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Image data assimilation with filtering methods

In this paper we describe several techniques formulated within the stochastic filtering framework for image data assimilation issues. We advocate here the use of hybrid methods between ensemble Kalman methods and particle filters. The former family, despite being theoretically deficient in the sense that it does not in general converge towards the sought-after filtering moments, has demonstrated to be very efficient in practice for high dimensional space filtering issues. At the opposite, the latter are theoretically well posed but face strong practical difficulties in high dimensional spaces. We list here briefly the principal ideas of the underlying hybrid filters, their qualities and their drawbacks. Some comparison results between those different techniques are provided for the filtering of a 2D turbulent flow.

Résumé : Dans cet article nous décrivons plusieurs technique d'assimilation de données images formulées dans le cadre d'un problème de filtrage stochastique non linéaire. Nous prônons l'utilisation de filtres hybrides couplant des filtres de Kalman d'ensemble et les filtres particulaires. La première famille de filtres, bien que déficiente d'un point de vue théorique puiqu'elle ne converge pas vers les moments de la distribution de filtrage cible, a montré son efficacité pour des problèmes d'assimilation de données en très grande dimension. La seconde en revanche, bien posée théoriquement, est confrontée à d'importantes difficultés pratiques en grande dimension. Nous listons brièvement les principes gouvernant la construction de ces filtres, ainsi que leur avantages et défauts. Quelques résultats comparatifs entre ces différentes techniques sont donnés dans le cas du filtrage d'un écoulement turbulent 2D.

Introduction

Data assimilation techniques aim at coupling a system state dynamics with partially observed measurements of this system. Such a procedure is essential for instance in forecasting applications to estimate from observed data a good initial state of the system's variables or to calibrate dynamical parameters. A recent new challenge is emerging in geophysical flow analysis with the availability of high resolution satellite image data [START_REF] Beyou | Weighted ensemble transform kalman filter for image assimilation[END_REF], Corpetti et al., 2009, Titaud et al., 2010]. The assimilation of such data into oceanic or atmospheric numerical models is unfortunately not as easy as it may appear at a very first glance. As a matter of fact, it is immediate to feel like incorporating in weather numerical models complex non linear phenomena such as front, or tornado that are evidently observed in image data sequences, and which are, in the same time, difficult to generate spontaneously from models. The essential difficulty of image assimilation ensues principally from the fact that the observed luminance does not belong to the system state space. In general, there is indeed a complex relation between the luminance function and the flow state variables. This complex relation leads to difficult inverse problems to recover for instance velocity, temperature or pressure variables from a set of images. The other source of concern lies in the fact that images and models do not live at the same scales. As a matter of fact, the spatial resolution of images are nowadays defined on finer spatial grids than models. This still increasing scale difference, due to satellite sensors technological progress, induces a scale relation which complicates further the connection between the state variables and the observations. Besides, large scale models are only imperfectly known. Small scale forcing and geophysical turbulence models for instance must be set up. The alternative, to specify such imperfect large scale evolution models consists in the establishment of stochastic dynamics where the uncertainty is formalized through stochastic processes [START_REF] Franzke | Low-order stochastic mode reduction for a prototype atmospheric gcm[END_REF], Majda et al., 1999, Mémin, 2013]. In this latter case, it is important to point out that we are in a situation where the model random uncertainty is usually much more pregnant than the measurement noise defined at a higher resolution. This extreme case of quasi negligible data noise leads in particular to a badly conditioned situation for data assimilation procedures.

The coupling of a a partially known stochastic dynamics and noisy observations can be expressed through a nonlinear stochastic filtering problem. In the case of image data this filtering problem involves an evolution law of a state variable x(x,t) :

Ω × R + → R d of the form dx(x,t) = M(x(x,t))dt + σ (x,t)dB(t), (1) 
accompanied by partial observations of the system through measurements y(x,t) :

Ω × R + → R p y(x,t k ) = H(x(x,t k ) + γ(x,t k ).
(2)

In this system, both the dynamical operator, M, and the observation operator, H, between the measurement space and the state space are, in the general case, nonlinear. The observation equation ( 2) is in addition discrete in time due to a possibly long time interval between two consecutive measurements. The dynamics is at the opposite continuous with a discrete scheme associated to a much shorter time step. Concerning this stochastic dynamics, we will assume the dynamical noise is a Wiener process where the diffusion tensor, σ , may eventually depend on the stochastic process, which gives rise in that case to multiplicative noises. As for the observation noise, γ t k , it can be non-Gaussian, but it is, nevertheless, conditionally independent of the state variable.

