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Image data assimilation with filtering methods

Anne Cuzol 1 , Jean-Louis Marchand 2 and Etienne Mémin 3

Abstract: In this paper we describe several techniques formulated within the stochastic filtering framework for image
data assimilation issues. We advocate here the use of hybrid methods between ensemble Kalman methods and particle
filters. The former family, despite being theoretically deficient in the sense that it does not in general converge towards
the sought-after filtering moments, has demonstrated to be very efficient in practice for high dimensional space filtering
issues. At the opposite, the latter are theoretically well posed but face strong practical difficulties in high dimensional
spaces. We list here briefly the principal ideas of the underlying hybrid filters, their qualities and their drawbacks.
Some comparison results between those different techniques are provided for the filtering of a 2D turbulent flow.

Résumé : Dans cet article nous décrivons plusieurs technique d’assimilation de données images formulées dans le
cadre d’un problème de filtrage stochastique non linéaire. Nous prônons l’utilisation de filtres hybrides couplant
des filtres de Kalman d’ensemble et les filtres particulaires. La première famille de filtres, bien que déficiente d’un
point de vue théorique puiqu’elle ne converge pas vers les moments de la distribution de filtrage cible, a montré son
efficacité pour des problèmes d’assimilation de données en très grande dimension. La seconde en revanche, bien posée
théoriquement, est confrontée à d’importantes difficultés pratiques en grande dimension. Nous listons brièvement les
principes gouvernant la construction de ces filtres, ainsi que leur avantages et défauts. Quelques résultats comparatifs
entre ces différentes techniques sont donnés dans le cas du filtrage d’un écoulement turbulent 2D.

1. Introduction

Data assimilation techniques aim at coupling a system state dynamics with partially observed
measurements of this system. Such a procedure is essential for instance in forecasting applications
to estimate from observed data a good initial state of the system’s variables or to calibrate
dynamical parameters. A recent new challenge is emerging in geophysical flow analysis with the
availability of high resolution satellite image data [Beyou et al., 2013, Corpetti et al., 2009, Titaud
et al., 2010]. The assimilation of such data into oceanic or atmospheric numerical models is
unfortunately not as easy as it may appear at a very first glance. As a matter of fact, it is immediate
to feel like incorporating in weather numerical models complex non linear phenomena such as
front, or tornado that are evidently observed in image data sequences, and which are, in the
same time, difficult to generate spontaneously from models. The essential difficulty of image
assimilation ensues principally from the fact that the observed luminance does not belong to the
system state space. In general, there is indeed a complex relation between the luminance function
and the flow state variables. This complex relation leads to difficult inverse problems to recover
for instance velocity, temperature or pressure variables from a set of images. The other source
of concern lies in the fact that images and models do not live at the same scales. As a matter of
fact, the spatial resolution of images are nowadays defined on finer spatial grids than models. This
still increasing scale difference, due to satellite sensors technological progress, induces a scale
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relation which complicates further the connection between the state variables and the observations.
Besides, large scale models are only imperfectly known. Small scale forcing and geophysical
turbulence models for instance must be set up. The alternative, to specify such imperfect large
scale evolution models consists in the establishment of stochastic dynamics where the uncertainty
is formalized through stochastic processes [Franzke and Majda, 2005, Majda et al., 1999, Mémin,
2013]. In this latter case, it is important to point out that we are in a situation where the model
random uncertainty is usually much more pregnant than the measurement noise defined at a
higher resolution. This extreme case of quasi negligible data noise leads in particular to a badly
conditioned situation for data assimilation procedures.

The coupling of a a partially known stochastic dynamics and noisy observations can be
expressed through a nonlinear stochastic filtering problem. In the case of image data this filtering
problem involves an evolution law of a state variable x(x, t) : Ω×R+→ Rd of the form

dx(x, t) = M(x(x, t))dt +σ(x, t)dB(t), (1)

accompanied by partial observations of the system through measurements y(x, t) : Ω×R+→ Rp

y(x, tk) = H(x(x, tk)+ γ(x, tk). (2)

In this system, both the dynamical operator, M, and the observation operator, H, between the
measurement space and the state space are, in the general case, nonlinear. The observation equation
(2) is in addition discrete in time due to a possibly long time interval between two consecutive
measurements. The dynamics is at the opposite continuous with a discrete scheme associated to
a much shorter time step. Concerning this stochastic dynamics, we will assume the dynamical
noise is a Wiener process where the diffusion tensor, σ , may eventually depend on the stochastic
process, which gives rise in that case to multiplicative noises. As for the observation noise, γtk , it
can be non-Gaussian, but it is, nevertheless, conditionally independent of the state variable.

