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Abstract.

This paper presents an algorithm for Monte Carlo fixed-lagatining in state-space models de-
fined by a diffusion process observed through noisy disdmete measurements. Based on a par-
ticles approximation of the filtering and smoothing distitibns, the method relies on a simulation
technique of conditioned diffusions. The proposed sedgaksitnoother can be applied to general
non linear and multidimensional models, like the ones usednvironmental applications. The
smoothing of a turbulent flow in a high-dimensional contexgiven as a practical example.

1 Introduction

The framework of this paper concerns state-space modetsilded by general diffusions of the

form:
dx(t) = f(x(t))dt + o(x(t))dB(2), @)

which are partially observed through noisy measurementésatete times. Such models can de-
scribe many dynamical phenomena in environmental sciepbgsics, but also in finance or engi-
neering applications. The main motivation of this work cemms environmental applications, where
non linearity and high-dimensionality arise. Indeed, emwnental models and data describe non lin-
ear phenomena over large domains, with high spatial résoluThe continuous dynamical model
(1) is defined froma priori physical laws, while observations are supplied by sensartel{ite data
for instance) and can appear with very low time frequencyaA£xample, in the application pre-
sented in the last part of this paper, the dimension of thte stad observations is of the order of

many thousands, and the model is described by the non lineaeNStokes equation. Filtering
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and smoothing in such state-space models aim at couplinglraod observations, which is called
data assimilation. The goal of the filtering is to estimate skistem state distribution knowing past
and present observations. This allows for instance to gigeqy initial conditions to forecast the
future state of a system characterizing atmospheric ommggaphic flows. On the other hand, the
smoothing aims at estimating the state distribution usagj pnd future observations, and this retro-
spective state estimation allows to analyze a spatio-teahpbenomenon over a given time period,
for climatology studies for instance. Applications of dassimilation are numerous and the interest
is growing in environmental sciences with the increase aflalile data. However, it is still a chal-
lenge to develop filtering and smoothing methods that cansbe within a general non linear and
high-dimensional context.

Monte Carlo sequential methods, contrary to standard Kalfitters, are able to deal with the
filtering problem in non linear state-space models. Theigarfiltering (Del Moral et al., 2001,
Doucet et al., 2000) solves the whole filtering equationgugh Monte Carlo approximations of the
state distribution. On the other hand, ensemble KalmanadstfEvensen, 2003) take into account
in some way the non linearities in the system, but are basesd®aussian assumption. For high-
dimensional systems, ensemble Kalman methods are préfarpractice to particle filters (Stroud
etal., 2010; Van Leeuwen, 2009) since they reach betteopeance for limited number of particles.
In order to keep this advantage while alleviating the Gausassumption, both methods are com-
bined in Papadakis et al. (2010), leading to a particle fitiat can be applied to high-dimensional
systems. We will use this technique for the filtering stephia high-dimensional application pre-
sented in Section 5.

The aim of this paper is to propose a new smoothing methodimfiie particle filter framework,
the smoothing can be computed backward, reweighting pastlga using present observations
(Briers et al., 2010; Godsill et al., 2004). There is howesre main difficulty for continuous
models of type (1). As a matter of fact, it is necessary to ktimtransition density of the process
between observation times, which is not available for galndiffusions. This transition density
can be approximated through Monte Carlo simulations, agge®d by Durham and Gallant (2002)
to solve inference problems for diffusion processes. Hawnethese approximations are based on
Brownian bridge (or modified versions of it) simulationsatido not take into account the drift part
of the model. For non linear and high-dimensional model$ aidrift term that dominates, such
approximations will be inefficient. It is also possible taaib an unbiased estimate of the transition
density (see Beskos et al. (2006)), but this approach isdagitad to a multi-dimensional context. As
a matter of fact, the use of this technique in a multivariatérsg imposes constraints on the diffusion
drift (in particular the drift function has to be of gradidgpe). In parallel, within the framework of
ensemble Kalman methods, Evensen and van Leeuwen (200®phaposed to estimate backward
the smoothing distribution in a recursive way, based ontiexjdiltering trajectories; Stroud et al.
(2010) presented and applied an ensemble Kalman smoothetigpdy relying on a linearization of
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the system dynamics.

All previously mentioned smoothing methods require to enf specific assumptions or simpli-
fications in order to deal with general non linear models pEktyl) in a high-dimensional context.
To the best of our knowledge, it remains a challenging prolite develop smoothing methods that
can be used in this general setting. In this paper, we dehlti$ issue sequentially each time a
new observation is available, by smoothing the hidden s$tata this new observation time up to
the previous one. This approach, called fixed-lag smoothingstitutes then a partial answer to
the global smoothing problem that would take into accourdnalilable observations. Nevertheless,
it is reasonable to assume that the distribution of the hidktate depends on future observations
through the next observation only, as soon as the time stegba measurements is long (which is
typically the case in the environmental applications thativate this work). Under this assumption,
a new observation will impact the distribution of the hidgencess up to the previous observation
only. This point of view justifies the use of a fixed-lag smaothin our setting as a reasonable
approximation of the global smoothing problem.

