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Abstract

In this paper we describe several techniques formulated within the stochas-
tic filtering framework for image data assimilation issues. We advocate here
the use of hybrid methods between ensemble Kalman methods and parti-
cle filters. The former family, despite being theoretically deficient in the
sense that it does not in general converge towards the sought-after filtering
moments, has demonstrated to be very efficient in practice for high dimen-
sional space filtering issues. At the opposite, the latter are theoretically well
posed but face strong practical difficulties in high dimensional spaces. We
list here briefly the principal ideas of the underlying hybrid filters, their qual-
ities and their drawbacks. Some comparison results between those different
techniques are provided for the filtering of a 2D turbulent flow.

1 Introduction
Data assimilation techniques aim at coupling a system state dynamics with par-
tially observed measurements of this system. Such a procedure is essential for
instance in forecasting applications to estimate from observed data a good ini-
tial state of the system’s variables or to calibrate dynamical parameters. A re-
cent new challenge is emerging in geophysical flow analysis with the availability
of high resolution satellite image data [Beyou et al., 2013, Corpetti et al., 2009,
Titaud et al., 2010]. The assimilation of such data into oceanic or atmospheric
numerical models is unfortunately not as easy as it may appear at a very first
glance. As a matter of fact, it is immediate to feel like incorporating in weather
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numerical models complex non linear phenomena such as fronts, or tornados that
are evidently observed in image data sequences, and which are, in the same time,
difficult to generate spontaneously from models. The essential difficulty of image
assimilation ensues principally from the fact that the observed luminance does
not belong to the system state space. In general, there is indeed a complex re-
lation between the luminance function and the flow state variables. This com-
plex relation leads to difficult inverse problems to recover for instance velocity,
temperature or pressure variables from a set of images. The other source of con-
cern lies in the fact that images and models do not live at the same scales. As
a matter of fact, the spatial resolution of images are nowadays defined on finer
spatial grids than models. This still increasing scale difference, due to satellite
sensors technological progress, induces a scale relation which complicates further
the connection between the state variables and the observations. Besides, large
scale models are only imperfectly known. Small scale forcing and geophysical
turbulence models for instance must be set up. The alternative, to specify such
imperfect large scale evolution models consists in the establishment of stochas-
tic dynamics where the uncertainty is formalized through stochastic processes
[Franzke and Majda, 2005, Majda et al., 1999, Mémin, 2013]. In this latter case,
it is important to point out that we are in a situation where the model random
uncertainty is usually much more pregnant than the measurement noise defined
at a higher resolution. This extreme case of quasi negligible data noise leads in
particular to a badly conditioned situation for data assimilation procedures.

The coupling of a a partially known stochastic dynamics and noisy observa-
tions can be expressed through a nonlinear stochastic filtering problem. In the case
of image data this filtering problem involves an evolution law of a state variable
x ∈ Rd of the form

dxt = M(xt)dt+ σ(xt)dBt, (1)

accompanied by partial observations of the system through measurements y ∈ Rp

ytk = H(xtk) + γtk . (2)

In this system, both the dynamical operator, M, and the observation operator,
H, between the measurement space and the state space are, in the general case,
nonlinear. The observation equation (2) is in addition discrete in time due to a pos-
sibly long time interval between two consecutive measurements. The dynamics
is at the opposite continuous with a discrete scheme associated to a much shorter
time step. Concerning this stochastic dynamics, we will assume the dynamical
noise is a Wiener process where the diffusion tensor, σ, may eventually depend
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on the stochastic process, which gives rise in that case to multiplicative noises.
As for the observation noise, γtk , it can be non-Gaussian, but it is, nevertheless,
conditionally independent of the state variable.

Beyond the main difficulty faced here, which concerns essentially the high di-
mensionality of the system (∼ 106 − 109), let us note the modeling of a proper
stochastic representation of a state variable dynamics is in general not a straight-
forward stage. Several different directions can be followed depending on the ap-
plication targeted. This goes from the definition of stochastic representations of
deterministic pdes to the constitution of "inexact" evolution laws incorporating
errors or uncertainties. In this article we will not elaborate on such issues and
consider that the dynamics has been well defined and follows general form (1).