Beyond the main difficulty faced here, which concerns essentially the high dimensionality
of the system (∼ 106−109), let us note the modeling of a proper stochastic representation of a
state variable dynamics is in general not a straightforward stage. Several different directions can
be followed depending on the application targeted. This goes from the definition of stochastic
representations of deterministic pdes to the constitution of "inexact" evolution laws incorporating
errors or uncertainties. In this article we will not elaborate on such issues and consider that the
dynamics has been well defined and follows general form (1).

In the following we will present different solutions devised so far for the filtering of image data.
Those techniques have in common to be all based on Monte Carlo principles. The first family
of method ensues from a Monte Carlo implementation of the Kalman filtering equations and
incorporates efficient procedures to cope with matrix-vector products in high dimension. The
second kind of methods concerns the so-called particle filters. It corresponds to a set of methods
that approximate the filtering distribution through a linear combination of Dirac masses centered
on samples referred to as particles. In the following section we briefly describe those two types
of methods. Advantages and deficiencies of both approaches are listed and we then describe, in
a subsequent section, several hybrid techniques that aim at combining both families in order to
keep the best of their properties. Some comparative results are provided in the last sections.
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2. Assimilation with filtering methods

The first family of filtering methods is intensively used in geophysics. It relies on a Gaussian
assumption and extends the Kalman update mechanisms through a Monte Carlo implementation.

2.1. Ensemble Kalman filter

The well-known Kalman filter [Kalman, 1960] allows to solve the filtering problem for linear
Gaussian state-space models. At each time step, the Gaussian filtering distribution is characterised
by its mean and covariance, which are recursively updated through the prediction and correction
steps. In order to tackle the filtering problem for non linear and high-dimensional systems,
Ensemble Kalman filters have been developed [Evensen, 1994, Houtekamer and Mitchell, 1998,
Bishop et al., 2001, Evensen, 2003, Ott et al., 2004]. These methods consist in a Monte Carlo
approximation of the filtering distribution with particles that follow the prediction and correction
steps of Kalman equations.

At time tk, an approximation of the filtering distribution is given by :

p̂(xtk |yt1:tk) =
N

∑
i=1

δx(i)tk
(xtk), (3)

where x(i)tk i = 1, . . . ,N are the particles (also called "ensemble members"). The prediction step

consists in propagating the ensemble of particles xa,(i)
tk−1

through the non-linear dynamics (including
the model noise simulation) in order to obtain the predicted particles, or forecast ensemble
{x f ,(i)

tk , i = 1, . . . ,N}. The empirical ensemble covariance matrix P fe
tk is then deduced from the

following expression:

P fe
k =

1
N−1

N

∑
i=1

(
x f ,(i)

k −x f
k

)(
x f ,(i)

k −x f
k

)T
, (4)

where the empirical mean of the forecast ensemble is defined by x f
k = 1

N

N
∑

i=1
x f ,(i)

k . The Kalman

correction equation is then computed from this covariance matrix.
Since the Ensemble Kalman filter is based on a Gaussian assumption, it is known ([Le Gland

et al., 2011]) that this filter does not converge towards the true filtering distribution for non linear
systems. However, despite this theoretical drawback, this filter has been applied successfully to
high-dimensional systems.

