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Introduction

Several vision-based systems for automatic recognition of acted emotion have been proposed in the literature. Moreover, there is a move away from the automatic inference of the basic emotions proposed by Ekman [START_REF] Ekman | Emotion in the Human Face[END_REF] towards the inference of complex mental states such as attitudes, cognitive states, and intentions. The real world is dominated by neutral expressions [START_REF] Afzal | Natural affect data -collection & annotation in a learning context[END_REF] and complex mental states, with expressions of confusion, happiness, thinking, surprise, concentration, anger, etc. [START_REF] Rozin | High Frequency of Facial Expressions Corresponding to Confusion, Concentration, and Worry in an Analysis of Naturally Occurring Facial Expressions of Americans[END_REF]. There is also a move towards analyzing spontaneous expressions rather than posed ones, as there is evidence of differences between them [START_REF] Cowie | Building the databases needed to understand rich, spontaneous human behaviour[END_REF]. However most of these systems are evaluated only on datasets that are captured in controlled conditions.

The goal of this paper is to propose an approach to detect positive and negative emotions on spontaneous video streams. Positive emotions are expressed in response to situations where the user enjoys its experience, where negative emotions are commonly expressed in response to situations that the person finds to be irritating, frustrating, or unpleasant. Assuming that expressive body movements and pose is responsible for independent, denotative information which can be mapped to the emotion space, we propose a 2D model which extracts metrics to detect positive/negative emotions that are highly correlated with the facial expressions anger and happy. A 3D model of features is also extracted from depth map video sequences and projected onto a Grassmann Manifold [START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF]. The 3-D feature set is converted into a feature vector to construct the Grassmann Manifold.

Related Work

The majority of approaches so far have made use of 2D image sequences, though a few works have started to use 3D facial geometry data. In addition research has been conducted into analysis of upper body expressions from 3D static data. In this section we discuss previous 2D dynamic facial expression analysis, and then go on to look at the 3D static and dynamic work that has been completed in this area, focusing mainly on the feature extraction stage as this provides the main differences in the analysis of expressions in 3D versus 2D images and upper body sequences.

Many studies have used classifier margins and posterior probabilities to estimate expression intensity without evaluating their performance to the ground truth [START_REF] Yang | Rankboost with l1 regularization for facial expression recognition and intensity estimation[END_REF][START_REF] Shimada | Fast and robust smile intensity estimation by cascaded support vector machines[END_REF]. Several studies [START_REF] Whitehill | Toward practical smile detection[END_REF][START_REF] Savran | Regression-based intensity estimation of facial action units[END_REF] found that classifier margin and expression intensity were positively correlated during posed expressions. However, such correlations have typically been lower during spontaneous expressions. In a highly relevant study, Whitehill et al. [START_REF] Whitehill | Toward practical smile detection[END_REF] focused on the estimation of spontaneous smile intensity and found a high correlation between classifier margin and smile intensity on only five short video clips. Recent studies used other methods such as regression [START_REF] Dhall | Group expression intensity estimation in videos via gaussian processes[END_REF][START_REF] Kaltwang | Continuous pain intensity estimation from facial expressions[END_REF][START_REF] László | Continuous au intensity estimation using localized, sparse facial feature space[END_REF] and multiclass classifiers [START_REF] Mohammad H Mahoor | A framework for automated measurement of the intensity of non-posed facial action units[END_REF]. These studies have found that the predictions were typically highly correlated with expression intensity during both posed and spontaneous expressions.

Most of these previous works are limited since the majority of them focused on posed expressions, which limits the external validity and generalizability of their models. Some studies only coded expressions peak intensities, while others obtained frame-level ground truth, only for few subjects. The results reported on systems trained and tested on acted expressions might not be generalize to spontaneous ones.

