
HAL Id: hal-01075121
https://hal.science/hal-01075121

Submitted on 16 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A UML-based environment for test scenarios in mobile
settings

Pierre André, Hélène Waeselynck, Nicolas Rivière

To cite this version:
Pierre André, Hélène Waeselynck, Nicolas Rivière. A UML-based environment for test scenarios in
mobile settings. 2013 International Conference on Computer, Information and Telecommunication
Systems (CITS), May 2013, Athens, Greece. pp.1 - 5, �10.1109/CITS.2013.6705716�. �hal-01075121�

https://hal.science/hal-01075121
https://hal.archives-ouvertes.fr

A UML-Based Environment for Test Scenarios in Mobile Settings

Pierre André
1,2

, Hélène Waeselynck
1,2

, Nicolas Rivière
1,2

1
CNRS, LAAS, 7, Av du Colonel Roche, F-31400 Toulouse, France

2
Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

{Pierre.Andre, Helene.Waeselynck, Nicolas.Riviere}@laas.fr

Abstract—TERMOS is an UML-based formal language for

specifying scenarios in mobile computing systems. TERMOS

scenarios are used for the verification of test traces: they

represent mandatory or forbidden interactions that are

searched for in the trace. Building upon previous work on

the semantics of TERMOS, this paper presents the complete

integration of the language into UML support technology. A

TERMOS profile has been developed for the editing of

scenarios, as well as an Eclipse plugin for the automated

checking of traces. We demonstrate the approach on a case

study, a group membership protocol in ad hoc networks.

Keywords- Mobile computing systems, UML sequence

diagrams, UML profile, trace analysis.

I. INTRODUCTION

Mobile computing systems involve devices (handset,
PDA, laptop, intelligent car, …) that move within some
physical areas, while being connected to networks by
means of wireless links. Compared to “traditional”
distributed systems, such systems execute in an extremely
dynamic context. The movement of devices yields an
unstable topology of connection. Links with other mobile
devices or with infrastructure nodes may be established or
destroyed depending on the location. Moreover, mobile
nodes may dynamically appear and disappear as devices
are switched on and off, run out of power or go to standby.

Our work addresses a passive testing approach for such
systems. Passive testing (see e.g., [1]) is the process of
detecting errors by passively observing the execution trace
of a running system. In our case, the properties to be
checked are specified using graphical interaction scenarios.
Figure 1 gives a schematic view of the approach. The
system under test (SUT) is run in a simulated environment,
using a synthetic workload. The SUT may involve both
fixed nodes and mobile devices. The movement of the
latter ones is managed according to some mobility model,
a context simulator being in charge of producing location-
based data. Execution traces are collected, including both
communication messages and location-based data. The
traces are then automatically analyzed with respect to
predefined scenarios, representing test requirements or test
purposes. Test requirements specify mandatory (positive
requirement) or forbidden (negative requirement)
interactions. Any observed violation of a requirement must
be reported. Test purposes specify interactions of interest,
which we would like to observe at least once during
testing. If the interaction appears in the trace, the test
purpose is reported as covered.

The automated checking of the traces against scenarios
can only be possible if the scenario language possesses a
formal semantics. This led us to design a formal UML-
based language called TERMOS (Test Requirement

Language for Mobile Settings). TERMOS is a
specialization of UML Sequence Diagrams [2]. Its genesis
can be found in our earlier work [3-5]. We first noticed
that the spatial configurations of nodes should be a first
class concept [3]. As a result, a scenario should have both
(i) a spatial view, depicting the dynamically changing
topology of nodes as a sequence of graphs, and (ii) an
event view representing the communications between
nodes. To account for both views, the checking of test
traces against scenarios should combine graph matching
and event order analysis. Later work defined the graph
matching part of the TERMOS semantics [4] and the event
order analysis algorithm [5].

While all pieces of TERMOS had been defined, we did
not have yet a complete tool chain for the analysis of test
traces. This paper reports on recent effort to integrate the
TERMOS language and algorithms in an open-source
UML environment. We now have a full demonstrator for
the approach, from the graphical editing of scenarios to
their automated use for checking test traces.

Section II of this paper gives an overview of the
TERMOS language. Section III shows how we specialized
the Eclipse Papyrus

1
 environment for the editing of

scenarios, by means of a TERMOS UML profile. Section
IV presents the Eclipse plugin we implemented for the
processing of scenarios. Its use is illustrated on a case
study, a group membership protocol (GMP) for ad hoc
networks [6]. Section V discusses related work. Section VI
concludes.