2.2. Particle filters

Particle filters [Gordon et al., 1993, Doucet et al., 2000, Del Moral, 2004] are able to solve exactly
the filtering equations, up to the Monte Carlo approximation. In this class of methods, the filtering
distribution is approximated by a weighted sum of particles :

p̂(xtk |yt1:tk) =
N

∑
i=1

w(i)
tk δx(i)tk

(xtk). (5)
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The particle filter is a sequential importance sampling technique: At each time step, particles
{x(i)tk , i = 1, . . . ,N} are first sampled from an importance distribution π(xtk |xt0:tk−1 ,yt1:tk) (this cor-

responds to the prediction step). Then a new weight w(i)
tk is computed for each particle (correction

step) using the following correction formulae :

w(i)
tk ∝ w(i)

k−1
p(ytk |x

(i)
tk )p(x(i)tk |x

(i)
tk−1

)

π(x(i)tk |x
(i)
t0:tk−1

,yt1:tk)
.

The standard choice when applying the particle filter is to fix the proposal distribution to be the
transition law p(xtk |xtk−1). In that case, it is easy to sample from the proposal (this requires only
to sample from the dynamical model). However, this choice has the major drawback of sampling
the particles without taking into account the observation ytk . For high-dimensional systems, it has
been proved that this standard particle filter can not be efficient [Snyder et al., 2008].

Different strategies can be adopted in order to make the particle filter more efficient for high-
dimensional models. First, one can define a precise dynamical model from the observations,
aiming at reducing the dimension of the search space. This approach has been used in [Avenel
et al., 2013] for the tracking of closed curves in images sequences. The dynamical model of the
curve is constructed from the image data, and the dynamic uncertainty is reduced to a small-
dimension noise (corresponding to normal and tangential perturbations of the curve). A low order
dynamical representation based on radial basis functions has been used also successfully to track
vorticity fields from images [Cuzol et al., 2007, Cuzol and Memin, 2009]. In both cases, which
are associated to random field of low dimension, it has been shown that the simplest version of
the particle filter can be successfully used.

Another way to cope with the curse of dimensionality associated to the usual blind sampling
strategy of the bootstrap filter (π(xtk |xt0:tk−1 ,yt1:tk)∼ p(xtk |xtk−1)) consists in constructing impor-
tance distributions that integrate observations. This approach is presented briefly in the next
section.

2.3. Hybrid filtering method

2.3.1. Idea

The importance distribution of the particle filter can be constructed in such a way that it integrates
the observation ytk at each time step. In particular, one can use the Ensemble Kalman filter
described in Section 2.1. This approach, called "Weighted Ensemble Kalman filter", has been
proposed in [Papadakis et al., 2010]. This filter combines the good properties of the ensemble
Kalman mechanics with the correction scheme of the particle filter. Conceptually, this filter is
more adapted to a non Gaussian distribution of the ensemble members, which is a situation that
may arise at very short time horizon with nonlinear stochastic dynamics. The approach has been
extended in [Beyou et al., 2013] for the assimilation of image observations, using a specific
square-root filter (the Ensemble Transform Kalman filter) for the proposal step. We present below
some results obtained with this method.
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2.3.2. Application

State-space model In [Beyou et al., 2013], the state-space model is described by a stochastic
version of the 2D Navier-Stokes equation for incompressible flows :

dξ t =−∇ξ t ·wdt +ν∆ξ tdt +ηdBt (6)

where ν is the viscosity coefficient (inverse of the flow Reynolds number) and dBt is a random
forcing term. The variable ξ (x) denote the scalar vorticity at point x = (x,y)T , associated to the
2D velocity w(x) = (wx(x),wy(x))T through ξ (x) = ∂wy

∂x −
∂wx
∂y . The vector ξ ∈ R|Ω| describes

the vorticity over a spatial domain Ω of size |Ω|, and w ∈ R2|Ω| is the associated velocity field
over the same domain.

This dynamical model is associated to a non linear observation equation based on the luminance
(color intensity of images) conservation along fluid trajectories, up to a Gaussian noise :

I(x, tk) = I(x+d(x), tk+1)+ γtk(x) ∀x ∈ΩI, (7)

where I is the luminance function, ΩI is the spatial image domain, and d(x) =
∫ tk+1−δ t

tk wt(xt)dt
denotes the displacement between time tk and time tk+1, with xk = x. The perturbation γtk is a
Gaussian noise.