In the following we will present different solutions devised so far for the fil-
tering of image data. Those techniques have all in common to be based on Monte
Carlo principles. The first family of methods ensues from a Monte Carlo imple-
mentation of the Kalman filtering equations and incorporates efficient procedures
to cope with matrix-vector products in high dimension. The second one concerns
the so-called particle filters. It corresponds to a set of techniques that approximate
the filtering distribution through a linear combination of Dirac masses centered on
samples referred to as particles. In the following section we briefly describe those
two types of methods. Advantages and deficiencies of both approaches are listed
and we then describe, in a subsequent section, several hybrid techniques that aim
at combining both families in order to keep the best of their properties. Some
comparative results are provided in the last sections.

2 Assimilation with filtering methods
The first family of filtering methods is intensively used in geophysics. It relies
on a Gaussian assumption and extends the Kalman update mechanisms through a
Monte Carlo implementation.

2.1 Ensemble Kalman filter
The well-known Kalman filter [Kalman, 1960] allows to solve the filtering prob-
lem for linear Gaussian state-space models. At each time step, the Gaussian filter-
ing distribution is characterised by its mean and covariance, which are recursively
updated through the prediction and correction steps. In order to tackle the filtering
problem for non linear and high-dimensional systems, Ensemble Kalman filters
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have been developed [Evensen, 1994, Houtekamer and Mitchell, 1998, Bishop et al., 2001,
Evensen, 2003, Ott et al., 2004]. These methods consist in a Monte Carlo approx-
imation of the filtering distribution with particles that follow the prediction and
correction steps of Kalman equations.

At time tk, an approximation of the filtering distribution is given by :

p̂(xtk |yt1:tk) =
N∑
i=1

δ
x
(i)
tk

(xtk), (3)

where x(i)
tk

i = 1, . . . , N are the particles (also called "ensemble members"). The
prediction step consists in propagating the ensemble of particles xa,(i)tk−1

through the
non-linear dynamics (including the model noise simulation) in order to obtain the
predicted particles, or forecast ensemble {xf,(i)tk

, i = 1, . . . , N}. The empirical
ensemble covariance matrix Pfe

tk
is then deduced from the following expression:

Pfe
tk

=
1

N − 1

N∑
i=1

(
x
f,(i)
tk
− xftk

)(
x
f,(i)
tk
− xftk

)T
, (4)

where the empirical mean of the forecast ensemble is defined by xftk = 1
N

N∑
i=1

x
f,(i)
tk

.

The Kalman correction equation is then computed from this covariance matrix.
Since the Ensemble Kalman filter is based on a Gaussian assumption, it is

known ([Le Gland et al., 2011]) that this filter does not converge towards the true
filtering distribution for non linear systems. However, despite this theoretical
drawback, this filter has been applied successfully to high-dimensional systems.

2.2 Particle filters
Particle filters [Gordon et al., 1993, Doucet et al., 2000, Del Moral, 2004] are able
to solve exactly the filtering equations, up to the Monte Carlo approximation. In
this class of methods, the filtering distribution is approximated by a weighted sum
of particles :

p̂(xtk |yt1:tk) =
N∑
i=1

w
(i)
tk
δ
x
(i)
tk

(xtk). (5)

The particle filter is a sequential importance sampling technique: At each time
step, particles {x(i)

tk
, i = 1, . . . , N} are first sampled from an importance distribu-

tion π(xtk |xt0:tk−1
,yt1:tk) (this corresponds to the prediction step). Then a new
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weight w(i)
tk

is computed for each particle (correction step) using the following
correction formulae :

w
(i)
tk

∝ w
(i)
tk−1

p(ytk |x
(i)
tk

)p(x
(i)
tk
|x(i)
tk−1

)

π(x
(i)
tk
|x(i)
t0:tk−1

,yt1:tk)
.

The standard choice when applying the particle filter is to fix the proposal
distribution to be the transition law p(xtk |xtk−1

). In that case, it is easy to sam-
ple from the proposal (this requires only to sample from the dynamical model).
However, this choice has the major drawback of sampling the particles without
taking into account the observation ytk . For high-dimensional systems, it has
been proved that this standard particle filter can not be efficient in a general case
[Snyder et al., 2008].

Different strategies can be however adopted in order to make the particle fil-
ter more efficient for high-dimensional models. First, one can define a precise
dynamical model from the observations, aiming at reducing the dimension of
the search space. This approach has been used in [Avenel et al., 2013] for the
tracking of closed curves in images sequences. The dynamical model of the
curve is constructed from the image data, and the dynamic uncertainty is re-
duced to a small-dimension noise (corresponding to normal and tangential pertur-
bations of the curve). A low order dynamical representation based on radial basis
functions has been used also successfully to track vorticity fields from images
[Cuzol et al., 2007, Cuzol and Memin, 2009]. In both cases, which are associated
to random field of low dimension, it has been shown that the simplest version of
the particle filter can be successfully used.