II. OVERVIEW OF TERMOS

Figure 2 shows an exemplary TERMOS scenario, with
its spatial view (Fig. 2.a) and its event view (Fig. 2.b). It is
extracted from the GMP case study we performed [6]. In
this GMP, groups split and merge according to the location
of mobile nodes. The protocol uses the concept of safe
distance to determine which nodes should form a group.

The spatial view contains a set of spatial configurations
for the nodes of the scenario. We depict them using UML
object diagrams, but conceptually they consist of labeled
graphs. The modeler chooses the labels that are
meaningful for the target application. Edge labels
characterize the connection of nodes, while node labels
(not shown here) are used for contextual attributes of
nodes. In Figure 2.a, nodes can have two types of
connection, depending on their distance: Safe and NotSafe.
A wildcard ‘*’ may also be used to indicate don’t care
connection types.

1
 http://www.eclipse.org/papyrus/

The event view shows the interaction of nodes using a
specialization of sequence diagrams. Like in usual
sequence diagrams, lifelines are drawn for the nodes and
the partial orders of their communications are shown. The
TERMOS specifics are:

• an explicit consideration for the successive spatial
configurations underlying the communications;

• the possibility to represent local broadcast;

• some syntactic restrictions to sequence diagrams.
The first two specifics are relevant to the mobile

setting, while the syntactic restrictions are relevant to the
use of TERMOS for checking execution traces.

A TERMOS event view always has an initial
configuration, and configuration changes are explicitly
depicted as global events. In Figure 2.b, the change from
C1 to C2 is an abstraction for the movement of n2 getting
close to n1 while getting away from n3. All shown
messages occur in the new C2 configuration. They
correspond to concurrent group operations, a split and a
merge, causally related to the change of connection
between n2 and the other nodes.

Local broadcast is a classical mode of communication
in ad hoc networks. A node sends a message in its vicinity;
whoever is at communication range may listen to, and
react to, the message. In the GMP example, local broadcast
is used for group discovery. When n2 broadcasts its new
location in a hello message, the other nodes notice the
configuration change and initiate group change operations.
Note how a broadcast involves one send event and
possibly many receive events. The tagged value attached
to them allows us to pair each receive event to the send
event that caused it.

A syntactic restriction is to have exactly one assert
fragment, at the end of the diagram. Intuitively, everything
before assert is a potential interaction, while the content of
assert is mandatory. In Figure 2.b, the assertion is merely a
false invariant. As false cannot hold, the scenario
represents a negative requirement: the potential interaction
shall never occur. A true assertion would characterize a
test purpose to cover: true trivially holds whenever assert
is reached, that is, whenever the potential interaction
occurred. Richer assert contents, showing interactions with
messages, express positive requirements of the form:
whenever the potential interaction occurs, then the asserted
one must follow.

We interpret TERMOS scenarios as generic patterns,
instances of which are searched for in the execution trace.
In Figure 2, the nodes ni are symbolic. Any subset of four
SUT nodes can match them during execution, by
exhibiting the proper spatial configurations and
communication events.

The search for scenario instances involves two steps:
1. Determine which physical nodes of the trace

exhibit the sequence of configurations of the
scenario, and when they do so.

2. Analyze the order of events in the identified SUT
configurations.

SUT configurations can be retrieved from the location-
based data. Step 1 then amounts to a graph matching
problem: we search for a sequence pattern (coming from
the scenario) to appear in a sequence of SUT
configurations. We developed a tool, GraphSeq [4], to do
the search.

Step 2 requires an interpretation of the event view in
terms of partial orders of events. In TERMOS, the chosen
semantics encodes the partial orders in a symbolic
automaton [5]. Its aim is to categorize trace fragments as
valid, invalid or inconclusive with respect to the scenario.

III. A UML PROFILE FOR EDITING TERMOS

SCENARIOS

A profile is a means to customize UML models for a
domain. It uses lightweight extension mechanisms like
stereotypes, tag values, and OCL constraints. We created a
profile for TERMOS scenarios. It involves six stereotypes.
Some of them graphically appear in Figure 2. The spatial
view contains packages with the
<<termosConfiguration>> stereotype, where each
configuration involves <<termosNode>> elements and
their <<termosConnection>> associations. The sequence
diagram of the event view has the <<termosScenario>>
stereotype. It may involve <<configChange>> elements, as
well as <<broadcast>> messages. Some stereotypes have
attributes. For example, any <<termosScenario>> has an
initial configuration attribute, which must be a
<<termosConfiguration>>. A <<termosConnection>> has
a connection label, taking its values from a user-defined
enumerated type (e.g., Safe, NotSafe). Also, as explained
in the previous section, <<broadcast>> messages have an
id tag.

