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Abstract: A nonlinear visual servoing approach is proposed for the stabilisation of fully-
actuated autonomous underwater vehicles (AUVs) by exploiting the homography matrix
between the two images of a planar scene. In a cascade manner, an outer-loop control defines
a reference setpoint based on the homography matrix, and an inner-loop control ensures
the stabilisation of the setpoint by assigning thrust and torque controls. In contrast with
conventional kinematic solution, the proposed controller deals with the high nonlinearity and
coupling of the system dynamics and ensures almost-global asymptotical stability. In addition,
the interactions of the AUV with the surrounding fluid (e.g., added mass and drag effects)
are often difficult to model precisely whereas they may significantly perturb its motion. The
proposed controller –augmented with an effective integral action– allows for the compensation of
model uncertainties and for robust performance against such perturbations. Simulation results
illustrating these properties on a realistic AUV model subject to sea current are reported.

1. INTRODUCTION

The object of the present paper is a class of fully-
actuated underwater vehicles whose thrust and torque
controls can be assigned independently. While this config-
uration is typical for remotely operated vehicles (ROVs),
it also exists in some autonomous underwater vehicles
(AUVs).Underwater environment gives rise to several con-
trol difficulties. For instance, the dynamics of an under-
water vehicle is highly nonlinear and characterized by
a strong coupling between translational and rotational
dynamics, mainly due to added mass effects [Fossen, 2002].
In addition, the key issue related to the control of AUVs
is the lack of lightweight and reliable position sensors. A
vision system, being lightweight, passive and adaptable,
can be used, at least partially, to respond to this challenge.
By using a camera as the primary sensor for relative
position, the control problem can be cast into Image-
Based Visual Servo (IBVS) control problem [Chaumette
and Hutchinson, 2006], which opens the possibility to
perform autonomous tasks in low-structured environments
with no external assistance. Classical visual servo con-
trol was developed for serial-link robotic manipulators
[Chaumette and Hutchinson, 2006] and more recently for
aerial vehicles [Guenard et al., 2008], [Gonçalves et al.,
2009]. In the underwater robotics field few attempts have
been made to use vision sensors to perform tasks related
to man-made structures such as pipeline following [Rives
and Borrelly, 1997, Krupinski et al., 2012] using linear
features, or station keeping [Lots et al., 2001] using point
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features. When the visual target is planar, an IBVS control
scheme is proposed in [Benhimane and Malis, 2007] using
the homography matrix that encodes transformation in-
formation between two images of the same planar target
and that can be directly retrieved from the corresponding
images. This homography-based visual servoing (HBVS)
scheme is a purely kinematic control, initially designed
for fully-actuated manipulators. However, its stability and
convergence properties are only local and are not provable
when the system’s dynamics is taken into account. The
HBVS problem has also been investigated for underactu-
ated aerial vehicles [Metni et al., 2005], [de Plinval et al.,
2013]. In [Metni et al., 2005], additional information such
as the orientation measurement of the camera with respect
to the target is assumed to be available. In contrast, the
HBVS solution proposed in [de Plinval et al., 2013] only
makes use of the homography matrix along with gyro-
scope’s measurements. However, only local (exponential)
stability is proved based on Lyapunov-like analysis. In
fact, the consideration of the vehicle’s dynamics within
the control design is crucial to obtain provable (strong)
stability. These works also show that significant efforts are
required in order to eliminate the assumptions concern-
ing the precise knowledge of environment geometry. The
present study is an alignment with these efforts. Although
the AUV system under consideration is fully-actuated,
the strongly coupled translational and rotational dynamics
represents another challenge. Moreover, in contrast with
existing HBVS solutions, an important original outcome
of the proposed control approach is related to the obten-
tion of almost-global asymptotical stability by means of
continuous feedback control.



The paper is organized as follows. Notation, system model-
ing and HBVS problem are described in Section 2. Control
design is presented in Section 3. In Subsection 3.1, an
inner-loop control is proposed for the stabilisation of refer-
ence velocity setpoint, based on some modifications of the
prior work [Krupinski et al., 2012]. In Subsection 3.2, we
present the main result of the paper concerning the design
of an outer-loop control directly based on the homogra-
phy matrix, with the objective of assigning a reference
velocities setpoint for the inner-loop control. Section 4
reports simulation results illustrating the performance of
the control approach on a realistic AUV model. Finally,
conclusions are given in Section 5.

2. PRELIMINARY MATERIAL

2.1 Notation

The following notation is used (see Fig. 1):

Fig. 1. Notation.

• G and B are the vehicle’s center of mass and center
of buoyancy, respectively, m its mass and J0 its inertia
matrix. Let l denote the distance between G and B.
• A = {O;−→e a1 ,

−→e a2 ,
−→e a3} is an inertial frame chosen such

that its −→e a3–axis points downwards and coincides with
the gravity direction. B = {B;−→e b1,

−→e b2,
−→e b3} is a frame

attached to the body whose origin coincides with the
vehicle’s center of buoyancy. C = {C;−→e c1,

−→e c2,
−→e c3} is a

frame attached to the camera, which is displaced from the

origin of B by a vector
−−→
BC and keeps its base vectors

parallel to those of B. Let rC ∈ R
3 and rG ∈ R

3 denote

the vectors of coordinates expressed in the frame B of
−−→
BC

and
−−→
BG, respectively.

• The orientation of the body-fixed frame B with respect to
(w.r.t.) the inertial frame A is represented by the rotation
matrix R ∈ SO(3).
• The position vectors of the origins of the body-fixed
frame B and the camera frame C, expressed in the inertial
frame A, are denoted as p and pC , respectively. Their
relation is p = pC −RrC .
• The angular velocity vector of the body-fixed frame B
relative to the inertial frame A, expressed in the frame B,
is denoted as Ω = [ω1, ω2, ω3]

⊤ ∈ R
3. The translational

velocity vectors of the origins and the frame B and the
frame C, expressed in the frame B, are denoted as V ∈ R

3

and VC ∈ R
3, respectively.