Beyond the main difficulty faced here, which concerns essentially the high dimensionality of the system (∼ 10 6 -10 9 ), let us note the modeling of a proper stochastic representation of a state variable dynamics is in general not a straightforward stage. Several different directions can be followed depending on the application targeted. This goes from the definition of stochastic representations of deterministic pdes to the constitution of "inexact" evolution laws incorporating errors or uncertainties. In this article we will not elaborate on such issues and consider that the dynamics has been well defined and follows general form (1).

In the following we will present different solutions devised so far for the filtering of image data. Those techniques have in common to be all based on Monte Carlo principles. The first family of method ensues from a Monte Carlo implementation of the Kalman filtering equations and incorporates efficient procedures to cope with matrix-vector products in high dimension. The second kind of methods concerns the so-called particle filters. It corresponds to a set of methods that approximate the filtering distribution through a linear combination of Dirac masses centered on samples referred to as particles. In the following section we briefly describe those two types of methods. Advantages and deficiencies of both approaches are listed and we then describe, in a subsequent section, several hybrid techniques that aim at combining both families in order to keep the best of their properties. Some comparative results are provided in the last sections. 

Assimilation with filtering methods

The first family of filtering methods is intensively used in geophysics. It relies on a Gaussian assumption and extends the Kalman update mechanisms through a Monte Carlo implementation.

Ensemble Kalman filter

The well-known Kalman filter [Kalman, 1960] allows to solve the filtering problem for linear Gaussian state-space models. At each time step, the Gaussian filtering distribution is characterised by its mean and covariance, which are recursively updated through the prediction and correction steps. In order to tackle the filtering problem for non linear and high-dimensional systems, Ensemble Kalman filters have been developed [Evensen, 1994, Houtekamer and Mitchell, 1998, Bishop et al., 2001, Evensen, 2003, Ott et al., 2004]. These methods consist in a Monte Carlo approximation of the filtering distribution with particles that follow the prediction and correction steps of Kalman equations.

At time t k , an approximation of the filtering distribution is given by :

p(x t k |y t 1 :t k ) = N ∑ i=1 δ x (i) t k (x t k ), (3) 
where

x (i) t k i = 1, .
. . , N are the particles (also called "ensemble members"). The prediction step consists in propagating the ensemble of particles x a,(i) t k-1 through the non-linear dynamics (including the model noise simulation) in order to obtain the predicted particles, or forecast ensemble {x f ,(i) t k , i = 1, . . . , N}. The empirical ensemble covariance matrix P f e t k is then deduced from the following expression:

P f e k = 1 N -1 N ∑ i=1 x f ,(i) k -x f k x f ,(i) k -x f k T , (4) 
where the empirical mean of the forecast ensemble is defined by

x f k = 1 N N ∑ i=1 x f ,(i) k
. The Kalman correction equation is then computed from this covariance matrix. Since the Ensemble Kalman filter is based on a Gaussian assumption, it is known ([Le Gland et al., 2011]) that this filter does not converge towards the true filtering distribution for non linear systems. However, despite this theoretical drawback, this filter has been applied successfully to high-dimensional systems.

Particle filters

Particle filters [START_REF] Gordon | Novel approach to non-linear/non-gaussian bayesian state estimation[END_REF], Doucet et al., 2000[START_REF] Del Moral | Feynman-Kac Formulae Genealogical and Interacting Particle Systems with Applications[END_REF] are able to solve exactly the filtering equations, up to the Monte Carlo approximation. In this class of methods, the filtering distribution is approximated by a weighted sum of particles :

p(x t k |y t 1 :t k ) = N ∑ i=1 w (i) t k δ x (i) t k (x t k ).
(5) The particle filter is a sequential importance sampling technique: At each time step, particles {x (i) t k , i = 1, . . . , N} are first sampled from an importance distribution π(x t k |x t 0 :t k-1 , y t 1 :t k ) (this corresponds to the prediction step). Then a new weight w (i) t k is computed for each particle (correction step) using the following correction formulae :

w (i) t k ∝ w (i) k-1 p(y t k |x (i) t k )p(x (i) t k |x (i) t k-1 ) π(x (i) t k |x (i) t 0 :t k-1 , y t 1 :t k ) .
The standard choice when applying the particle filter is to fix the proposal distribution to be the transition law p(x t k |x t k-1 ). In that case, it is easy to sample from the proposal (this requires only to sample from the dynamical model). However, this choice has the major drawback of sampling the particles without taking into account the observation y t k . For high-dimensional systems, it has been proved that this standard particle filter can not be efficient [START_REF] Snyder | Obstacles to high-dimensional particle filtering[END_REF].