Such a fixed-lag smoothing may be directly obtained from txéige filtering result, reweighting
past trajectories. However, this smoothing will fail in twases: when the number of particles is
too small compared to the size of the system, or when existajgctories do not correspond to
plausible trajectories of the dynamical model. Unfortehatthese two situations have to be faced
when smoothing in a high-dimensional state-space modedtlyithe number of particles has to be
reduced for computational reasons. Secondly, partickrgilthat have been proposed in this high-
dimensional context require to correct trajectories talsdhe observations (Papadakis et al., 2010;
Van Leeuwen and Ades, 2013). This implies that filteringestatre consistent at observation times,
but that filtering trajectories may not be plausible redies of the underlying physical model.
In that case, a smoothing based on existing trajectorid<failil Note that these remarks are not
only valid for the fixed-lag smoothing, but also for previgusientioned global techniques relying
on existing trajectories. In particular, a genealogicabsthing based on ancestral particle lines
(Del Moral, 2004) will be deficient in a high-dimensionalti®g since many trajectories will share
only a few ancestral lines.

In contrast, our method does not rely on existing partictdg. dt is built on a conditional simula-
tion technique of diffusions proposed by Delyon and Hu (9Qf6t provides new state trajectories
at hidden times between observations. This simulatiomigdle is adapted to a multivariate context
where the drift dominates, contrary to techniques basedrowidan bridge sampling (Durham and
Gallant, 2002). Moreover, it does not require constraimisgumptions for multivariate models, con-
trary to other techniques based on exact simulation of gliffus (Beskos and Roberts, 2005; Beskos
et al., 2006). The proposed smoothing method can then bédppl high-dimensional systems.
Finally, it does not require model linearization nor Gaasdiypotheses, and so is able to deal with
general non linear models.
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The remaining of the paper is organized as follows. Sectibrifly describes sequential Monte
Carlo filtering methods in state-space models, and pretienfsxed-lag smoothing problem. Section
3 presents the conditional simulation technique of diffusiof Delyon and Hu (2006), and details
the construction of the proposed Monte Carlo estimate ofashiieg distributions. The method is
then experimented on a one-dimensional example in Sectidrirally, the method is applied in
section 5 to a practical non linear and high-dimensionas csimilar to the problems that have to be
faced in environmental applications. A discussion is giveSection 6.

2 Monte Carlo filtering and smoothing in state-space models

In this section we recall briefly the particle filtering andasthing methods for models of type (1),
where the hidden state vector= R™ is observed through the observation vegtar R™ at discrete

times{ty,ts,...}:

y(tk) = g(x(tx)) + vty )

The drift functionf and observation operatgrcan be non linear. The dynamical model uncertainty
is described by a n-dimensional Brownian motion with camacey. = o (x(t))o (x(t))?. The func-
tions f, g ando are assumed to be known, as well as the law of the observatieay, .

In particular, we present the standard particle filter ardWeighted Ensemble Kalman filter, that
can be used to face the filtering problem in high-dimensiegsiems.

2.1 Particle-based filtering methods

Filtering aims at estimating recursively the distributigix;, .+, |y+, ¢, ) (@nd in particular its marginal

distributionp(x¢, |y, .+, )) at each observation timg. This filtering problem can be solved with a
Monte Carlo sequential approach, called particle filteribgl Moral et al., 2001; Doucet et al.,
2000). The method relies on a Monte Carlo approximation effiltering distribution over a set of

weighted trajectorie$x§f):tk}i:1: ~ (called particles):

N
P(Xtyet |y re0,) = wai)f&g;zt (%011, ©)
i=1 o

whose marginal distribution at time writes:

N
D%y ) = D wi) 0 o (xe,). 4)
i=1

Patrticle filters rely on a sequential importance samplifgeste that recursively samples particles,
and updates their weights at observation times. The weigtesponds to the ratio between the
target distribution and the importance sampling distidoutr (x;, |x+o.,_,,¥#,:¢,)- They are recur-
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sively computed as follows:

) o PO PO ) )

b th-1 () () :
W(th |Xt0:tk,17}’t1:tk)

(5)

In practice, a resampling procedure is added in order taalegeneracy. This procedure duplicates
trajectories with large weights and remove small weightapttories.

2.1.1 Standard particle filter

When the proposal distribution is set to the prior (i.em(x:, |Xty:t1_ 15 Yti:ti) = P(Xt,, [Xe,_, ), the
weights updating rule (5) simplifies to the computation &f thata likelihood(y:, |x§i)). This par-
ticular instance of the particle filter is called tBeotstrap filteror sequential importance resampling
(SIR) filter Gordon et al. (1993). Due to its simplicity it is& most commonly used particle filter. It
is however a very inefficient distribution for high dimensé space as it does not take into account
the current observation and depends only weakly on the @aattdrough the filtering distribution
estimated at the previous instant. This distribution respia great number of particles to explore
meaningful areas of the state space.