• {e1, e2, e3} denotes the canonical basis of R3. I3 is the
identity matrix of R3×3. For all u ∈ R

3, the notation u×

denotes the skew-symmetric matrix associated with the
cross product by u, i.e., u×v = u × v, ∀v ∈ R

3. The

Euclidean norm in R
n is denoted as | · | and (·)⊤ denotes

the transpose operator.
• satδ(·) ∈ R

n, with δ > 0, is the classical saturation

function defined as satδ(x),xmin (1, δ/|x|) , ∀x ∈ R
n.

• satc∆(·) ∈ R
3, with some positive diagonal matrix

∆ = diag([δ1, δ2, δ3]), is a saturation function defined as

satc∆(x),
[
satδ1(x1) satδ2(x2) satδ3(x3)

]⊤
, ∀x ∈ R

3.

2.2 System Modeling

Without loss of generality, let us assume that G lies on
the −→e b3–axis and under the center of buoyancy B such
that rG = le3, i.e., bottom-heavy vehicle.

Define W , [V⊤ Ω⊤]⊤ ∈ R
6. When characterized at the

center of buoyancy B, the kinetic energy of the vehicle is
given by (see [Leonard, 1997]):

EB =
1

2
W⊤MBW, with MB ,

[
mI3 −mrG×

mrG× J0

]
.

According to Kirchhoff and Lamb theory [Lamb, 1932],
the kinetic energy of the liquid surrounding the vehicle is
given by:

EF =
1

2
W⊤MAW, with MA ,

[
M11

A M12

A

M21

A M22

A

]
,

where MA ∈ R
6×6 is known as the added mass matrix,

which is constant and symmetric. The total kinetic energy
of the body-fluid system is ET =EB+EF = W⊤MTW,
where the positive-definite matrix MT is given by:

MT = MB +MA =

[
M D⊤

D J

]
,

with M , mI3+M11
A , J , J0+M22

A , D , mle3×+M21
A .

The matrices M11
A and M22

A are often referred to as added
mass and added inertia matrices, respectively. One derives
the translational and rotational momentums as follows:

P=
∂ET
∂V

= MV −DΩ, Π =
∂ET
∂Ω

= JΩ+DV.

Then, the equations of motion satisfy [Leonard, 1997]:




ṗ = RV

Ṙ = RΩ×

Ṗ = P×Ω+ (mg − FB)R
⊤e3 + FD + FC

Π̇ = Π×Ω+P×V+mgle3 ×R⊤e3+ΓD+ΓC

(1a)

(1b)

(1c)

(1d)

The term (mg − FB)R
⊤e3 is the contribution of both

gravitational and buoyancy forces. The cross termmgle3×
R⊤e3 represents the gravitational moment w.r.t. the center
of buoyancy. The expansion of P × V in Eq. (1d) shows
that the term (MV) × V should not be neglected in the
control design due the added mass effects [Leonard, 1997].
The terms FD and ΓD represent the damping force and
torque due to fluid pressure and viscous drag. Finally,
FC ∈ R

3 and ΓC ∈ R
3 are the force and torque control

vector inputs.

2.3 Homography-based Visual Servo Control Problem

The vehicle is assumed to be equipped with a camera, an
Inertial Measurement Unit (IMU) and a Doppler velocity
log (DVL). The IMU provides the measurements of the
angular velocity Ω and the gravitational direction R⊤e3
(i.e., roll and pitch angles), whereas the DVL measures
the translational velocity V.



A reference image of a planar target is taken at some
desired pose (i.e., position and orientation). Based on
this reference image and the current image, the control
objective consists in stabilising the pose of the camera
to the desired one. Assume that the camera provides
the measurement of the homography matrix H, which
contains geometric information about the rotation and
translation between two reference frames (see Fig. 1). The
homography matrix H is given by [Benhimane and Malis,
2007]:

H = R⊤ − (1/d∗)R⊤pCn
∗⊤, (2)

where d∗ is the distance between the target plane and
the camera optical center, and n∗ = [n∗1 n∗2 n∗3]

⊤ is the
unit vector normal to the target plane expressed in the
reference camera frame.

Hypothesis 1. Assume that the reference image is taken
when the AUV stays in a horizontal plane. In addition,
the inertial frame A are chosen attached to the reference
pose of the camera (see Fig. 1).

Hypothesis 2. Assume that a rough knowledge of n∗ is
available such that one can choose a unit vector m∗ ∈ S

2

such that n∗⊤m∗ > 0.
The control objective can be stated as the stabilisation
of H about the identity matrix I3, or equivalently the
stabilisation of (R,pC) about (I3,0).

3. CONTROL DESIGN

The proposed control approach is split into two cascade
parts. The first part –termed inner-loop control– ensures
the stabilisation of the translational and angular velocities
to a desired setpoint. The second one –termed outer-
loop control– is specifically designed from the homography
matrix to define the desired velocities setpoint.

3.1 Inner-loop Control

The control objective taken consists in stabilising the
AUV’s velocities (V,Ω) about the reference velocities
(Vr,Ωr), specified by the outer-loop control. The ad-
ditional objective is the stabilisation of −→e b3 about −→e a3
or equivalently of Re3 about e3. This objective can be
translated as the stabilisation of the AUV in a horizontal
plane. To this purpose, let us define the reference angular
velocity Ωr as:

Ωr , ω3re3 + kωe3 ×R⊤e3 , (3)

where kω is a positive gain and the third component ω3r

of the reference angular velocity is dynamically assigned
by the outer-loop control. The first two components of Ωr

defined by the term kωe3 × R⊤e3 are dedicated to the
stabilisation of Re3 about e3. The remaining degree of
freedom ω3r can be independently used for other control
objectives related to the yaw motion.

