held in conjunction with the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2008), pages
29–35. ACM, 2008.

6. Minh Duc Nguyen, H. Waeselynck, and N. Rivière. Graphseq: A graph matching
tool for the extraction of mobility patterns. In Proc. Third Int Software Testing,
Verification and Validation (ICST) Conf, pages 195–204, 2010.

7. Omg. OMG Unified Modeling Language (OMG UML), Superstructure Specifica-
tion (Version 2.4.1). Technical Report OMG Document Number: formal/2011-08-
06, Object Management Group, August 2011.

8. Kim Shearer, Svetha Venkatesh, and Horst Bunke. Video sequence matching via
decision tree path following. Pattern Recognition Letters, 22(5):479–492, 2001.

9. Julian R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42,
1976.

10. H. Waeselynck, Z. Micskei, Minh Duc Nguyen, and N. Riviere. Mobile systems
from a validation perspective: a case study. In Proc. Sixth Int. Symp. Parallel and
Distributed Computing ISPDC ’07, 2007.

11. Helene Waeselynck, Zoltan Micskei, Nicolas Riviere, Aron Hamvas, and Irina Nitu.
TERMOS: a formal language for scenarios in mobile computing systems. In 7th
International ICST Conference on Mobile and Ubiquitous Systems, Sydney, Aus-
tralia, 2010.


	GraphSeq Revisited: More Efficient Search for Patterns in Mobility Traces