Different strategies can be adopted in order to make the particle filter more efficient for highdimensional models. First, one can define a precise dynamical model from the observations, aiming at reducing the dimension of the search space. This approach has been used in [START_REF] Avenel | Stochastic level set dynamics to track closed curves through image data[END_REF] for the tracking of closed curves in images sequences. The dynamical model of the curve is constructed from the image data, and the dynamic uncertainty is reduced to a smalldimension noise (corresponding to normal and tangential perturbations of the curve). A low order dynamical representation based on radial basis functions has been used also successfully to track vorticity fields from images [START_REF] Cuzol | A low dimensional fluid motion estimator[END_REF]Memin, 2009]. In both cases, which are associated to random field of low dimension, it has been shown that the simplest version of the particle filter can be successfully used.

Another way to cope with the curse of dimensionality associated to the usual blind sampling strategy of the bootstrap filter (π(x t k |x t 0 :t k-1 , y t 1 :t k ) ∼ p(x t k |x t k-1 )) consists in constructing importance distributions that integrate observations. This approach is presented briefly in the next section.

Hybrid filtering method

Idea

The importance distribution of the particle filter can be constructed in such a way that it integrates the observation y t k at each time step. In particular, one can use the Ensemble Kalman filter described in Section 2.1. This approach, called "Weighted Ensemble Kalman filter", has been proposed in [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF]. This filter combines the good properties of the ensemble Kalman mechanics with the correction scheme of the particle filter. Conceptually, this filter is more adapted to a non Gaussian distribution of the ensemble members, which is a situation that may arise at very short time horizon with nonlinear stochastic dynamics. The approach has been extended in [START_REF] Beyou | Weighted ensemble transform kalman filter for image assimilation[END_REF] for the assimilation of image observations, using a specific square-root filter (the Ensemble Transform Kalman filter) for the proposal step. We present below some results obtained with this method. 

Application

State-space model In [START_REF] Beyou | Weighted ensemble transform kalman filter for image assimilation[END_REF], the state-space model is described by a stochastic version of the 2D Navier-Stokes equation for incompressible flows :

dξ t = -∇ξ t • wdt + ν∆ξ t dt + ηdB t ( 6 
)
where ν is the viscosity coefficient (inverse of the flow Reynolds number) and dB t is a random forcing term. The variable ξ (x) denote the scalar vorticity at point x = (x, y) T , associated to the 2D velocity w(x) = (w x (x), w y (x))

T through ξ (x) = ∂ w y ∂ x -∂ w x ∂ y .
The vector ξ ∈ R |Ω| describes the vorticity over a spatial domain Ω of size |Ω|, and w ∈ R 2|Ω| is the associated velocity field over the same domain.

This dynamical model is associated to a non linear observation equation based on the luminance (color intensity of images) conservation along fluid trajectories, up to a Gaussian noise :

I(x,t k ) = I(x + d(x),t k+1 ) + γ t k (x) ∀x ∈ Ω I , ( 7 
)
where I is the luminance function, Ω I is the spatial image domain, and d(x) = t k+1 -δt t k w t (x t )dt denotes the displacement between time t k and time t k+1 , with x k = x. The perturbation γ t k is a Gaussian noise.

Results

The approach has been validated on synthetic turbulence data and tested on real satellite oceanic data.

The first set of experiments concerns a synthetic image sequence with images of size 256 × 256 showing the transport of a passive scalar by a 2D turbulent flow. This sequence is, to some extent, representative of typical satellite images depicting transport processes by oceanic streams, such as sea surface temperature or sea color images. This scalar exhibits a small diffusion, and does not respect strictly a luminance conservation assumption. The 2D turbulence is also maintained by an unknown forcing, which is thus crudely modeled in our dynamical model by a zero mean Gaussian field.

Results are compared to an other data assimilation method which can be used within this framework: the weighted ensemble Kalman filter (WEnKF, [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF]) which also relies on an ensemble Kalman filtering step, integrated within a particle filtering framework. In [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF], the WEnKF was used to assimilate linear observations. In case of image data that is nonlinearly related to the state of the system, these linear observations consist in pseudo-observations, i.e. velocity fields (and associated vorticity maps) computed from a given motion estimation technique. In the experiments below, these pseudo-observations are computed from a stochastic version of the well-known Lucas and Kanade motion estimator [START_REF] Corpetti | Stochastic uncertainty models for the luminance consistency assumption[END_REF] applied on each pair of the image sequence, and are called SLK.

The results are first compared in terms of global RMSE between the ground truth vorticity and the estimated vorticity at each time step, and similarly for the motion fields. The WEnKF and WETKF results have been obtained with N = 700 particles. As may be observed on Figure 1-(a), the improvement obtained with the WEnKF filtering technique over SLK measurements is minor, and even deteriorates the results in terms of velocity fields reconstruction. The proposed WETKF technique, directly based on image luminance observations, leads to much better results for the estimation of vorticity and velocity fields.