Define the velocity error variables

Ṽ , V −Vr, Ω̃ , Ω−Ωr. (4)

Then, the control objective is equivalent to the stabilisa-

tion of (Ṽ, Ω̃) about zero.

The inner-loop controller here proposed is reminiscent of
the one in [Krupinski et al., 2012], but it is robustified
by means of integral corrections. Let zV and zΩ be the
bounded conditional integrators of the linear and angular
velocity errors, whose dynamics are given by:

{
żV =−kzV zV +kzV sat

δV (zV +Ṽ/kzV ), zV (0) = 0

żΩ=−kzΩzΩ+kzΩsat
δΩ(zΩ + Ω̃/kzΩ), zΩ(0) = 0

(5a)

(5b)

with positive numbers kzV , kzΩ , δV , δΩ. Define the follow-
ing augmented error variables:

V̄ , Ṽ + kiV zV , Ω̄ , Ω̃+ kiΩzΩ, (6)

with positive integral gains kiV and kiΩ. Then, using Eqs.
(1c), (1d), (4), (6), one obtains the following coupled
dynamics of V̄ and Ω̄:



M ˙̄V −D ˙̄Ω = (MV−DΩ)×Ω̄+(MV̄−DΩ̄)×Ωr

+ (mg−FB)R
⊤e3 + FD + F+ FC

J ˙̄Ω+D ˙̄V = (JΩ+DV)×Ω̄+ (MV−DΩ)×V̄

+ (JΩ̄+DV̄)×Ωr+(MV̄−DΩ̄)×Vr

+mgle3 ×R⊤e3 + ΓD + Γ+ ΓC

(7a)

(7b)

with F and Γ computable by the controller and defined by

F,−MV̇r+DΩ̇r+kiVMżV−kiΩDżΩ+(MVr−DΩr)×Ωr

− kiΩ(MV−DΩ)×zΩ − (kiVMzV −kiΩDzΩ)×Ωr

Γ,−JΩ̇r −DV̇r + kiΩJżΩ + kiVDżV

+ (JΩr +DVr)×Ωr + (MVr −DΩr)×Vr

− kiΩ(JΩ+DV)×zΩ − kiV (MV−DΩ)×zV
− (kiΩJzΩ + kiVDzV )×Ωr−(kiVMzV −kiΩDzΩ)×Vr

From here, the paper’s first result is proposed.

Proposition 3. Consider the error system (7a)–(7b) and
apply the following controller:



FC=−satc∆V
(KV V̄)− (MV̄)×Ωr +M⊤(Ω̄×Vr)

− Ω̄× (DΩr)− (mg − FB)R
⊤e3 − FD − F

ΓC=−satc∆Ω
(KΩΩ̄)−(IΩ̄)×Ωr+(DΩ̄)×Vr−ΓD−Γ

(8)

where KV , KΩ are some positive diagonal gain matrices
and ∆V , ∆Ω are some positive diagonal matrices involved
in the saturation functions. Assume that Vr, Ωr and their
derivative are bounded. Then,

(1) (V,Ω,Re3, zV , zΩ) converges to (Vr,Ωr,±e3,0,0)
for all initial conditions.

(2) The equilibrium (V,Ω,Re3, zV, zΩ)=(Vr,Ωr, e3,0,0)
is almost globally asymptotically stable and locally ex-
ponentially stable. Conversely, the undesired equilib-
rium (V,Ω,Re3, zV, zΩ)=(Vr,Ωr,−e3,0,0) is unstable.

The proof is given in Appendix A. The knowledge about
the derivative of the reference velocities Vr and Ωr are
necessary to compute the feedback control FC and ΓC . In
the following, we show how this fact influences the HBVS
outer-loop control design.

3.2 Outer-loop Control: HBVS Control Design

The outer-loop control design is based directly on the
homography matrixH. Control design difficulties lie in the
fact that the depth d∗ and the normal vector n∗ involved
in the expression (2) of H are unknown and that this
matrix only contains a coupled information of rotation and
translation. For instance, let us recall a well-known result
proposed in [Benhimane and Malis, 2007]. Let ep, eΘ ∈ R

3

denote the error vectors defined as:

ep , (I3 −H)m∗, eΘ , vex(H⊤ −H), (9)

with some arbitrary unit vector m∗ ∈ S
2 satisfying

Hypothesis 2. Then, the kinematic control law

VC = −λpep , Ω = −λΘeΘ , (10)



with λp, λΘ some positive gains, makes the equilibrium
(R,pC) = (I3,0) locally asymptotically stable [Benhimane
and Malis, 2007]. A weakness of this kinematic controller
is the local basin of attraction of the equilibrium. On
the other hand, due to the strongly coupled translational
and rotational dynamics, this purely kinematic control ap-
proach may fail to guarantee the stability of the controlled
system. In the present paper, we aim at working down
to the dynamical level with the objective of yielding a
controller with a significantly enlarged domain of stability
and enhanced robustness.

3.2.1 Reference Translational Velocity Design: Differen-
tiating H given by Eq. (2), one obtains

Ḣ = −Ω×H− (1/d∗)VCn
∗⊤. (11)

It follows that the derivative of ep defined in (9) satisfies

ėp = −Ω× (ep−m∗)+ a∗VC , a∗ , (n∗⊤m∗)/d∗. (12)

For control design insights, let us, for instance, consider the
kinematic control design using the camera velocity VC as
control input, with the objective of stabilising ep about
zero globally. In view of Eq. (12), the control difficulty lies
in the unknown multiplicative constant a∗. However, we
know that it is positive in view of Hypothesis 2.