Results The approach has been validated on synthetic turbulence data and tested on real satellite
oceanic data.

The first set of experiments concerns a synthetic image sequence with images of size 256×256
showing the transport of a passive scalar by a 2D turbulent flow. This sequence is, to some extent,
representative of typical satellite images depicting transport processes by oceanic streams, such
as sea surface temperature or sea color images. This scalar exhibits a small diffusion, and does
not respect strictly a luminance conservation assumption. The 2D turbulence is also maintained
by an unknown forcing, which is thus crudely modeled in our dynamical model by a zero mean
Gaussian field.

Results are compared to an other data assimilation method which can be used within this
framework: the weighted ensemble Kalman filter (WEnKF, [Papadakis et al., 2010]) which also
relies on an ensemble Kalman filtering step, integrated within a particle filtering framework. In
[Papadakis et al., 2010], the WEnKF was used to assimilate linear observations. In case of image
data that is nonlinearly related to the state of the system, these linear observations consist in
pseudo-observations, i.e. velocity fields (and associated vorticity maps) computed from a given
motion estimation technique. In the experiments below, these pseudo-observations are computed
from a stochastic version of the well-known Lucas and Kanade motion estimator [Corpetti and
Mémin, 2012] applied on each pair of the image sequence, and are called SLK.

The results are first compared in terms of global RMSE between the ground truth vorticity and
the estimated vorticity at each time step, and similarly for the motion fields. The WEnKF and
WETKF results have been obtained with N = 700 particles. As may be observed on Figure 1-(a),
the improvement obtained with the WEnKF filtering technique over SLK measurements is minor,
and even deteriorates the results in terms of velocity fields reconstruction. The proposed WETKF
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(a) (b)

FIGURE 1. Synthetic 2D turbulent flow. (a) RMSE between mean estimate of vorticity and ground truth; (b) Energy
spectra.

technique, directly based on image luminance observations, leads to much better results for the
estimation of vorticity and velocity fields.

In addition to global errors comparisons, the analysis of spectra plotted on Figure 1-(b) allows
to observe more precisely the accuracy of the different techniques at different scales. As a matter
of fact the RMSE constitutes only a performance measure at large scales. It is indeed interesting to
note that all methods give relatively coherent results only from the large scales up to the beginning
of the inertial range. On the other hand, the result obtained with the WETKF assimilation scheme
is closer to the ground truth over the whole scale range (from the largest scales up to the small
dissipative scales). This comes from the fact that this technique can take benefit of all available
information in the image data, while pseudo-observations given by a local motion estimator will
not be able to improve the estimation at all scales. Filters based on pseudo-observations are unable
to correct the loss of energy caused by the smoothing operator used in the external estimation
procedure.

For a qualitative visual comparison, estimated vorticity maps are plotted on Figure 2 at a
given time instant. The scalar image observation is first presented, together with the ground truth
vorticity on Figure 2(b). Figure 2(c) shows the vorticity estimated with the local SLK technique.
The result obtained with the WEnKF assimilation scheme based on these SLK observations is
presented on Figure 2(d), while Figure 2(e) shows the result obtained with the proposed WETKF
technique, assimilating image data directly. As can be seen on Figure 2(c), the vorticity estimated
by the local motion estimation technique is far from the ground truth. As a consequence, the
WEnKF assimilation based on these measurements only brings a small improvement since these
observations do not carry enough information. The solution lacks clearly of energy compared to
the true vorticity. The direct assimilation of image data through the WETKF scheme leads to a
better estimation of vorticity structures, and in particular of small scales structures as discussed
previously with the comparison of spectra.