!"#$%&'(&)#"%#*"+,(-)%

!  .,/#0"#%,%("1'-("2"+$%#*"+,(-)3%

!  4)5"(#%,%$"#$%&'(&)#"%#*"+,(-)3%

6"1'-("2"+$%#*"+,(-)%

78"*'/)+%

#'&&)($%
78"*'/)+%

#'&&)($%

.9!%

:"$;)(<%

#-2'=,$)(%

4)+$"8$%

#-2'=,$)(%

>)?-=-$@%

2)A"=%

!"#$%$(,*"%
B*)22'+-*,/)+%A,$,%C%

=)*,/)+D?,#"AE%*)+$"8$',=%A,$,F%

Figure 1. Overview of the scenario-based approach

 (a) Spatial view

(b) Event view

Figure 2. A concurrent split and merge scenario for groups of mobile nodes

We implemented the profile in Eclipse Papyrus. Early
prototyping used other UML open-source editors [5], but
we eventually retained Papyrus for the full demonstrator.
Compared to alternative solutions based on Eclipse
(UML2Tools

2
, Topcased

3
), it was the one offering the

highest support for the definition of profiles. It also had the
best coverage of the UML2 syntax for editing models.

The TERMOS event view has non-standard elements
like local broadcast, configuration changes and global
predicates covering all lifelines. We chose a representation
in terms of existing UML elements, to allow their editing
in a diagram. For local broadcast, we used the lost and
found messages recently introduced in UML2. Lost
messages have a sender and no receiver, and found
messages only a receiver. By defining the <<broadcast>>
stereotype, we create variants where the broadcast sending
is drawn as a lost message, and the multiple receiving as a
set of found messages. A configuration change is drawn as
a continuation, an element that we should normally use in
an alt operator only. The <<configChange>> stereotype
creates a continuation variant used in the seq operator (it
also required a slight change of the Papyrus editor to allow
this). Finally, the Papyrus editor let us modify the number
of lifelines covered by a StateInvariant, which can then
represent a global predicate.

To check whether a model is a well-formed scenario,
we did not use OCL constraints. We found it more
convenient to implement the checks in Java, and to have
them in a TERMOS Eclipse plugin. The checks include:

• the use of the stereotypes defined in the profile;

• syntactic restrictions on sequence diagram
operators (see [7], section 3.2.3, for an overview);

• the compatibility of communication events with
the topology of connections of the current spatial
configuration.

IV. TERMOS PLUGIN FOR PROCESSING SCENARIOS

The processing of a scenario is summarized in Figure
3. The TERMOS plugin has a functionality to check that a
scenario is well-formed and then generate verification
artifacts from it. The first artifact is a sequence of pattern
graphs encoded in the GraphSeq input format. It represents
the successive spatial configurations of the scenario. The
second artifact is the symbolic automaton encoding the
allowed/forbidden orders of events.

The traces to analyze are recorded from the execution
of the system under test (SUT). They have to be translated
into an XML-based format we defined. The etrace format
uses an extensible set of markup elements. The core
elements (nodes, node connection, various types of time-
stamped events, …) can be used for any SUT. The user
may then extend the XML Schema Definition to account
for SUT-specific elements, for example to specify the
format of a specific message type.

The GraphSeq tool searches for all occurrences of the
graph sequence pattern in the trace. For each match found,
it returns a valuation of the variables of the pattern (e.g.,
n1 := "140.93.65.42:10010", …), as well as the start and
end dates of the successive configuration instances (e.g.,

2
 http://www.eclipse.org/modeling/mdt/?project=uml2tools

3
 http://www.topcased.org/

the instance of C1 starts at t = "06:38:40,465", a change to
C2 occurs at t ="06:38:45,594", …). Compared to its first
implementation [4], GraphSeq has been improved by some
optimizations. The most important one is the re-
arrangement of the pattern graphs, so that the most
discriminating nodes are matched first. For some
scenarios, we observed a significant decrease of the search
duration, from hours to minutes.