Lemma 4. – Kinematic Control – Assume that Ω is
bounded for all time and consider the following auxiliary
dynamics:

żp = −Ω× ep, zp(0) = 0 . (13)

Then, the kinematic control law
VC = VCr , −k1ep −Ω× zp (14)

globally asymptotically stabilise ep about zero.

Proof: Using Eqs. (12), (13) and (14), one verifies that

ėp = −Ω× ep − a∗k1ep − a∗Ω× (zp − z∗p), (15)

with z∗p , m∗/a∗. Consider the following Lyapunov func-

tion candidate L0 , 1/(2a∗)|ep|
2 + 1/2|zp − z∗p|

2. Using
Eqs. (13) and (15), one verifies that the derivative of L0

satisfies L̇0 = −k1|ep|
2. From here, one ensures that L0

and, thus, ep and zp are bounded w.r.t. initial conditions.
The resulting boundedness of ėp given in (15) and, thus,

of L̈0 implies the uniform continuity of L̇0. Finally, the ap-
plication of Barbalat’s lemma (see [Khalil, 1992]) ensures

the convergence of L̇0 to zero. This concludes the proof.

In view of the relation V = VC − Ω × rC and the
kinematic control expression (14), one may define the

reference velocity Vr as Vr , VCr − Ωr × rC , with
VCr , −k1ep − Ωr × zp. As mentioned previously the
derivative of Vr should be computable by the inner-loop
control (8). However, since ėp is not measurable, V̇Cr and,

thus, V̇r are not available to the computation of the inner-
loop control. The following modification to Lemma 4 is
proposed.

Proposition 5. Let k1, k2, kz, ∆, ∇ denote some positive
constants. Consider the following augmented system:{
żp=−Ωr×sat∇(ep)−kz(zp−sat∆(zp)), zp(0) = 0

˙̂ep=−Ω×êp − k2(êp − ep), êp(0) = ep(0)
(16)

with ∆ large enough such that ∆ ≥ 1/a∗. Consider the
following reference translational velocity:{

Vr , VCr −Ωr × rC

VCr , −k1êp −Ωr × zp
(17)

Choose the gains k1 and k2 such that

k2 > 4a∗k1. (18)

Assume that Hypothesis 2 is satisfied. Assume that the ref-
erence angular velocity Ωr and its derivative are bounded.
Apply the inner-loop control (8) proposed in Proposition
3. Then, there exists a positive constant ∇̄ such that for
all ∇ > ∇̄, ep is globally stabilised about zero.

The proof is given in Appendix B. In view of Eq. (17),
the definition of the reference translational velocity Vr

depends on the reference angular velocity Ωr. In the
following, Ωr will be defined such that it and its derivative
are bounded by some constants, as a necessary condition
of Propositions 3 and 5.

3.2.2 Reference Angular Velocity Design: As mentioned
in inner-loop control design, only the third component
ω3r of Ωr given in (3) is required to be defined by the
outer-loop control. The derivative ω̇3r is also needed for
the computation of the inner-loop control.
Before proceeding the design for ω3r, let us analyse the
asymptotic behaviour of the homography matrix H. Since
Re3 (almost) globally converges to e3 as a result of
Proposition 3, one ensures the convergence of R to Rψ

defined by:

Rψ ,

[
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

]
.

For the sake of simplicity, assume that Hypothesis 2 is
satisfied while choosing m∗ = −e3. This implies that
He3 − e3 converges to zero as a result of Proposition 5.
From here, one deduces

He3 − e3 → (R⊤
ψ − I3)e3 + a∗R⊤

ψpC → 0,

with a∗ = −n∗3/d
∗. Therefore, pC converges to 1

a∗
(Rψ −

I3)e3, which is null, and H converges to R⊤
ψ . Addi-

tionally, From Eqs. (17), (B.1), and the convergence of

(ep, êp, ėp, Ṽ, Ω̃) to zero, one deduces that

VC → VCr → −(1/a∗)ω3re3 ×m∗ = 0. (19)

Denote hi,j as the component on the i-th line and j-th
column of H. Now, the main result of the paper is stated,
with proof given in Appendix C.

Theorem 6. Assume that Hypotheses 1 and 2 are satisfied
with m∗ = −e3. Define the reference angular velocity
Ωr , ω3re3 + kωe3 × R⊤e3, where ω3r is the solution
to the following system:

ω̇3r = −k4ω3r − k3sat
∆ω (h1,2), ω3r(0) = 0, (20)

with k3, k4 some positive gains and ∆ω > 1. Define the
reference translational velocity Vr as in Proposition 5 and
apply the inner-loop control (8) given in Proposition 3.
Then, the following properties hold:

(1) There exist only two isolated equilibria H = H⋆
i ,

(i = 1, 2), with one stable and one unstable.
(2) The desired equilibrium H = I3 is almost globally

asymptotically stable and locally exponentially stable.

The existence of multiple equilibria of the closed-loop sys-
tem is expected since there exists a topological obstruction
to the existence of a globally asymptotically stable equi-
librium to a continuous dynamical systems having rota-
tional degrees of freedom (see [Bhat and Bernstein, 2000]).
Consequently, the almost-global asymptotical stability is
the best one can obtain with continuous feedback control,
which is the result of the present paper.



4. SIMULATION RESULTS

Fig. 2. Components of the AUV simulator

The proposed controller has been tested via a realistic
simulation of a fully-actuated AUV model. A custom
simulator has been developed (see Fig. 2). Equations
of motion (1a)–(1d) and basic sensors are implemented
in a Matlab/Simulink R⃝ model, while Morse simulator is
used to generate the visual environment and the camera
data (see Fig. 3). The images are processed to provide
the homography matrix H at about 25Hz by OpenCV
functions integrated into a ROS communication graph.