The second set of results concerns the application of the proposed WETKF technique on
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(a) (b)

(c) (d) (e)

FIGURE 2. Synthetic 2D turbulent flow. (a) Example of scalar image of the sequence at given time k; (b) Ground
truth vorticity at time k; (c) SLK vorticity estimate; (d) Mean estimate of vorticity with WEnKF assimilation of SLK
observation; (e) Mean estimate of vorticity with WETKF direct assimilation of image data.

satellite images of Sea Surface Temperature (SST), with large areas of missing data due to the
cloud cover and presence of coastal regions. The sequence consists of 48 images of size 256×256.
The images have a spatial resolution of 0.1 degree (10 km) and a temporal latency of 24 hours.
The sequence is centered on an area of the Pacific ocean off the Panama isthmus and shot during
an El Niño-Southern oscillation. Representative results at different time instants of the sequence
are shown in Figure 3. The first column of Figure 3 shows the estimated velocity fields at times
k = 1,10,24 and k = 39, superimposed on the corresponding SST images. The second column
shows the estimated vorticity maps and velocity fields. The initialization for image 1 is based
on the estimation provided by the local motion estimation approach (SLK). We see that this
initialization provides only a rough large scale motion field. This estimate is refined afterward
by the filtering process. We can note that the motion fields estimated along the sequence stick
quite well to the big image structures observed on the SST images. The sequence of motion fields
does not seem to be perturbed by the big missing data regions observed intermittently. Finally,
we can note that the result obtained shows well an increase of the turbulent agitation with an
intensification of the El-Niño phenomenon. However, one can identify many small scale vortices
in the estimation results that may not be physically relevant. A better characterization of the
dynamical noise could help correcting these artefacts.
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k = 1 k = 10 k = 24 k = 39

FIGURE 3. Real satellite sequence of SST (sea surface temperature) images. Dark blue regions indicate missing data
due to the cloud cover or land regions. First row: SST images at different days k = 1,10,24,39 and estimated velocity
fields with the WETKF assimilation of image data; Second row: Mean estimated vorticity with WETKF and associated
velocity fields.
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Obs. time tk Obs. time tk+1

FIGURE 4. First row: Illustration of the discontinuity in the particle filtering result between two observation times tk
and tk+1; Second row: Result after the smoothing procedure based on conditional simulation proposed in [Cuzol and
Mémin, 2013].

2.4. Conditional simulation for image data assimilation

The image data (given by satellites for instance) offer a high spatial resolution but a low temporal
resolution, so that the time step between observations can be long in the assimilation scheme. This
may cause discontinuities in the assimilation result, since the filtering relies on the dynamical
model only between observations. In order to reduce such discontinuities and avoid the estimation
of state trajectories that are not physically consistent, one can use a Monte Carlo sequential
smoothing technique based on conditional simulation of diffusions [Delyon and Hu, 2006]. This
technique, proposed in [Cuzol and Mémin, 2013], relies on the filtering result and allows the
sampling of continuous smoothed trajectories between observation times. The method can be
applied to non linear and multidimensional models. An example is given in Figure 4, related to the
estimation of a turbulent flow from images. The experimental setup is similar to the one presented
in Section 2.3. The filtering and smoothing results are given as illustration between two given
observation times tk and tk+1. The temporal discontinuity in the filtering result can be seen on the
first row, while the second row shows the result after smoothing.

This promising technique can be extended to build alternative data assimilation techniques for
data that are observed without noise (or very small noise). In that case, the assimilation problem
can be formulated as the conditional simulation of a partially observed model, where the state
(the vorticity for instance) is gradually corrected toward the observations (image data). The aim is
then to avoid the discontinuities between observation times and to provide smoothed trajectories
in a sequential way without post-processing. This work in progress is based on the theoretical
results presented in [Marchand, 2012, Marchand, 2013].

3. Conclusion and perspectives

In this paper we have shown how a Kalman ensemble technique can be embedded within a particle
filter. The resulting technique compared to ensemble filtering techniques allows robustifying the
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filtering and provides improved results. It opens also a way to assimilate different observations
attached either to the particle filtering stage or to the sampling step, encoded through the ensemble
Kalman filter mechanism. Such an ability has not been yet experimentally assessed and we plan
to explore it in a near future. The hybrid filters show standard limitations associated to filtering
issues where a continuous dynamics is coupled with a discrete sequence of observations. In that
case an implausible trajectory is generated by a violent correction at observation times. We show
briefly how to correct a posteriori this deficiency with a fixed lag smoothing. This conditional
simulation approach can be extended to built a data assimilation method associated to the ill-posed
case of low observation noise. We are currently exploring this promising technique.
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