Another way to cope with the curse of dimensionality associated to the usual
blind sampling strategy of the bootstrap filter (π(xtk |xt0:tk−1

,yt1:tk) ∼ p(xtk |xtk−1
))

consists in constructing importance distributions that integrate observations. This
approach is presented briefly in the next section.

2.3 Hybrid filtering method
2.3.1 Idea

The importance distribution of the particle filter can be constructed in such a way
that it integrates the observation ytk at each time step. In particular, one can use the
Ensemble Kalman filter described in Section 2.1. This approach, called "Weighted
Ensemble Kalman filter", has been proposed in [Papadakis et al., 2010]. It is close
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to the technique proposed in [Van Leeuwen, 2010]. The importance distribution is
taken as a Gaussian approximation of p(xtk |xtk−1

,ytk), obtained as output of the
Ensemble Kalman filter. Each particle is then weighted. The Weighted ensemble
Kalman filter (WEnKF) procedure can be simply summarized by Algorithm 1.

Algorithm 1 The WEnKF algorithm

For each tk = t1, t2, . . .:

• Start from particles set {x(i)
tk−1

, i = 1, . . . , N} and observation ytk

• Obtain particles set {x(i)
tk
, i = 1, . . . , N} from:

– EnKF step: Get x(i)
tk

, i = 1, . . . , N , from the assimilation of ytk with
an EnKF procedure;

– Computation of weights: w(i)
tk

∝ w
(i)
tk−1

p(ytk
|x(i)

tk
)p(x

(i)
tk
|x(i)

tk−1
)

p(x
(i)
tk
|x(i)

tk−1
,y

(i)
tk

)
;

– Resampling: For j = 1, . . . , N , sample with replacement index I(j)

from discrete probability {w(i)
tk
, i = 1, . . . , N} over {1, . . . , N} and

set x(j)
tk

= x
I(j)
tk

. Set w(i)
tk

= 1
N
∀i = 1, . . . , N .

This filter combines the good properties of the ensemble Kalman mechanics with
the correction scheme of the particle filter. Conceptually, this filter is more adapted
to a non Gaussian distribution of the ensemble members, which is a situation that
may arise at very short time horizon with nonlinear stochastic dynamics. The
approach has been extended in [Beyou et al., 2013] for the assimilation of image
observations, using a specific square-root filter (the Ensemble Transform Kalman
filter) for the proposal step. We present below some results obtained with this
method.

2.3.2 Application

State-space model In [Beyou et al., 2013], the state-space model is described
by a stochastic version of the 2D Navier-Stokes equation for incompressible flows
:

dξt = −∇ξt ·wdt+ ν∆ξtdt+ ηdBt (6)
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where ν is the viscosity coefficient (inverse of the flow Reynolds number) and dBt

is a random forcing term. The variable ξ(x) denote the scalar vorticity at point
x = (x, y)T , associated to the 2D velocity w(x) = (wx(x), wy(x))T through
ξ(x) = ∂wy

∂x
− ∂wx

∂y
. The vector ξ ∈ R|Ω| describes the vorticity over a spatial

domain Ω of size |Ω|, and w ∈ R2|Ω| is the associated velocity field over the same
domain. In practice, the model perturbations are simulations of random fields,
correlated in space through a given covariance model. The value of η and the
parameters of the covariance model have to be chosen.

This dynamical model is associated to a non linear observation equation based
on the luminance (color intensity of images) conservation along fluid trajectories,
up to a Gaussian noise :

Itk(x) = Itk+1
(x + d(x)) + γtk(x) ∀x ∈ ΩI , (7)

where I is the luminance function, ΩI is the spatial image domain, and d(x) =∫ tk+1−δt
tk

wt(xt)dt denotes the displacement between time tk and time tk+1, with
xk = x. The perturbation γtk is a Gaussian noise with variance σ2

tk
(x) computed

from ensemble members (see [Beyou et al., 2013]).

Results The approach has been validated on synthetic turbulence data and tested
on real satellite oceanic data.