2.1.2 Weighted Ensemble Kalman filter (WENKF)

One way to efficiently incorporate observation within thegsal distribution consists to rely on

the ensemble Kalman filtering mechanism to define this Oigion. This is the idea proposed in

the WENKF technique (Papadakis et al., 2010). In the WEnKFagubr the importance sampling

is taken as a Gaussian approximatiorp@f;, |x:, _,,y:.). This approach is close to the technique
proposed in Van Leeuwen (2010). A variation of a similar teghe based on a deterministic square-
root formulation is also described in Beyou et al. (2013).otder to make the estimation of the

filtering distribution exact (up to the sampling), each memdsf the ensemble must be weighted at
each observation instat)t with appropriate Weightwt(i), defined from (5). Therefore, the Weighted

ensemble Kalman filter (WEnKF) procedure can be simply suriz@aby Algorithm 1.
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Algorithm 1 The WENKF algorithm

For eachty, = tq,to,...

()

te—1"

e Start from particles sdtx i=1,...,N} and observatioly,

e Obtain particles se{tx(’) 1,...,N} from:
— EnKF step: Getx(”,  =1,...,N, from the assimilation of;, with an EnKF proce-
dure;

() POe g pety) Ixfy) )
te—1 p(x (l;)lx£;>7l’ E;)) !

)OC’LU

— Computation of weights: w(

— Resampling: Forj =1,..., N, sample with replacement indéxj) from discrete prob-
ability {w”,i=1,...,N} over{1,...,N} and setx” = x/). Setw(”) = L vi=
1 N.

yeeey

Note that particle-based filtering techniques update therifilg distribution at observation times
only. However, after the estimaféx;, |y, ., ) has been updated at observation timethe filtering
distribution can be predicted in order to have a continuaisnation of p(x;|y:,.+,) for all t €
|tk, tk+1] until the next observation time:

P(Xt|yty:t,) Zwtk d x(¥ (xt), (6)

where, foralli =1,..., N, the statec,(f) is sampled from (1), starting fromgi).

2.2 Fixed-lag smoothing problem

Contrary to the filtering approach that uses past and predes@rvations, the smoothing in state-
space models aims at estimatip@: |y, :t..,,) for all ¢ € [t1,tend, using all past and future obser-
vations over a given time period. As raised in the introdugtiexisting smoothing methods do not
apply directly to a general non linear model of type (1) inghhdimensional context, since assump-
tions have to be made that may not be realistic. Instead sfrgpthe global smoothing, we will
concentrate in the rest of the paper on a fixed-lag smootkhg;h constitutes a partial answer to
the global smoothing problem.

The objective of the fixed-lag smoothing will be to replace firedictive distribution (6) by its
smoothed versiop(x|y,t,.,) Vt €]ty tr41], S€quentially each time a new observatiqp, , ar-
rives. This will allow to reduce the temporal discontinegtiinherent to the filtering technique, that
successively predicts the distribution of the state betvaEservations, and updates this distribution
at observation times.

To achieve this, by construction of the particle filter thatights entire trajectories (see equation
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(3)), it is known (see for instance Doucet et al. (2000)) tinat fixed-lag smoothing distribution
P(X¢|yt,:4,.,) can be directly obtained from the marginal at timef p(x;,.¢, , [¥¢,:t,.,). The
empirical smoothing distribution is then given by:

N
DXtV tritirn) = D Wiy, G0 (%e) V€t tisa]. (7)
=1

However, this approximation is simply a reweighting of padsting particle trajectories, and relies
on the support of the filtering distribution at timg. If the number of particles is too small with
respect to the state dimension, the support may be grealiliceel by the correction step (assigning
small weights to all particles except a few), leading in ficacto a bad estimation @f(x; |y, ., )-
Moreover, if particle trajectories have been forced towanoservations during the filtering step (like
in the WENKF procedure), a smoothing based on those partiglefail because it will not be able
to correct discontinuities. Consequently, since we arergsted in smoothing techniques that are
efficient in a high-dimensional context, this direct smanghtechnique can not be used in its basic
form and has to be improved.

In the following, we propose to use a conditional simulatienhnique of diffusions that will
enable the sampling of new smoothed trajectories betweesstj, andt;;. The approximation of
the smoothing distribution (7) at each hidden time will tlerimproved. The conditional simulation

technique is presented in the next section, before thetimggsimoothing procedure we propose.

3 Fixed-lag smoothing with conditional simulation

The smoothing method we propose is based on a conditionalationutechnique that is presented in
section 3.1. We develop then in section 3.2 how this teclendgun be used to improve the estimation
of the smoothing distribution (7).