Two studies are described in [START_REF] Antonio | Evaluation of visionbased real-time measures for emotions discrimination under uncontrolled conditions[END_REF]. In the first study the authors evaluate whether two robust vision-based measures can be used to discriminate between different emotions in a dataset containing acted facial expressions under uncontrolled conditions. In the second one, they evaluate in the same dataset the accuracy of a commercially available software used for automatic emotion recognition under controlled conditions. Piana et al. [START_REF] Piana | A set of full-body movement features for emotion recognition to help children affected by autism spectrum condition[END_REF] focus on the body movement analysis. A set of 2D and 3D features is introduced and a dictionary learning method is described to classify emotions. Preliminary results are shown to assess the importance of the studied features in solving the problem. Shan et al. [START_REF] Shan | Beyond facial expressions: Learning human emotion from body gestures[END_REF] use the fusion of facial expressions and body gestures at the feature level and derive an "affect" space by performing Canonical Correlation Analysis. In [START_REF] Ponce-López | Multi-modal social signal analysis for predicting agreement in conversation settings[END_REF], the authors apply feature extraction techniques to multi-modal audio-RGB-depth data. They compute a set of behavioral indicators that defines communicative cues coming from the fields of psychology and observational methodology. The proposed approach relies on a set of features extracted from RGB-D upper body images captured in unconstraint environment where the subjects were expressing their emotions spontaneously.

Methodology and Contributions

We propose in the following two methods that indicate the positive/negative emotion performed spontaneously by a single person sitting in front of a camera.

RGB-based Approach

The main steps of this approach are divided into two stages. The first one consists in the different processing steps that allow to extract a normalized face from the input data. The second one consists in locating selected ROI from the face region and applying a specific filtering to each region to indicate the presence of a negative emotion, while the positive emotion is extracted using a neural network.

Image pre-processing

The image pre-processing procedure is a very important step in the facial expression recognition task. The aim of the pre-processing phase is to obtain images that have normalized intensity, are uniform in size and shape, and depict only the face region.

A) Face detection : We use a Boosted Haar like features method. The detection of the face is performed using the Viola-Jones face detector algorithm [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF] available in OpenCV library. The selected parameters achieve the best speed and performance. B) Eye detection : We use a neural network based approach to locate the positions of pupils. We derive only the eye detection code from the STASM library [START_REF] Milborrow | Locating facial features with an extended active shape model[END_REF] which is variation of Active Shape Model of Coote's implementation. However, it works better on frontal views of upright faces with neutral expressions. C) Up-right face : We estimate the orientation of the face using the vertical positions of the two eyes. If they are not in the same position, we compute the angle between these two pupil points and correct the orientation by setting the face center as origin point and we rotate the whole frame in opposite direction. It guaranteed a frontal upright position of the face up to 30 degrees in both sideways. D) Face normalization : We use histogram equalization to normalize image intensity by improving its contrast. It aims to eliminate light and illumination related defects from the facial area.

Positive/Negative emotion indicators extraction

In order to detect negative emotion, we focus on the ROI located in the upper part of the face and includes the variations of AU4 of FACS where eyebrows are lowered and drawn together. We apply Gabor filter to this region of face. In the literature, 2D Gabor filters have been used for texture analysis and classification. Gabor filters have both frequency and orientation selective properties. Therefore a 2D Gabor function is composed of a sinusoidal wave of specified radial frequency which is the spacing factor between the kernels in the frequency domain and orientation which is modulated by a 2D Gaussian. Gabor representation of a face image is computed by convolving the face image I (x, y) with the Gabor filter. Majority of AUs samples associated to negative emotion face images has vertical lines above the nasal root. So, we choose vertical orientation for the Gabor filter with a frequency of √ 1.3, M u equal to 0, Sigma equal to π and N u equal to 3 as Gabor parameters. Then real and imaginary responses are added together to find the magnitude response. After a binary thresholding, the sum of the total pixels in the magnitude response of the filter, just above the nasal root is examined by a threshold value to detect a negative emotion. Brighter pixels in the magnitude responses are used as an indicator of negative emotion as depicted in the Figure 1.

In order to detect positive emotion, we use an analytic approach that performs wrapper based feature selection by exhaustive searching of all possible set of feature windows to find informative pixels. For a given emotion class, a mask is created to improve the Multilayer Perceptron (MLP) model's performance as illustrated in the Figure 1.

Depth-based Approach

In this section we shall present a second methodology for dynamic flows analysis of depth images of the upper body in order to capture its dynamics. As stated by researchers in social psychology, the expression of the emotion by human beings is performed in different ways. In addition to verbal and facial expressions, the body motions are considered as important source of information to interpret the emotions of humans, by their peers. We propose here a geometric framework to extract the body dynamics (movements) from the depth camera observing the subject.