Fig. 3. Vehicle visualised in the simulated sea bottom
environment above the visual target

The following model of hydrodynamic damping force and
torque is used in the system dynamics [Fossen, 2002]:{

FD=−DVlVa −DVn [|Va1|Va1 |Va2|Va2 |Va3|Va3]
⊤

ΓD=−DΩlΩ−DΩn [|ω1|ω1 |ω2|ω2 |ω3|ω3]
⊤

(21)

with damping matrices DVl, DVn, DΩl and DΩn, the
apparent velocity Va=[Va1, Va2, Va3]

⊤,V−R⊤vcur, and
the current velocity vcur expressed in the inertial frame.
The physical parameters of the simulated vehicle, given in
Tab. 1, closely follow that of a real AUV.

Specification Numerical value

Mass m [kg] 1000
Volume [m3] 0.97

l [m] 0.15
rC [m] [1, 0, 0.5]

J0 [kg.m2]

[
500 −15 −25
−15 3000 −10
−25 −10 3000

]

M
11

A
[kg] 103diag(0.07, 1.5, 1.5)

M
22

A
[kg.m2] 103diag(1.5, 15, 15)

M
12

A
[kg.m2] 0

3×3

DV l [kg.s
−1] diag(10, 30, 30)

DV n [kg.m−1] diag(100, 300, 300)
DΩl [kg.m

2.s−1] diag(5, 15, 15)
DΩn [N.m] diag(50, 150, 150)

Table 1. Specifications of the simulated AUV.

• Simulation 1: This simulation is dedicated to the per-
formance comparison between the proposed HBVS con-
trol approach and the “standard” kinematic HBVS (i.e.,
Eqs. (10)) in perfect situation where all measurements

are perfect and the homography matrix H is directly
calculated according to Eq. (2), with d∗ = 3 [m] and
n∗ = [−0.0858, 0.1736,−0.9811]⊤ = −R10◦,5◦,0◦ e3. In
fact, for the two control approaches we apply the same
inner-loop control (8), but the reference setpoints defined
by the outer-loop control are differently specified by the
two approaches. More precisely, for the inner-loop control
we assume that the system’s dynamics and parameters are
perfectly known in the sense that “real” physical param-
eters of the vehicle and the expressions (21) of FD and
ΓD are used in the computation of the inner-loop control.
Thus, it is unnecessary to activate the integrator parts
(i.e., setting kiV = kiΩ = 0). The gains and parameters
(other than those involved in the integrators (5a)-(5b)) for
the inner-loop control (8) are chosen as follows:




KV = 103diag(0.93, 0.464, 2.5)

KΩ = 104diag(0.759, 5.623, 1.8)

∆V = diag(1500, 1500, 1500)

∆Ω = diag(375, 750, 750)

(22)

As for the outer-loop control corresponding to the pro-
posed approach, the gains and parameters are given as:

• k1 = 1.5, k2 = 4, kz = 8, ∆ = 10, ∇ = 5;
• k3 = 0.81, k4 = 1.8, ∆ω = 10, kω = 0.1.

As for the outer-loop control corresponding to the “stan-
dard” kinematic HBVS, the reference velocities are set as:{

Ωr , −λΘeΘ, VCr , −λpep
Vr , VCr − Ωr × rC

where ep and eΘ are given by Eq. (9) with m∗ = −e3. The
gains are chosen as λp = 1.5 and λΘ = 0.9, allowing the
two control approaches to have closely similar convergence
rates. The derivative terms of the reference velocities are
set equal to zero, since the derivative terms ėp and ėΘ are
not available for the computation of the controller.
Initial conditions are as follows: p(0) = [−3,−2,−4]⊤[m],
Rϕ,θ,ψ(0) = R−π

12
,π
8
,π, V(0) = Ω(0) = 0 [m/s]. This

implies that pC(0) ≈ [−4.1,−2.1,−3.9]⊤[m]. The initial

yaw error is very large, i.e., ψ̃(0) = π, allowing one to
verify the large stability domain of the proposed controller.

Variations w.r.t. time of the vehicle’s position and orien-
tation errors –corresponding to the standard kinematic
HBVS and the proposed HBVS– are reported in Figs. 4
and 5, respectively. One observes that for both control
approaches the position and orientation errors converge to
zero despite large initial yaw error. However, the perfor-
mance of the standard kinematic HBVS approach is rather
poor. Too much oscillation occurs in position error and the
vehicle even makes an unnecessary 2π-rotation about the
roll axis. On the contrary, the performance of the proposed
HBVS approach is quite satisfying (see Fig. 5).
• Simulation 2: This simulation is devised to test the ro-
bustness of the proposed controller. First, the homography
matrix H is now estimated from the observed images using
OpenCV functions. Second, to test the robustness w.r.t.
imperfect knowledge on the external forces and torques,
in the computation of the inner-loop control (8) we simply
set to zero the terms FD and ΓD, while their expres-
sion (21) is still used in the simulated dynamics. A sea
current velocity vcur = [0, 1, 0]⊤ [m/s] is also introduced.
Third, realistic actuation limitations are also taken into ac-
count by setting physical saturations for the control thrust
force and torque vectors at [±2000,±2000,±2000] [N ] and
[±500,±1000,±1000] [N.m], respectively. Finally, the fol-
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Fig. 4. Standard kinematic HBVS approach: Position and
orientation errors vs. time (Sim. 1).
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Fig. 5. Proposed HBVS approach: Position and orientation
errors vs. time (Sim. 1).

lowing “erroneous” estimated parameters are used in the
inner-loop control instead of the real values:

• Ĵ0 = diag(550, 2600, 3200) [kg.m2];

• M̂11
A = 103diag(0.05, 1.33, 1.33) [kg];

• M̂22
A = 103diag(1.7, 13, 17) [kg.m2].