3.1 Conditional simulation
Conditional simulation of a diffusion aims at sampling é@pries from a given process:
dx(t) = f(x(t))dt + o (x(t))dB(t) (8)

between two time$ = 0 andt = T, with the constraints(0) = u andx(7") = v. This simulation
problem is treated by Delyon and Hu (2006), where the autkbosv how to obtain the law of
the constrained process from a Girsanov theorem. In pedtie proposed algorithms consist in
simulating trajectories according to another diffusionqass, which is built to respect the constraints
and is easy to simulate from. The conditional distributibthe constrained process (8) is absolutely
continuous with respect to the distribution of the auxjliprocess, with explicitly given density. For
instance, in the case where the drift is bounded (a simiggrdthm is proposed in Delyon and Hu

(2006) for the unbounded case) and foinvertible, the algorithm is based on the simulation of
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trajectories from the following process:

x(t)—v
T—1

ax(0) = (0 - ) e+ o (x(0)aB(0), ©)

with initial conditionx(0) = u. Note that Lemma 4 in Delyon and Hu (2006) deals with the exis-
tence of a unique solution for this equation. This processssnple modification of (8), where a
deterministic part is added to the drift. It is then easy towdate unconditional trajectories from this
process, and all simulated trajectories will sati&f{{") = v by construction. For simplicity we will
assume in the following that is independent ak(¢) (note however that this is not an assumption in
Delyon and Hu (2006)). The law of the conditioned processvisrgby:

E[h(x)[x(0) = u,x(T) = v] = E[A(X)a(X)], (10)

for all measurable functioh, where:

r %) —v)TE 1 f(%
a(%) = exp (— / &) )T_Et / (t))dt) (11)
0

is the density coming from Girsanov theorem (see Delyon an(PA06)), withs = o (%(t))o (%(t))7.

Let us note that the presence of the drift part of model (8haduxiliary process (9) is crucial
to make the simulation efficient. The same process hadllgiti@en proposed by Clark (1990) to
solve the conditional simulation problem. On the other hatahdard Brownian bridges that could
be used as auxiliary processes (Durham and Gallant, 208@)rigoractice to poor approximations of
the original constrained diffusion in our high-dimensibsetting, since Brownian bridge trajectories
are too far away from trajectories of (8).

In the following, the conditional marginal of intergstx;|x(0) = u,x(7") = v) will then be ap-

proximated as follows:
M .

lxe|x(0) =u,x(T) =v) = Y a(x)dz0m (x) Ve [0,T], (12)
j=1 '

where theM trajectories{igj)}j:l:M are simulated from (9) Witli(()j) =uforallj=1,..., M.

3.2 Proposed fixed-lag smoothing method

We show in the following how the conditional simulation tedjue can be used to improve the
estimation of the local smoothing distributipx; |y, ., ) for all t €]ti, tx11].
We first note that this distribution can be decomposed as:

p(Xt‘ytlitk+1) = /p(xt7xtk’xtk+1‘ytlitk+1)dxtkdxtk+l

= /p(xtk>xtk+1‘yh!tk+1)p(xt‘xtk7th+1’yh:tk+1)dxtkdxtk+1' (13)



Then, from the state-space model properties, we obtain:

230 p(Xt ‘Yt1:tk+1) = /p(xtk 1y Xt |Yt1:tk+1 )p(xt|xtk » Xtpt1 )dxtk dxtk+1 . (14)
Moreover, from the particle filter Monte Carlo approximatidescribed by (3), the joint lag(x;, , %, ., [y, 6,1 )
can be replaced by:

ﬁ(xtkaxtk+1|yt1:tk+1 Zwthrl (7) (l))(xtk+1axtk)7 (15)

where thewgi)+1 are the particle filter importance weights.
235 Plugging (15) into (14) leads then to the following approxiima for the fixed-lag smoothing distri-
bution:

(Xt Yty i0) Zthl (x| th+1) (16)

The condltlonal d|str|but|om(xt|xtk xﬁ?ﬂ) can be estimated using (12) for each pair of initial and

end pomtsf:t andxtkﬂ:

te 7th+1

240 ﬁ(Xt‘X(L) (©) ZOL % (1) (5 (i)(j)(Xt), (17)
j=1

where eactx{” ") is sampled from (9) with initial constrait; "’ = x{"’ and final constraint|” .