Formally, we propose to map the flow of T depth images {I t } 1≤t≤T to a Grassmann manifold. Then, it is possible to use tools from differential geometry to quantify similarity/difference between elements and to find the most efficient way to move from one point to another (using geodesics), thus capture the dynamics. As illustrated in Figure 2, a sequence of depth images of the upper body observed by the camera is collected then organized as fragments of a fixed window size, denoted by W (t). Following [START_REF] Pavan | Statistical computations on grassmann and stiefel manifolds for image and videobased recognition[END_REF], each video fragment is mapped to a Grassmann manifold by computing the the k-dimensional subspace. When two successive elements on the Grassmann manifold are available, says x and y, we compute the the initial velocity (tangent) vector v from x towards y to characterize the body movements across the observation time. The proposed method has several benefits compared to previous descriptions as optical flow or Motion History Images [START_REF] Md | Motion history image: Its variants and applications[END_REF] to capture body movements across a depth image sequence:

-Depth images acquired with MS Kinect or any other cost-effective sensor are usually noisy, of low resolution, usually returns inaccurate depth measurements, and present missing parts. This could affect negatively conventional tools to capture motions across time for example optical flow or History of Motion History. The proposed geometric framework is more robust to these factor for several reasons. The most important one is the use of a sub-space computed from a set of images instead of single image which allows to filter out the noise and handle the low resolution problem. -The use of the magnitude of the velocity vector between points on the Grassman manifold which represent depth video fragments to capture efficiently the dynamics of the human body. This feature summarizes robustly the evolution across time of the body movements. Overview of our depth image approach: The flow of depth images is mapped through depth video fragments to a Riemannian manifold M on which tools from differential geometry are used to define tangent spaces, compute geodesic distances between elements and define initial velocity vector (element of the tangent space to M on x, Tx(M )) which allows to moves from x towards y along the geodesic path connecting them. The velocity vector will be used to capture the human body dynamics.

Modeling the Depth Flows on G m,k

Before coming to the depth representation on the Grassman manifold a set of simple pre-processing steps are first applied, that we describe in the following. Given a depth video, we first separate at each frame z = f (x, y) the body region from the background. Then, we reshape z to get a m-dimensional vector. A set of n successive frames, starting at a time t are considered together to form W (t), a fragment of the depth sequence of size m × n. From this matrix, we compute a k-dimensional subspace using the Singular Value Decomposition (SVD), where k ≤ n. As a result, the depth video fragments W (t) are viewed, after mapping, as elements on the Grassmann manifold G m,k . Let X i , i = 1, . . . , n denote n matrices of size (m × k) such that X ′ X = I k . The rows of each X i correspond to a low-dimensional representation of different "views" of the same object and the columns refer to the same depth pixel tracked across the observed video. Now, the depth videos are preprocessed and mapped to a Grassmann manifold of well-known geometry [START_REF] Chikuse | Statistics on Special Manifolds[END_REF]. It is possible, using tools from differential geometry, to:

-Quantify the similarity of video fragments by interpolating between elements on G m,k and measuring the length of the obtained path (called geodesic path),

-Compute a sample mean of a set of elements, -Compute the 'Energy' needed to move from an element towards another along the geodesic path connecting them, -Model variability in a class of elements and perform fragments classification, etc.

In the following we shall recall few useful notations and relevant tools related to the geometry of the Grassmann manifold G m,k . It is important to recall that the Grassmann manifold could be identified by a quotient manifold of the spacial orthogonal manifold by SO(m)/SO(k) × SO(m -k) = V m,k /SO(k), where V m,k is the Stiefel manifold, the set of k-frames in R m , where a set of k orthonormal vectors in R m is called a k-frame [START_REF] Chikuse | Statistics on Special Manifolds[END_REF]. The Grassmann manifold G m,k obtained by identifying those matrices in V m,k whose columns span the same subspace (a quotient manifold). This quotient representation allows to extend the results of the base manifold (here SO(m)) such as tangent spaces and geodesics to the quotient spaces (G m,k in our case) [START_REF] Pavan | Statistical computations on grassmann and stiefel manifolds for image and videobased recognition[END_REF]. Each point on G m,k can be represented by m-by-k matrix X such that X t X = I k .

1. Tangent space: To perform differential calculus on G m,k , one needs to specify tangent space attached to it on a given point, then define an inner product. For the m-by-m identity matrix I, an element of SO(m), the tangent space T I (SO(m)) is the set of all m-by-m skew-symmetirc matrices [START_REF] Pavan | Statistical computations on grassmann and stiefel manifolds for image and videobased recognition[END_REF]. 