The control gains and other parameters involved in the
computation of the control inputs are chosen as follows:

• kiV =0.2, kiΩ=0.05, kzV =kzΩ=1, δV =10, δΩ=10;
• KV , KΩ, ∆V and ∆Ω are given in Eq. (22);
• k1 = 0.4, k2 = 1, kz = 8, ∆ = 10, ∇ = 5;
• k3 = 0.64, k4 = 1.6, ∆ω = 10, kω = 0.1.

The gains of the outer-loop control (i.e., k1,2,3,4) are chosen
smaller than in Sim. 1 so as to reduce the chattering effect
due to measurement noises. Initial conditions of the vehicle
are given by: p(0) = [0,−3,−4]⊤, Rϕ,θ,ψ(0) = R π

12
,π
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, 3π

4

,

V(0) = Ω(0) = 0. Thus, pC(0) ≈ [−0.7,−2.1,−4.4]⊤[m].
Simulation results are reported in Figs. 6–9. Fig. 7 shows
that the visual errors ep and h1,2 (computed from the
estimated homography matrix) and the augmented vari-
able êp converge to zero. One can observe the noise ef-
fects induced by imperfect homography matrix estimated
from image processing. Fig. 6 shows the convergence of
position and orientation errors to zero. Overshoots occur
mainly due to important unknown disturbance force FD.
However, thanks to the integral action in the inner-loop
control, the controller manages to compensate for this
force as well as other model errors, and thus still ensures
asymptotical stability. The effect of the sea current on the
integral terms zV and zΩ is illustrated in Fig. 9, where
the second component of zV well converges to a non-
null value. The evolution of the control force and torque
vectors w.r.t. time is shown in Fig. 8 where torque control
saturation occurred in a short period of time marginally
affects the overall control performance. The control forces
in the directions −→e b2 and −→e b3 asymptotically converge to
the values dictated by the compensation of the current and

buoyancy, respectively. Finally, the reader is encouraged
to watch a video clip showing this simulation result at
http://youtu.be/07MhNBJJ-PA.
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Fig. 6. Position and orientation errors vs. time (Sim. 2).
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5. CONCLUSIONS

The stabilisation of fully-actuated AUVs using image-
based homography matrix opens a way to several new
applications of autonomous vehicles, for example the in-
spection of underwater objects, too risky using traditional
acoustic means. Underwater docking on flat targets can
also benefit from this development. Using relatively avail-
able and cheap technology of underwater vision, navigation
in a structured environment can be carried out using math-
ematically efficient formulation, rather than complicated



pose reconstruction from multiple sensors. A testing cam-
paign with a real AUV is now envisioned so as to validate
the proposed approach in the challenging sea environment.
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Appendix A. PROOF OF PROPOSITION 3
The proof is based on the analysis of the Lyapunov func-
tion candidate Linner , 1

2
W̄⊤MTW̄ +mgl(1−e⊤3 R

⊤e3),

with W̄ , [V̄⊤ Ω̄⊤]⊤. After some tedious computation, it
can be verified that the derivative of Lv along any solution
to the closed-loop system satisfies
L̇inner = −V̄⊤satc∆V

(KV V̄)− Ω̄⊤satc∆Ω
(KΩΩ̄)

−mglkω|e3 ×R⊤e3|
2.

(A.1)

By application of Barbalat’s lemma, one deduces the
convergence of L̇inner and, thus, of V̄, Ω̄ and 1−e⊤3 R

⊤e3

to zero. The latter implies that Re3 converges to ±e3.
Let us now prove the local exponential stability (L.E.S.) of
the equilibrium (V̄, Ω̄,Re3)=(0,0, e3). By denoting Θ the
angle between Re3 and e3, i.e., cos(Θ) = e⊤3 Re3, around
a small neighborhood of the equilibrium (V̄, Ω̄,Re3) =
(0,0, e3) the Lyapunov function Linner can be locally
approximated by Linner ≈ 0.5W̄⊤MTW̄+0.5mglΘ2 and
its derivative (A.1) is approximatively given by L̇inner ≈
−V̄⊤KV V̄−Ω̄⊤KΩΩ̄−mglkωΘ

2. As a consequence, there
exists a positive number α such that locally L̇inner ≤
−αLinner. This ensures the L.E.S. of Linner about zero
and, thus, the L.E.S. of the equilibrium (V̄, Ω̄,Re3) =
(0,0, e3). Finally, the exponential convergence of V̄ and

Ω̄ to zero naturally leads to same property of Ṽ and Ω̃ as
a consequence of the technical lemma 7 (Append. D).
The proof of instability of the equilibrium (V̄, Ω̄,Re3) =
(0,0,−e3) is based on the Chetaev’s theorem. Define

y = [y1 y2 y3]
⊤ , e3 + Re3 and consider the following

continuously differentiable function: S(y) , y3 = 1 +
e⊤3 Re3 ≥ 0, which is null at the origin, i.e., S(0) = 0.

For some positive number r > 0, define a set Ur , {y |
S(y) > 0, |y| < r}, and note that Ur is non-null for all
r > 0. By neglecting all high-order terms, the derivative
of S can be approximatively given by
Ṡ ≈ e⊤3 RΩr×e3=kω|e3×Re3|

2=kω|e3×y|2=kω(y
2

1+y
2

2).

The positivity of y3 is equivalent to the positivity of y21+y
2
2 .

Thus, for all y ∈ Ur one ensures that Ṡ > 0. Since all
the conditions of Chetaev’s theorem are satisfied [Khalil,
1992], the origin y = 0 of the linearized system is unstable.