In addition to global errors comparisons, the analysis of spectra plotted on Figure 1-(b) allows to observe more precisely the accuracy of the different techniques at different scales. As a matter of fact the RMSE constitutes only a performance measure at large scales. It is indeed interesting to note that all methods give relatively coherent results only from the large scales up to the beginning of the inertial range. On the other hand, the result obtained with the WETKF assimilation scheme is closer to the ground truth over the whole scale range (from the largest scales up to the small dissipative scales). This comes from the fact that this technique can take benefit of all available information in the image data, while pseudo-observations given by a local motion estimator will not be able to improve the estimation at all scales. Filters based on pseudo-observations are unable to correct the loss of energy caused by the smoothing operator used in the external estimation procedure.

For a qualitative visual comparison, estimated vorticity maps are plotted on Figure 2 satellite images of Sea Surface Temperature (SST), with large areas of missing data due to the cloud cover and presence of coastal regions. The sequence consists of 48 images of size 256×256.

The images have a spatial resolution of 0.1 degree (10 km) and a temporal latency of 24 hours. The sequence is centered on an area of the Pacific ocean off the Panama isthmus and shot during an El Niño-Southern oscillation. Representative results at different time instants of the sequence are shown in Figure 3. The first column of Figure 3 shows the estimated velocity fields at times k = 1, 10, 24 and k = 39, superimposed on the corresponding SST images. The second column shows the estimated vorticity maps and velocity fields. The initialization for image 1 is based on the estimation provided by the local motion estimation approach (SLK). We see that this initialization provides only a rough large scale motion field. This estimate is refined afterward by the filtering process. We can note that the motion fields estimated along the sequence stick quite well to the big image structures observed on the SST images. The sequence of motion fields does not seem to be perturbed by the big missing data regions observed intermittently. Finally, we can note that the result obtained shows well an increase of the turbulent agitation with an intensification of the El-Niño phenomenon. However, one can identify many small scale vortices in the estimation results that may not be physically relevant. A better characterization of the dynamical noise could help correcting these artefacts. 

Conditional simulation for image data assimilation

The image data (given by satellites for instance) offer a high spatial resolution but a low temporal resolution, so that the time step between observations can be long in the assimilation scheme. This may cause discontinuities in the assimilation result, since the filtering relies on the dynamical model only between observations. In order to reduce such discontinuities and avoid the estimation of state trajectories that are not physically consistent, one can use a Monte Carlo sequential smoothing technique based on conditional simulation of diffusions [START_REF] Delyon | Simulation of conditioned diffusions and applications to parameter estimation[END_REF]. This technique, proposed in [START_REF] Cuzol | Monte carlo fixed-lag smoothing in state-space models[END_REF], relies on the filtering result and allows the sampling of continuous smoothed trajectories between observation times. The method can be applied to non linear and multidimensional models. An example is given in Figure 4, related to the estimation of a turbulent flow from images. The experimental setup is similar to the one presented in Section 2.3. The filtering and smoothing results are given as illustration between two given observation times t k and t k+1 . The temporal discontinuity in the filtering result can be seen on the first row, while the second row shows the result after smoothing. This promising technique can be extended to build alternative data assimilation techniques for data that are observed without noise (or very small noise). In that case, the assimilation problem can be formulated as the conditional simulation of a partially observed model, where the state (the vorticity for instance) is gradually corrected toward the observations (image data). The aim is then to avoid the discontinuities between observation times and to provide smoothed trajectories in a sequential way without post-processing. This work in progress is based on the theoretical results presented in [Marchand, 2012, Marchand, 2013].

Conclusion and perspectives

In this paper we have shown how a Kalman ensemble technique can be embedded within a particle filter. The resulting technique compared to ensemble filtering techniques allows robustifying the filtering and provides improved results. It opens also a way to assimilate different observations attached either to the particle filtering stage or to the sampling step, encoded through the ensemble Kalman filter mechanism. Such an ability has not been yet experimentally assessed and we plan to explore it in a near future. The hybrid filters show standard limitations associated to filtering issues where a continuous dynamics is coupled with a discrete sequence of observations. In that case an implausible trajectory is generated by a violent correction at observation times. We show briefly how to correct a posteriori this deficiency with a fixed lag smoothing. This conditional simulation approach can be extended to built a data assimilation method associated to the ill-posed case of low observation noise. We are currently exploring this promising technique.
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 1 FIGURE 1. Synthetic 2D turbulent flow. (a) RMSE between mean estimate of vorticity and ground truth; (b) Energy spectra.

  at a given time instant. The scalar image observation is first presented, together with the ground truth vorticity on Figure 2(b).

FIGURE 2 .

 2 FIGURE 2. Synthetic 2D turbulent flow. (a) Example of scalar image of the sequence at given time k; (b) Ground truth vorticity at time k; (c) SLK vorticity estimate; (d) Mean estimate of vorticity with WEnKF assimilation of SLK observation; (e) Mean estimate of vorticity with WETKF direct assimilation of image data.
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