Subspace angles:

The principal angles or canonical angles 0 ≤ θ 1 ≤ . . . θ m ≤ π/2 between the subspaces span(X) and span(Y ) are defined recursively by cos(θ k ) = max

u k ∈span(X) max v k ∈span(Y ) u ′ k v k , subject to u ′ k u k = 1, v ′ k v k = 1, u ′ k u i = 0, v ′ k v i = 0, (i = 1, . . . , k -1). The principal angles can be computed from the SVD of X ′ Y [4], X ′ Y = U (cos Θ)V ′ , where U = [u 1 . . . u m ], V = [v 1 . . . v m ]
, and cos Θ is the diagonal matrix defined by : cos Θ = diag(cos θ 1 . . . cos θ m )

3. Geodesic distance: The geodesic distance or the length of the minimal curve connecting span(X) and span(Y ) is derived from the intrinsic geometry of Grassmann manifold. It could be expressed with the subspace angles as given by Eq. ( 1).

d(X, Y ) = q i=1 θ 2 i 1/2 = Θ 2 (1) 
4. Velocity (tangent) vector: Let α(t) : [0, 1] → SO(m) a parametrized curve (or path) on SO(m), then dα dt , the velocity vector at t, is an element of the tangent space T α(t) (SO(m)). The physical interpretation of this velocity vector computed along the special case of geodesics connecting α(0) to α(1) is the energy needed to move from α(0) towards α(1) along the minimal path α.

Modeling the Emotional Dynamics on G m,k

To capture the body movements, we use the notion of initial velocity vector defined for geodesic between points on the Riemannian manifold. Let α(t) is a constant speed geodesic starting at x and pointing towards y. Then, it is possible to compute the initial velocity v, element of T x (SO(m)). Formally, v = exp -1

x (y) where the exp -1 is the inverse exponential map for which the expression is not available analytically. We use the numerical solution described in [START_REF] Pavan | Statistical computations on grassmann and stiefel manifolds for image and videobased recognition[END_REF]. Accordingly, given a flow of depth images of an observed subject, we split the video to fragments of a defined window size. Then, we measure the energy needed to move from successive elements on the Grassmann manifold to describe the dynamics of the human body. More specifically, we compute the norm of the velocity vectors as features for the observed motions across time. Figure 3 shows the norm of the velocity vector against time for three positive and three negative emotional videos. It can be seen from these plots that positive emotional states are accompanied by more body movements compared to the negative emotional states. So, the values of the norm of the velocity vector across time is higher when a positive state is expressed by the subject observed by the camera. The feature vectors resulted from the previous step are feed up to a conventional classifier in order to train a classification model. In our experiments, presented in 4.2, we use the Random Forest classifier.

Experiments and Results

In order to evaluate the described methods, we tested them on a publicly available dataset called Cam3D [START_REF] Mahmoud | 3d corpus of spontaneous complex mental states[END_REF] that records the spontaneous and natural complex mental states of different subjects using kinect. We use random forest classifier to predict the positivity and negativity of emotions.

3D database of spontaneous complex mental states

The corpus includes spontaneous facial expressions and hand gestures labelled using crowd-sourcing and is publicly available. The dataset contains a 3D multimodal corpus of 108 audio/video segments of natural complex mental states presented in [START_REF] Mahmoud | 3d corpus of spontaneous complex mental states[END_REF]. The Figure 4 illustrates some examples of still images from the labelled videos. The dataset has been divided in four groups. The first group induce cognitive mental states : thinking, concentrating, unsure, confused and triumphant. The second group of affective states was frustrated and angry. It was ethically difficult to elicit strong negative feelings in a dyadic interaction. The third group included bored and neutral. It was also hard to elicit boredom intentionally in a dyadic interaction, so this was only attempted in the computer based session by adding a "voice calibration" task. The last group included only surprised. In the computerbased session, the computer screen flickered suddenly in the middle of the "voice calibration" task. In the dyadic interaction session, surprise was induced by flickering the lights of the room suddenly at the end of the session.

The purpose of our system is to recognize the state of an affective dimension. We are interested to detect positive/negative emotions. In order to identify the negative and positive emotions, we have used the emotion annotation and representation language (EARL) proposed by the Human-Machine Interaction Network on Emotion (HUMAINE) [START_REF] Earl | HUMAINE Emotion Annotation and Representation Language[END_REF] that classifies 48 emotions. We use EARL to split the different mental states categories of Cam3D dataset into positive and negative classes.