Appendix B. PROOF OF PROPOSITION 5

Using Eqs. (12) and (17), one deduces

ėp = −Ω×ep − a∗Ωr×z̄p − a∗k1êp + γ(Ṽ, Ω̃), (B.1)

with γ(Ṽ, Ω̃) , a∗(Ṽ + Ω̃×rc) + Ω̃×m
∗, z̄p , zp − z∗p.

From here, the proof proceeds by three steps:
Step 1:We will show that zp is bounded by some constant.

Consider the positive function S1 , 0.5|zp|
2. Its derivative

satisfies (using (16)) Ṡ1 ≤ −kz|zp|
2 + |zp|(Ω̄r∇ + kz∆),

with Ω̄r , sup(|Ωr|). From here, it is straightforward to
deduce that ∀t ≥ 0
|zp(t)| ≤ (Ω̄r∇)/kz+∆ = ∆(1+αΩ̄r), with α , ∇/(kz∆).

Step 2: We will show next that there exists a time instant
T such that ∀τ ≥ T one has |ep(τ)| ≤ ∇ and, thus,

sat∇(ep(τ)) = ep(τ). Denote X , [x y]⊤ ∈ R
6, with

x , Rêp, y , Rep. One verifies from (16) and (B.1) that

Ẋ=

[
−k2I3 k2I3
−a∗k1I3 0

]

︸ ︷︷ ︸
=:A∈R6×6

X+

[
0

R(−a∗Ωr×z̄p+γ(Ṽ, Ω̃))

]

︸ ︷︷ ︸
=:B∈R6

(B.2)

The condition (18) ensures that A has two triple distinct
real negative eigenvalues λ1,2 (λ1 < λ2 < 0) given by

λ1,2 = 0.5(−k2 ∓
√
k2
2
− 4a∗k1k2 ). This implies that A

is diagonalisable and can be decomposed in the Jordan
normal form A = PΛP−1, with Λ = diag(λ1I3, λ2I3) and

P=




λ1I3
η1

λ2I3
η2

−a∗1k1I3
η1

−a∗1k1I3
η2


,P−1=

1

λ2−λ1



−η1I3

−λ2η1I3
a∗
1
k1

η2I3
λ1η2I3
a∗
1
k1




η1 ,

√
λ2
1
+ (a∗

1
k1)2 , η2 ,

√
λ2
2
+ (a∗

1
k1)2 .

By simple calculations, it can be verified that



(λ2−λ1)
2|P−1X|2 = η21

∣∣∣∣x+
λ2

(a∗k1)
y

∣∣∣∣
2

+ η22

∣∣∣∣x+
λ1y

a∗k1

∣∣∣∣
2

=

∣∣∣∣∣

√
η2
1
+η2

2

(
x+

λ1y

a∗k1

)
+
η21(λ2−λ1)y

a∗k1
√
η2
1
+η2

2

∣∣∣∣∣

2

+
η21η

2
2(λ2−λ1)

2|y|2

(a∗k1)2(η21+η
2
2
)
,

which allows one to deduce

|P−1X| ≥
η1η2

a∗k1
√
η2
1
+η2

2

|y| =
η1η2

a∗k1
√
η2
1
+η2

2

|ep|. (B.3)

On the other hand, as a result of Proposition 3, Ω̃ and

Ṽ are uniformly continuous and bounded, and converge

asymptotically to zero. Consequently, γ(Ṽ, Ω̃) also con-
verges to zero. Thus, for some positive number ε (to be
specified hereafter) there exists a time instant T1 such that

∀t ≥ T1 one has |γ(Ṽ, Ω̃)| ≤ ε. Then, ∀t ≥ T1 one verifies

|P−1B| =

√
λ2
1
η2
2
+ λ2

2
η2
1

a∗k1(λ2−λ1)

∣∣∣−a∗Ωr×z̄p+γ(Ṽ, Ω̃)
∣∣∣

≤

√
λ2
1
η2
2
+ λ2

2
η2
1

a∗k1(λ2−λ1)

((
a∗∆(1 + αΩ̄r)+1

)
Ω̄r+ε

)
.

(B.4)

Using Eq. (B.2), the derivative of S2 , 0.5|P−1X|2

satisfies
Ṡ2 = (P−1X)⊤Λ(P−1X) + (P−1X)⊤(P−1B)

≤ λ2|P
−1X|2 + |P−1X| |P−1B|.

(B.5)

Since zp, Ωr, Ω̃ and Ṽ are bounded, B and P−1B are
also bounded. From Eq. (B.5) and the definition of S2,
one ensures that P−1X and X are bounded w.r.t. initial
conditions. Consequently, ep and êp remain bounded w.r.t.
initial conditions. Then, it is straightforward to verify that
ėp, ˙̂ep and żp are bounded w.r.t. initial conditions, which
implies the uniform continuity of ep, êp and zp.
Since X remains bounded w.r.t. initial conditions on the
time-interval [0, T1] (as proved previously), from Eq. (B.5)
and the definition of S2 there exists another time-instant
T > T1 such that ∀τ ≥ T one has

|P−1X(τ)| ≤ (−λ2)
−1sup

t≥T

(|P−1B(t)|). (B.6)

In view of Eqs. (B.3), (B.4) and (B.6) one deduces that

|ep(τ)| ≤ ∇̄+ ε

√
(η2

1
+η2

2
)(λ2

1
η2
2
+λ2

2
η2
1
)

λ2(λ1−λ2)η1η2
, ∀τ ≥ T, (B.7)

with

∇̄,

√
(η2

1
+η2

2
)(λ2

1
η2
2
+λ2

2
η2
1
)

λ2(λ1−λ2)η1η2

(
a∗∆(1 + αΩ̄r)+1

)
Ω̄r > 0.