Following the call to Graphseq, a filtering utility
prepares trace fragments for the analysis of events in the
identified configurations. It extracts the subtrace within the
time window of a match, and keeps only the events of the
nodes of the scenario. It also inserts the identified
configuration change events (e.g., CHANGE(C2) is
inserted with the "06:38:45,594" time-stamp).

The final verification of events is done via a
functionality of the TERMOS plugin. It executes the
automaton against a trace fragment. The exit state
determines a verdict: the trace is valid if the execution
successfully reaches the end of assert, invalid if the assert
is exited before its end, inconclusive if assert is not reached
(the potential behavior did not occur).

This tool chain allows us to demonstrate the full
approach, from the editing of a scenario to its use to check
an execution trace. The case study is the group
membership protocol (GMP) available in the LIME
middleware for mobile environment

4
. The implemented

GMP does not ensure atomicity of the group operations:
the scenario in Figure 2 exemplifies one pathological case
of concurrent split and merge operations.

The scenario was edited in the Papyrus environment,
and the verification artifacts generated from the TERMOS
plugin. We collected the traces for 50 runs of the GMP.
The runs used IMPORTANT [8] to generate the location
data, according to the Reference Point Group Mobility
model (RPGM). We then launched the analysis by
GraphSeq and the automaton executor. Each run can be
processed in about two minutes, thanks to the
optimizations brought to the graph matching part. Table I
summarizes the results. We obtained 17 occurrences of the
invalid behavior described by the scenario.

4
 http://lime.sourceforge.net/

System under test

GraphSeq

TERMOS Scenario

Filtering

TERMOS

automaton

execution

Verdict

.etrace

Sequence

of pattern

graphs
Matchs

found

.etrace

.etrace

Automaton

Figure 3. Trace Analysis

TABLE I. AUTOMATED ANALYSIS OF 50 RUNS OF THE GMP

Duration of one run 15

minutes

Size of SUT 15 nodes

Average number of matches found by GraphSeq per run 1200

Total number of occurrences of the scenario for the 50

runs

17

V. RELATED WORK

Other work has investigated how to incorporate
mobility into UML scenarios [9, 10, 11]. However, the
focus was more on logical mobility (mobile computation)
than on physical one (mobile computing). It induces a
view of mobility that consists of entering and exiting
administrative domains, the domains being hierarchically
organized. This view is adequate to express the migration
of agents, but physical mobility requires further
investigation, e.g., to account for dynamic ad-hoc
networking. Also, there is not always a formal semantics
attached to the notations.

Having a formal semantics is crucial for our objective
of analyzing traces. We had a thorough look at existing
semantics for UML Sequence Diagrams [12]. We also
looked at other scenario languages distinguishing potential
and mandatory behavior. The most influential work for the
TERMOS semantics was work on Live Sequence Charts
(LSC) [13, 14], as well as work adapting LSC concepts
into UML Sequence Diagrams [15, 16].

GraphSeq implements an algorithm to match
sequences of configurations: the sequence of symbolic
configurations of the scenario, and the sequence of
concrete configurations traversed during SUT execution.
To the best of our knowledge, this is an original
contribution. The comparison of sequences of graph has
been much less studied than the comparison of two graphs.
The closest work we found is for the analysis of video
images. In [17], the authors search for sequences of
patterns (called pictorial queries) into a sequence of
concrete graphs extracted from video images. Some
differences with us are that their patterns do not involve
label variables, and that there is at most one possibility for
matching a pattern node with an image object.

VI. CONCLUSION

This paper presented the tooling support for TERMOS,
a scenario language for mobile computing systems.
TERMOS allow us to specify properties for subsets of
nodes exhibiting predefined patterns of spatial
configurations. The properties concern the partial orders of
their communication and configuration change events.
They come in various forms: positive requirements,
negative requirements and test purposes. They are used to
analyze execution traces.

Future work will investigate how to accommodate
richer descriptions of scenarios. We will consider the
stability of the configuration, by means of min and max
duration constraints. We will also elaborate on the
representation of contextual data. Currently, the context is
abstracted away by the topology of connection and by
labels puts on the nodes and edge. It allows us to account

for simple contextual parameters, but might become quite
insufficient for devices moving in a highly instrumented
environment.

REFERENCES

[1] A. Cavalli, S. Maag, and E. Montes de Oca, “A passive
conformance testing approach for a MANET routing protocol,”

Proc. ACM symposium on Applied Computing (SAC '09), ACM,
2009, pp. 207-211, doi: 10.1145/1529282.1529326.