Random Forest-based Classifier

Upper body-based mental state classification is a binary problem which classifies the state of query movie to positive or negative. We carry out experiments with the well-known machine learning algorithm, named Random Forest. Random Forest is a set of learning method that grows a forest of classification trees based on random selected features and thresholds. To give a decision for each window of the video, the input vector is fed to each tree and each tree gives a classification result. The forest selects the result by simple majority voting. We use random forest classification since it is reported that face classification by Random Forest achieves lower error rate than some popular classifiers [START_REF] Kouzani | Face classification by a random forest[END_REF].

Experimental results

We evaluate our approaches on the 108 videos of the Cam3D dataset. We use a 10-fold subject-independent cross-validation with Random Forest. For each round, images of some videos are randomly selected for testing, with images of remaining videos dedicated for training. For all the 10 rounds of experiments, no common subjects are used in training and testing. The input of random forest classifier is composed by the positive and negative indicators for the 2D approach where it is composed by the initial velocity descriptors for the depth image approach. The Figure 3 illustrates the comparison of the norm of the velocity vector between some negative and positive videos selected from the Cam3D dataset. Furthermore, we propose to combine both modalities by fusing their feature vectors that we feed up to RandomForest. The idea is to combine two sets of feature vectors of 2D and depth image methods and we group two sets of feature vectors into one union-vector (or a supervector). The Table 1 shows the results of the modalities taken individually and their combinaison. The depth-based approach (which analyze the upper body dynamics) outperforms the color-based approach (which analyzes the face). This states that the movements that exhibits the upper body are more informative than the expressions displayed by the face for spontanious emotion. Their fusion outperforms the modalities taken individually, with 71.32% classification rate, which presents a good achivement on the the Cam3D database. Recall that this database presents difficult challenges as the occlusions, various body postures, different illumination conditions, and low quality of depth images. It is clear from this experiment that the facial expressions and the body dynamics provide synchronized and complementary interpretations of the human intentions.

Conclusion

In this paper, we have presented approaches to analyze (1) 2D facial movies, (3) depth movies of the upper body and (3) their combinaison to estimate the complex affect state of subjects in terms of positive and negative mood. These approches have been tested on the challenging Cam3D dataset collected using Kinect sensors. When the 2D-based approach is based on Positive/Negative emotion indicators extracted from the face part of the RGB channel, the Depthbased approch uses a geometric framework able to quantify the body dynamics from the low quality depth videos. The results demonstrates that the combinaison of 2D and depth (RGB-D) outperforms the modalities taken individually. In our future work, we will focus on reducing the impact of the occlusions on the quality of the extracted descriptors and using other strategy of feature fusion of information that comes from RGB-D data.
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 1 Fig. 1. Negative/Positive emotion indicators extracted from two subjects of the Cam3D dataset

  Fig.2. Overview of our depth image approach: The flow of depth images is mapped through depth video fragments to a Riemannian manifold M on which tools from differential geometry are used to define tangent spaces, compute geodesic distances between elements and define initial velocity vector (element of the tangent space to M on x, Tx(M )) which allows to moves from x towards y along the geodesic path connecting them. The velocity vector will be used to capture the human body dynamics.

  For an arbitrary point O ∈ SO(m), the tangent space at that point is obtained by a simple rotation of T I (SO(m)): T O (SO(n)) = OX|X ∈ T I (SO(m)). For any Y, Z ∈ T O (SO(m)) the inner product on the tangent plane T O (SO(m)) is defined by < Y, Z >= trace(Y Z T ), where trace denotes the sum of diagonal elements. With this metric SO(n) becomes a Riemannian manifold.

Fig. 3 .

 3 Fig.3. Norm of velocities against time computed for three positive (dashed lines) and three negative (continuous lines) videos taken from the cam3D dataset.

Fig. 4 .

 4 Fig. 4. Examples of still images from the Cam3D dataset (from [14]).

Table 1 .

 1 Comparison of the performance of 2D, depth image and RGB-D approaches using the Cam3D dataset.

	Approach Based	2D image Depth image RGB-D
	Random Forest Classifier 63.00%	68.12%	71.32%