The first set of experiments concerns a synthetic image sequence with images
of size 256× 256 showing the transport of a passive scalar by a 2D turbulent flow.
This sequence is, to some extent, representative of typical satellite images depict-
ing transport processes by oceanic streams, such as sea surface temperature or sea
color images. This scalar exhibits a small diffusion, and does not respect strictly
a luminance conservation assumption. The 2D turbulence is also maintained by
an unknown forcing, which is thus crudely modeled in our dynamical model by a
zero mean Gaussian field.

Results are compared to an other data assimilation method which can be used
within this framework: the weighted ensemble Kalman filter (WEnKF, [Papadakis et al., 2010])
which also relies on an ensemble Kalman filtering step, integrated within a par-
ticle filtering framework. In [Papadakis et al., 2010], the WEnKF was used to
assimilate linear observations. In case of image data that is nonlinearly related to
the state of the system, these linear observations consist in pseudo-observations,
i.e. velocity fields (and associated vorticity maps) computed from a given motion
estimation technique. In the experiments below, these pseudo-observations are
computed from a stochastic version of the well-known Lucas and Kanade motion
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estimator [Corpetti and Mémin, 2012] applied on each pair of the image sequence,
and are called SLK.

The results are first compared in terms of global RMSE between the ground
truth vorticity and the estimated vorticity at each time step, and similarly for the
motion fields. The WEnKF and WETKF results have been obtained withN = 700
particles. As may be observed on Figure 1-(a), the improvement obtained with the
WEnKF filtering technique over SLK measurements is minor, and even deterio-
rates the results in terms of velocity fields reconstruction. The proposed WETKF
technique, directly based on image luminance observations, leads to much better
results for the estimation of vorticity and velocity fields.

In addition to global errors comparisons, the analysis of spectra plotted on Fig-
ure 1-(b) allows to observe more precisely the accuracy of the different techniques
at different scales. As a matter of fact the RMSE constitutes only a performance
measure at large scales. Note that the scale of Figure 1-(b) is given in units of
the inverse of the image size. For instance, the scale 10 corresponds to 25 pixels,
the scale 102 corresponds to 2,5 pixels. It is interesting to note that all methods
give relatively coherent results only from the large scales up to the beginning of
the inertial range. On the other hand, the result obtained with the WETKF as-
similation scheme is closer to the ground truth over the whole scale range (from
the largest scales up to the small dissipative scales). This comes from the fact that
this technique can take benefit of all available information in the image data, while
pseudo-observations given by a local motion estimator will not be able to improve
the estimation at all scales. Filters based on pseudo-observations are unable to
correct the loss of energy caused by the smoothing operator used in the external
estimation procedure.

For a qualitative visual comparison, estimated vorticity maps are plotted on
Figure 2 at a given time instant. The scalar image observation is first presented, to-
gether with the ground truth vorticity on Figure 2(b). Figure 2(c) shows the vortic-
ity estimated with the local SLK technique. The result obtained with the WEnKF
assimilation scheme based on these SLK observations is presented on Figure 2(d),
while Figure 2(e) shows the result obtained with the proposed WETKF technique,
assimilating image data directly. As can be seen on Figure 2(c), the vorticity esti-
mated by the local motion estimation technique is far from the ground truth. As a
consequence, the WEnKF assimilation based on these measurements only brings
a small improvement since these observations do not carry enough information.
The solution lacks clearly of energy compared to the true vorticity. The direct
assimilation of image data through the WETKF scheme leads to a better estima-
tion of vorticity structures, and in particular of small scales structures as discussed
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(a) (b)

Figure 1: Synthetic 2D turbulent flow. (a) RMSE between mean estimate of vor-
ticity and ground truth; (b) Energy spectra.

previously with the comparison of spectra.
The second set of results concerns the application of the proposed WETKF

technique on satellite images of Sea Surface Temperature (SST), with large ar-
eas of missing data due to the cloud cover and presence of coastal regions. The
sequence consists of 48 images of size 256×256. These images come from the
MetOp satellite (AVHRR radiometer) and have been provided by CERSAT labo-
ratory of IFREMER. The images have a spatial resolution of 0.1 degree (10 km)
and a temporal latency of 24 hours. The sequence is centered on an area of the
Pacific ocean off the Panama isthmus and shot during an El Niño-Southern oscil-
lation. Representative results at different time instants of the sequence are shown
in Figure 3. The first column of Figure 3 shows the estimated velocity fields at
times k = 1, 10, 24 and k = 39, superimposed on the corresponding SST images.
The second column shows the estimated vorticity maps and velocity fields. The
initialization for image 1 is based on the estimation provided by the local motion
estimation approach (SLK). We see that this initialization provides only a rough
large scale motion field. This estimate is refined afterward by the filtering process.
We can note that the motion fields estimated along the sequence stick quite well
to the big image structures observed on the SST images. The sequence of motion
fields does not seem to be perturbed by the big missing data regions observed in-
termittently. Finally, we can note that the result obtained shows well an increase
of the turbulent agitation that can be readily observed on the SST image sequence.