The estimation of the smoothing distribution of interesite finally:

N M
PXelYtritiss) = Zwt(,il Za(i(z)m)@{ii)m (xt), VtEltp,trta]. (18)
i=1 j=1

245 The algorithm we propose to compute the fixed-lag smoothisigilbution on a given time interval
Jtk,tk+1] is therefore the following:

Algorithm 2 Fixed-lag conditional smoothing

For eachty, = ty,to,...:

— Store{x{"},_1.x and compute[x;’’ };_1.v and associated weighfss,” },_1.n from a
particle filter algorithm;

— For each pail{xgk 7th+1} i=1,...,N:

— SimulateM conditional trajectorie§x\” ")} ,_ .,/ for ¢ € [tx, txr] from (9) with an

Euler scheme, with the constralrig?(” =x; l) andxt (]) xgk)ﬂ,

— Compute weights(x() ) from (11) forallj =1,...,M , with final constraintc!”

tk+1’

— Computep(xi|yr s, ;) = iy wt(,?ﬂ ij\/il & D520 (x¢) or all £ €]ty tra].
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4 One-dimensional simulation study

In this section, the smoothing method is first experimented one-dimensional state space model.
Since the proposed approach relies on a preliminary pafiieéring step, filtering results are first
presented in Section 4.2 (either considering a standatCleafilter or the WENKF). The results
obtained with the standard fixed-lag smoothing method age #hown in Section 4.3. Finally,
Section 4.4 presents the smoothing results obtained wétpithposed technique.

4.1 State space model

The one-dimensional state space model of interest is a #fusidn, partially observed with noise
(used as an illustration by Fearnhead et al. (2008) for agbafiltering method) :

dz(t) = sin(x(¢t))dt + 0,dB(t), (29)
Ytu = Tty T Viex s (20)

whereo? = 0.5 andv;, ~ N(0,0,) with o2 = 0.01. One trajectory of the process is first simulated
from (19) with an Euler-type discretization scheme of tinepsA¢ = 0.005. This trajectory will
constitute the hidden process, observed thrayglgenerated according to (20) at every time step
tr, with ¢, —t,,_1 = 20At. The trajectory is plotted on Figure 1, together with theresponding
discrete observations at timgs

Fig. 1: Simulated sine diffusion trajectogyt) and partial observationgt) (dots) witht, — ¢,—1 = 20At.

4.2 Particle filtering results

The filtering results are presented for the standard parfiiéér (denoted PF in the following) and
the Weighted Ensemble Kalman filter (WENnKF). Two situatioresshown, with reduced\ = 20)
and high number¥ = 10000) of particles. The case with a high number of particles isashas
the reference for comparison purpose, note however thaidbal situation is not reachable in a

10
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high-dimensional context, since the number of particlestbde reduced for evident computational
cost reasons.

The results for the two configurations are presented on Eiguwhere the dotted lines represents
the filtering mean estimates. The filtering distributidix;, |y, .+, ) is estimated at each observation
time t;, using (4), and predicted between observation times from T8 mean is then estimated
from weighted particles a5, w"z(", for all ¢ € [t} t)41[. Figure 2 (a)-(b) show that the stan-
dard patrticle filter results diverge from the reference sofubetween observation times, for low or
high number of particles. As a matter of fact, when no obdemads available, the state distribu-
tion is predicted from the dynamics only, so that partickagettories are not guided towards the
next observation. At observation timgs high weights are given to particles that are close to the
observation, so that the estimated mean suddenly gets ¢todee solution. These discontinuities
between measurement times can also be observed on the WEsIKHES (Eigure 2 (c)-(d)), because
particle trajectories are brutally corrected with the Erét€p at observation times. A smoothing will

aim at reducing these temporal discontinuities while mhimg dynamically consistent solutions.

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
t t

(a) Standard PR = 20) (b) Standard PFN = 10000)

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
t t

(¢) WENKF (V = 20) (d) WENKF (N = 10000)

Fig. 2: Standard PF and WENKEF results. Thick line: hidden diffusion; Dmastial observations; Dotted line:

estimated filtering mean.

11
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4.3 Standard fixed-lag smoothing results

From the particle filtering results, we present now the tssabtained with the direct particles
smoothing procedure described in section 2.2. This praeedhlies on existing trajectories. The
smoothing distributionp(z;|ys, .1, ) is computed backward for all€]t, 1] using expression
(7), each time a new observatigp, ., becomes available. The smoothing mean is computed as
ZZN:I wﬁille) for all t €]tx,tx+1], and the standard deviation is computed in the same way from
the weighted particles.

It can be observed on Figure 3(a) that the smoothing basedeostandard particle filter is not
efficient when the number of particléé is small: Only a few particles are close to the observation
at timet;, and have nonzero weights, implying that the smoothingitigion is poorly estimated
(see for instance between observation tirhes100 andt = 120 where the smoothing distribution
is artificially peaked but far from the hidden trajectory)hel'smoothing result obtained from the
reference configuratiofv. = 10000 is plotted on Figure 3(b). In that situation, since manyetcég-
ries have high weights at observation times, the estimatidrackward smoothing distributions is
improved and includes the hidden trajectory.

Moreover, Figure 3(c)-(d) shows that the standard smogthased on the WENKF result fails for
low or high number of particles. As a matter of fact, particigectories are artificially corrected by
the EnKF step at each observation time. Resulting trajeg@re highly non-plausible. Even for a
huge number of particles, a smoothing based on those existijectories is not able to reduce the
induced time discontinuities.