[2] Object Management Group: UML 2.4 Superstructure Specification,

formal/2011-08-06, August 2011.

[3] M. D. Nguyen, H. Waeselynck, and N. Rivière, “Testing mobile
computing applications: toward a scenario language and tools,”

Proc. 6
th
 Int. Workshop on Dynamic Analysis (WODA '08), ACM,

2008, pp. 29-35, doi:10.1145/1401827.1401834.

[4] M. D. Nguyen, H. Waeselynck, and N. Rivière, “GraphSeq: A

Graph Matching Tool for the Extraction of Mobility Patterns,”
Proc. 3

rd
 Int. Conf. on Software Testing, Verification and

Validation (ICST 2010), IEEE., April 2010, pp.195-204, 6-10, doi:
10.1109/ICST.2010.53.

[5] H. Waeselynck, Z. Micskei, N. Rivière, A. Hamvas, and I. Nitu,

“TERMOS: a Formal Language for Scenarios in Mobile
Computing Systems,” Proc. 7th Int. ICST Conf. on Mobile and

Ubiquitous Systems (MobiQuitous 2010), Springer, LNICST, Vol
73, 2012, pp. 285-296, doi: 10.1007/978-3-642-29154-8_24.

[6] H. Waeselynck, Z. Micskei, M. D. Nguyen, and N. Rivière,
“Mobile Systems from a Validation Perspective: a Case Study”,

Proc. 6th Int. Symp. on Parallel and Distributed Computing
(ISPDC 2007), IEEE CS Press, July 2007, pp. 85-92, doi:

10.1109/ISPDC.2007.37.

[7] G. Huszerl et al., “Refined design and testing framework,
methodology and application results”, Hidenets Deliverable D5.3,

December 2008. http://www.hidenets.aau.dk/Public+Deliverables

[8] F. Bai, N. Sadagopan and A. Helmy, "The IMPORTANT
Framework for Analyzing the Impact of Mobility on Performance

of Routing for Ad Hoc Networks", AdHoc Networks, 1(4),
Elsevier, Nov. 2003, pp. 383-403, doi: 10.1016/S1570-

8705(03)00040-4.

[9] H. Baumeister, N. Koch, P. Kosiuczenko, P. Stevens, and M.
Wirsing, “UML for Global Computing”, Springer, LNCS 2874,

2003, pp. 1-24, doi: 10.1007/978-3-540-40042-4_1.

[10] V. Grassi, R. Mirandola, and A. Sabetta, “A UML Profile to Model
Mobile Systems”, Springer, LNCS 3273, 2004, pp. 128-142, doi:

10.1007/978-3-540-30187-5_10.

[11] M. Kusek, G. Jezic, “Extending UML Sequence Diagrams to
Model Agent Mobility”, Springer, LNCS 4405, 2006, pp. 51-63,

doi: 10.1007/978-3-540-70945-9_4.

[12] Z. Micskei and H. Waeselynck, “The many meanings of UML 2

Sequence Diagrams: a survey,” Software and Systems Modeling,
10(4), 2011, Springer, pp. 489-514, doi: 10.1007/s10270-010-

0157-9.

[13] W. Damm and D. Harel, “LSCs: Breathing Life into Message
Sequence Charts”, Formal Methods in System Design, 19(1),

Kluwer, 2001, pp. 45-80, doi: 10.1023/A:1011227529550.

[14] J. Klose, “Live Sequence Charts: a Graphical Formalism for the
Specification of Communication Behavior”, PhD thesis, C. v. O.

Universitat Oldenburg, 2003.

[15] J. Küster-Filipe, “Modelling Concurrent Interactions”, Theoretical
Computer Science, 351(2), Elsevier, 2006, pp. 203–220 , doi:

10.1016/j.tcs.2005.09.068.

[16] D. Harel and S Maoz, “Assert and negate revisited: Modal
semantics for UML sequence diagrams”, Software and Systems

Modeling, 7(2), Springer, 2008, pp. 237–253, doi: 10.1007/s10270-
007-0054-z.

[17] K. Shearer, S. Venkatesh and H. Bunke. ”Video sequence

matching via decision tree path following”, Pattern Recognition
Letters 22, Elsevier, 2001, pp 479-492, doi : 10.1016/S0167-

8655(00)00121-5