9



(a) (b)

(c) (d) (e)

Figure 2: Synthetic 2D turbulent flow. (a) Example of scalar image of the se-
quence at given time k; (b) Ground truth vorticity at time k; (c) SLK vorticity
estimate; (d) Mean estimate of vorticity with WEnKF assimilation of SLK obser-
vation; (e) Mean estimate of vorticity with WETKF direct assimilation of image
data.
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k = 1 k = 10 k = 24 k = 39

Figure 3: Real satellite sequence of SST (sea surface temperature) images. Dark
blue regions indicate missing data due to the cloud cover or land regions. First
row: SST images at different days k = 1, 10, 24, 39 and estimated velocity fields
with the WETKF assimilation of image data; Second row: Mean estimated vor-
ticity with WETKF and associated velocity fields.

However, one can identify many small scale vortices in the estimation results that
may not be physically relevant. A better characterization of the dynamical noise
could help correcting these artefacts.

To conclude this section, let us note that the computational cost of the hybrid
WEnKF of WETKF method is the same as the one of EnKF or ETKF, since only
a weighting step is added.

2.4 Conditional simulation for image data assimilation
The image data (given by satellites for instance) offer a high spatial resolution but
a low temporal resolution, so that the time step between observations can be long
in the assimilation scheme. This may cause discontinuities in the assimilation re-
sult, since the filtering relies on the dynamical model only between observations.

11



Obs. time tk Obs. time tk+1

Figure 4: First row: Illustration of the discontinuity in the particle filter-
ing result between two observation times tk and tk+1; Second row: Result
after the smoothing procedure based on conditional simulation proposed in
[Cuzol and Mémin, 2013].

In order to reduce such discontinuities and avoid the estimation of state trajectories
that are not physically consistent, one can use a Monte Carlo sequential smoothing
technique based on conditional simulation of diffusions [Delyon and Hu, 2006].
This technique, proposed in [Cuzol and Mémin, 2013], relies on the filtering re-
sult and allows the sampling of continuous smoothed trajectories between ob-
servation times. The method can be applied to non linear and multidimensional
models. An example is given in Figure 4, related to the estimation of a turbulent
flow from images. The experimental setup is similar to the one presented in Sec-
tion 2.3. The filtering and smoothing results are given as illustration between two
given observation times tk and tk+1. The temporal discontinuity in the filtering
result can be seen on the first row, while the second row shows the result after
smoothing.

This promising technique can be extended to build alternative data assimila-
tion techniques for data that are observed without noise (or very small noise). In
that case, the assimilation problem can be formulated as the conditional simula-
tion of a partially observed model, where the state (the vorticity for instance) is
gradually corrected toward the observations (image data). The aim is then to avoid
the discontinuities between observation times and to provide smoothed trajecto-
ries in a sequential way without post-processing. This work in progress is based
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on the theoretical results presented in [Marchand, 2012, Marchand, 2013].

3 Conclusion and perspectives
In this paper we have shown how a Kalman ensemble technique can be embed-
ded within a particle filter. The resulting technique compared to ensemble filter-
ing techniques allows robustifying the filtering and provides improved results. It
opens also a way to assimilate different observations attached either to the particle
filtering stage or to the sampling step, encoded through the ensemble Kalman fil-
ter mechanism. Such an ability has not been yet experimentally assessed and we
plan to explore it in a near future. The hybrid filters show standard limitations as-
sociated to filtering issues where a continuous dynamics is coupled with a discrete
sequence of observations. In that case an implausible trajectory is generated by a
violent correction at observation times. We have described briefly how to correct a
posteriori this deficiency with a fixed lag smoothing. This conditional simulation
approach can be extended to built a data assimilation method associated to the
ill-posed case of low observation noise. We are currently exploring this promising
technique.
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