12
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0 20 40 60 80 100 120 140 160
t

(b) Standard smoothing from PEV(= 10000)

(c) Standard smoothing from WEnNKE(= 20) (d) Standard smoothing from WEnKE(= 10000)

Fig. 3: Standard smoothing from PF and WENKF results. Thick line: hidiiffusion; Dots: partial observa-

tions; Dotted line: estimated filtering mean.

4.4 Proposed smoothing results

In this section, we show how the proposed method can imphaedtimation of backward smooth-
ing distributions when it is not adequate to rely on existiragectories only. This is the case if the
number of particles is too small, as demonstrated from tipexent presented on Figure 3(a), or
if the existing trajectories do not correspond to plausitdgctories of the model (as shown for the
WENKF result on Figure 3(c)-(d)).

Our smoothing is first applied using the filtering output af gtandard particle filter withh = 20
particles. Figure 4(a) shows the result obtained with a $ampf M = 50 conditional trajec-
is

tories between each pa{mii),zgill}, i=1,...,N. The smoothing distributiof(x:|y:,

computed from (18), so the smoothing mean is computelds, wi) >3 a(z0@)z(" for

:tk+1)

all ¢ €]tg,tx+1], and similarly for the standard deviation. This result tigfiits the fact that since
the proposed method creates new trajectories, it is ablerteat the deficiencies of the standard
smoothing approach presented on Figure 3(a) when thelinitimber of filtering particles is too
small. On Figure 4(b), the same experiment is presented ugir= 500 conditional trajectories. In
that case, the result is very similar to the reference pastismoothing result presented on Figure
3(b), obtained from a particle filter withh = 10000.
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325 In parallel, the proposed smoothing has been tested usegutput of the WENKEF filtering
technique withV = 20 particles. Again, the smoothing is computed with= 50 and M = 500
conditional trajectories, and the corresponding resutpaesented on Figure 3(c)-(d). Instead on
relying on existing WENKF trajectories that may not be plblgstrajectories of the model (because
of the EnKF correction step), the proposed method samplstnagectories between observation

330 times. This leads to a good estimation of the smoothingidigions, contrary to the standard
smoothing presented of Figure 3(c). Note that the smoottesglts are very similar to the result
obtained from the standard particle filter (Figure 3(a)-l®cause both filters have similar behaviour

at observation times.

335

0.6

0 20 40 60 80 100 120 140 160
t

(a) Proposed smoothing from standard PF (b) Proposed smgdtbm standard PF

(N =20 andM = 50) (N =20 andM = 500)

60 80 100 120 140 160

0 20 40 60 80 100 120 140 160 0 20 40
t

(c) Proposed smoothing from WEnKF (d) Proposed smoothing fronrmK¥E

(N = 20 andM = 50) (N =20 and M = 500)

Fig. 4: Proposed conditional smoothing result. Thick line: hidden diffydimts: partial observations; Dotted
line: estimated backward smoothing mean; Thin line: estimated standdedidey
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5 Application to a high-dimensional assimilation problem

This section aims at illustrating the applicability of ouethod to a high-dimensional and non linear
scenario, without extensive study at this stage. The methagplied to a turbulence assimilation
problem, where the model of interest is of type (1). The gedbirecover temporal estimates of
velocity/vorticity over a given spatial domain of size= 64 x 64, from a sequence of noisy obser-
vations and a continuouws priori dynamical model based on a stochastic version of NavigteSto
equation. Within an environmental framework, a direct agion would be the estimation of wind

fields or sea surface currents from satellite data.
5.1 State space model

Let £(x) denote the scalar vorticity at point= (x,y)”, associated to the 2D velocity(x) =

(wy(x),w, (x))T throught(x) = aaliy - 85’;; . Let€ € R™ be the state vector describing the vorticity

over an = 64 x 64 square domain, aner € R?" the associated velocity field over the domain. We

will focus on incompressible flows such that the divergerfab®velocity field is null. A stochastic
version of Navier-Stokes equation in its velocity-vortydiorm can then be written as:

1
d&t = _v£t Wtdt+ EAé‘tdt‘i‘O'dBt, (21)

whereR denotes the flow Reynolds numbétd = 3000). The uncertainty is modeled by a Brownian
motion of sizen, with covarianc& = oo™, wheres € R™. A velocity field example, generated from
the model (21), is shown on Figure 5(a), together with theasgonding vorticity map (b).

We assume the hidden vorticity vectis observed through noisy measuremenisat discrete
timest,, wheret;,, —t;_1 = 100At, and At = 0.1 is the time step used to discretize (21). In our
experimental setup, measurements correspond to PIV¢Rdrtiage Velocimetry) image sequences
used in fluid mechanics applications. Note however thatrdthel of data can be used similarly
within this state space model, like meteorological or oogaaphic data for instance. The state
and observation are related in our case throggh= g(§,, ) +1,, Whereg is a non linear function
linking the vorticity to the image data, ang, is a Gaussian noise, uncorrelated in time.
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Fig. 5: State example. (a) Velocity field,; (b) Associated vorticity mag,.