Therefore, if ∇ is chosen larger than ∇̄ (i.e., ∇ > ∇̄) and
if ε is chosen such that

0 < ε <
(∇− ∇̄)λ2(λ1−λ2)η1η2√
(η2

1
+η2

2
)(λ2

1
η2
2
+λ2

2
η2
1
)
,

then one deduces from inequality (B.7) that |ep(τ)| < ∇,
∀τ ≥ T , and thus sat∇(ep(τ)) = ep(τ).
Step 3: Consider the Lyapunov candidate function

L , 1/(2a∗)|ep|
2 + k1/(2k2)|êp|

2 + 1/2|z̄p|
2.

Using the following property [Hua et al., 2009]:

|sat∆(x+ c)− c| ≤ |x|, ∀(c,x) ∈ R
3 × R

3 with |c| ≤ ∆,
one deduces

L̇ = −k1|êp|
2 + z̄⊤p Ωr×(ep − sat∇(ep)) + 1/a∗e⊤p γ(Ṽ, Ω̃)

−kz z̄
⊤
p (z̄p + z∗p − sat∆(z̄p + z∗p))

≤ −k1|êp|
2 + z̄⊤p Ωr×(ep − sat∇(ep)) + 1/a∗e⊤p γ(Ṽ, Ω̃).

Since sat∇(ep(τ)) = ep(τ) and |ep(τ)| ≤ ∇, ∀τ ≥ T (as
proved in Step 2), one obtains

L̇(τ) ≤ −k1|êp(τ)|
2 +∇/a∗|γ(Ṽ(τ), Ω̃(τ))| . (B.8)

As proved previously, ep, êp and zp cannot escape in finite-
time. Thus, L(t) remains bounded on the time-interval
[0, T ]. In addition, ep(τ), êp(τ), zp(τ) and, thus, L(τ),
∀τ ≥ T , remain bounded by some positive constants inde-
pendent from all initial conditions (as proved previously).

Since the equilibrium (Ṽ, Ω̃,R⊤e3) = (0,0, e3) is locally
exponentially stable as a result of Proposition 3, there exist
some time-instant T2 > T and some positive constants α1

and α2 such that∣∣∣γ(Ṽ(τ), Ω̃(τ))
∣∣∣ ≤ α1e

−α2τ , ∀τ ≥ T2 . (B.9)

From Eqs. (B.8) and (B.9), one deduces
L̇(τ) ≤ −k1|êp(τ)|

2 + (α1∇)/a∗e−α2τ , ∀τ ≥ T2 .
Consequently, by integration one deduces∫ ∞

T2

|êp(τ)|
2dτ ≤

α1∇e
−α2T2

k1α2a∗
+

1

k1
(L(T2)− L(∞)).

From here, the resulting boundedness of integral term∫∞

T2

|êp(τ)|
2dτ and the uniform continuity of êp implies

the convergence of êp to zero (Barbalat’s lemma).

From Eq. (16), one verifies that ˙̂ep can be rewritten as
˙̂ep(t) = a(t) + b(t), with a(t) , k2ep the uniformly

continuous term and b(t) , −Ω×êp − k2êp the vanishing
term. Then, the application of the extended Barbalat’s
lemma [Hua et al., 2009] ensures the convergence of ˙̂ep to
zero, which in turn implies the convergence of ep to zero.

Appendix C. PROOF OF THEOREM 6

From (20), it is straightforward that ω3r and ω̇3r remain
bounded by k3∆ω/k4 and 2k3∆ω, respectively. The bound-
edness of ω3r and ω̇3r is a necessary condition of Propo-
sitions 3 and 5. One ensures that at the zero dynamics
ψ̇ = ω3 = ω3r and h1,2 = sinψ ≤ 1 < ∆ω. Thus, at the
zero dynamics, the dynamics of ω3r given by (20) satisfies

ω̇3r = −k4ω3r − k3 sinψ. (C.1)
Consider the positive function SΘ , k3(1− cosψ) + 1

2
ω2
3r.

Using (C.1), one obtains ṠΘ = −k4ω
2
3r ≤ 0. The ap-

plication of LaSalle principle ensures the convergence of
ṠΘ and, thus, of ω3r to zero. Then, Barbalat’s lemma
ensures the convergence of ω̇3r to zero. One deduces the
convergence of sinψ to zero. From here, one deduces the
existence of two isolated equilibria of H corresponding
to two values of ψ = ψ⋆1 , 0 and ψ = ψ⋆2 , π. The
equilibrium ψ = 0 corresponds to the desired equilibrium
H = H⋆

1 , I3 and the other one ψ = π corresponds to the

undesired equilibrium H = H⋆
2 , diag(−1,−1, 1).

To prove the local stability results, it suffices to study the
linearized system about the equilibrium. For the equilib-
rium ψ = 0, the linearized system is

˙̃
ψ = ω3, ω̇3 = −k4ω3 − k3ψ̃

with ψ̃ = ψ. Since its characteristic polynomial p2+ k4p+
k3 is Hurwitz, the equilibrium ψ = ψ⋆1 = 0 is exponentially
stable. On the other hand, the linearized systems for the
equilibrium ψ = π is given by:

˙̃
ψ = ω3, ω̇3 = −k4ω3 + k3ψ̃

with ψ̃ = ψ− π. Using Hurwitz criteria, one easily verifies
that the origin of this linearized system is unstable.

Appendix D. TECHNICAL LEMMA
Lemma 7. (Omitted proof) If x(t) + k

∫ t
t0
x(τ)dτ , with

x ∈ Rn and k > 0, converges exponentially to some
constant vector, then x(t) converges exponentially to zero.