5.2 Implementation details

We recall that the smoothing relies first on a particle filteps Due to the high dimensionality of the
state vector, the use of a standard particle filter is not tedap solve the filtering problem, as dis-
cussed by Snyder et al. (2008) or Van Leeuwen (2009). We niedreuse of the method presented
by Papadakis et al. (2010) which combines the benefits ofrthereble Kalman filter, known to per-
form well in practice for high dimensional systems (Stroudlg 2010), and the particle filter (which
solves theoretically the true filtering problem, withoupegximating the filtering distributions with
Gaussian distributions). Since the method of Papadakis(@04.0) is intrinsically a particle filter, it
leads then at each observation titpeéo a set of particles and Weigh{tsg?:tk ,W¢, }i=1:N, &S required
by the algorithm proposed in section 3.

The particle filter step requires simulations from the dyiwatnmodel (21), and the conditional
simulation step requires to sample trajectories from itsst@ined version, which consists in a
similar problem with modified drift (see process (9)). Thedmlbis discretized in time with time
stepAt = 0.1; more information about the discretization scheme may l@ioed in Papadakis et al.
(2010). The random perturbations are assumed to be reafizadf Gaussian random fields that
are correlated in space with Gaussian covariance fundlion,x;) = nexp(—M), where
n=0.01 and A =13. In practice, the simulation of these perturbations is qrened in Fourier
space, with the method described in Evensen (2003).

Finally, the estimation of the smoothing distributionsuieg the computation of conditional tra-
jectories weights, corresponding to Girsanov weightsrgle (11). After a Riemann sum approx-
imation of the integral, the computation of weights regsitee inversion of the matriX of size
(n,n), wheren = 64 x 64 is the number of grid points. We choose to complite! empirically
using a singular value decomposition computed fromMXheealizations of the perturbation fields
used for the constrained trajectories simulations.Z.&e the matrix of sizén, M) containing the
M centered fields of size = 64 x 64, the SVD leads t& = UDV? | so thatZZ” = UDD?U”.
The inverse of the covariance matdix ! is finally computed as:

M(ZzZ")~' = MmUDD?) U7, (22)
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which only requires the inversion of a diagonal. Note thaterefficient procedures could be imple-
mented in our case (homogeneous Gaussian covariance}lsnoevariance function is separable in
2 andy directions. This means that the covariance mafroan be written as the Kronecker product
of smaller matrices and more easily inverted (Sun et al.2R0owever, the SVD inversion can be
applied to any covariance structure, in particular it caddal with a non homogeneous covariance

matrix.
5.3 Results

In this section, we illustrate the capability of the propbseethod to reduce the temporal disconti-
nuities inherently introduced by the filtering in contingediscrete state-space models.

The smoothing result relies on the output of the WENKF filtgistep, computed wittv = 500
particles. Compared to the size of the system, the numbeartitfes is theoretically too small for
the filter to be truly efficient. In practice, many filterin@jectories have close to zero weights at
observation times. Histograms of filtering weights are gigs illustration on Figure 6(a)-(b) at two
timest =400 andt = 500. Note however that the filter is not degenerate and is ableduige
results that get close to he hidden vorticity at measuretirees. This can be observed on Figure 7,
where the mean square error is plotted with full line, avedaagt each time over the image domain
of sizen = 64 % 64. Since the ground truth vorticity sequence is known in oyreginental setup,
the mean square error is computed between the hidden wpudied the estimated filtering mean,
given bny\;1 wﬁ?éii) forall t € [tx,tr+1]. The correction steps lead to successive error decreases
at observation times.

The proposed smoothing method has been applied itk 200. Note that we take benefit
from the fact that many filtering have close to zero weightslekd, the smoothing method relies
in practice on a reduced numbat\/ of sampled conditional trajectories (witi << N), which
makes the problem computationally tractable. On this expeEt, we have retained arourtt
of initial filtering trajectories. The smoothing distrilion p(&,|y:,.¢,.,) is computed for alk €
Jtx tis1) from (18), and its mean is computed B3 | wi’ S a (€)Y Histograms
of conditional simulation weights/(£Y)) are given as illustration on Figure 6(c)-(d) for a given
particle () at two timest = 400 andt¢ = 500.

The mean square error is computed between the true voricththe estimated smoothing mean,
and plotted on Figure 7 with dotted line. As expected, theathing method reduces the error at
hidden times between observations.
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(d) Conditional simulation weights= 400 (e) Conditional simulation weights= 500

Fig. 6: Filtering and conditional simulation weights
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Fig. 7: Full line: mean square error between ground truth vorticity atichated filtering mean; Dotted line:

mean square error between ground truth vorticity and estimated batkwaothing mean.

In addition, we present below a qualitative evaluation efsimoothing result for the same exper-
iment, over a specific time interval.

The WENKF result is first presented on Figure 8 for the timeriig400, 500] between two obser-
vations, where estimated mean vorticity maps are compuxiﬁ\él1 wi@oggi) for all ¢ € [400, 500,
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and aszf\; 1 wé@o gi) for ¢ = 500. The temporal discontinuity between estimations can berves
when reaching observation tinte= 500: the vorticity map is suddenly modified in order to fit to
the observations, introducing inconsistencies in thecitytemporal trajectories. Note that the ap-
plication of the standard particles smoothing (descrilveskiction 2.2) will fail here, and not only
because the number of particles is too small. As a matterobffiee recall that the filtering trajec-
tories have been computed from the method presented in Bepast al. (2010), which uses the
ensemble Kalman filter step as importance distributionénghrticle filter algorithm. The ensemble
Kalman filter consists of a prediction step from the dynamimadel (21), and a correction step
which shifts particles towards the observation. Becaudfisfcorrection step, the sampled filter-
ing trajectories between two observation times do not spwed to trajectories of the dynamical
model. This implies that from such a patrticle filter, the staml smoothing based on existing tra-
jectories will not be able to reduce the temporal discortiti@s observed on Figure 8. This can be
observed on Figure 9, where smoothed vorticity maps are utﬂdmszij\ilwfgo E“ for ¢t = 400,
and aszij\i1 wé@oggi) for all t €]400,500]. The discontinuity at time = 500 is still present.
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Fig. 8: Filtering result with the method of Papadakis et al. (2010). Estinmatsth vorticity maps for different

timest between observation times= 400 andt¢ = 500.
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Fig. 9: Standard particles smoothing result (see Section 2.2). Estimagauvorticity maps for different times
t between observation times= 400 and¢ = 500.

The result obtained with the proposed method is plotted gurei 10. Estimated mean vorticity
maps are computed 357, wig, Y17, a(€0)EPY for all ¢ € [400,500]. Spatio-temporal vor-
ticity trajectories are gradually modified until obsereatitime ¢ = 500, preserving the fluid flow
450 properties. As a matter of fact, since the proposed methogbles new trajectories from the law
of the physical process (21), the smoothed vorticity trtajees are by construction consistent with
thea priori dynamical model. In order to sample the smoothed trajextpthe method relies on
the model and on filtering marginals at observation timesnbtion filtering trajectories at hidden
times. Itis then able to smooth the discontinuities inhetethe particle filtering technique we have
455 used, contrary to the standard smoothing presented one=gur
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Fig. 10: Smoothing result with the proposed method. Estimated mean vorieps for different times
between observation times= 400 and¢ = 500.

6 Conclusion and discussion

In this paper we introduced a smoothing algorithm based amnditional simulation technique of
diffusions. The proposed smoothing is formulated as fixeg-in the sense that it is performed
sequentially each time a new observation appears, in codmrtect the state at hidden times up to
the previous observation. Note that a decomposition sirtdlaquations (13) to (18) can be written
from an integration up to a previous timg_;, with » > 1. This implies that the smoother can be
formulated with a larger fixed-lag, in order to correct thetstoackward not only up to the previous
observation, but up to further measurement times. Yet, dilke successive resampling steps that
have been performed in the filtering steps before timehere are in practice only a few distinct
filtering trajectories at timeg,_, if h is large. Consequently, the estimation of the joint law iB)(1
will not be reliable anymore for a too large valuefof

We have shown the practical applicability of the method taghdimensional problem. Never-
theless, the algorithm remains costly since a second Moat® Gtep is added to the Monte Carlo
nature of particle filter algorithms. Yet, from an algoritienpoint of view, the sequential nature of
the proposed technique allows the smoothing to be implesdemith a similar structure as filtering
methods (sequential sampling and weighting of model ttajexs). It is then easy to couple this
smoothing to an operational filtering system and benefit fpamallelization strategies for instance.

Since the proposed smoothing uses the filtering result ad,inprelies on the success of the
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underlying particle filter. For high-dimensional systemstandard particle filter is not adapted and

it is necessary to use filtering techniques that guide pesttowards observations. In this paper, we

use the WENKF algorithm. In practice, any efficient partidkefing technique with such a guiding

can be used within our framework. Note however that the coobn of such techniques remains
480 an open area of research.

We plan to work on the application of the smoothing method tee high-dimensional case (for
the estimation of sea surface currents from satellite inszggiences). However, such a work will
imply numerous difficulties which are not related to the sthow technique but to the definition of
the state-space model: definition of a suitable physicalehapbod characterization of state noise

485 structure and model parameters. Therefore, this will beqda future work.
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