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Abstract.

This paper presents an algorithm for Monte Carlo fixed-lag smoothing in state-space models de-

fined by a diffusion process observed through noisy discrete-time measurements. Based on a par-

ticles approximation of the filtering and smoothing distributions, the method relies on a simulation

technique of conditioned diffusions. The proposed sequential smoother can be applied to general5

non linear and multidimensional models, like the ones used in environmental applications. The

smoothing of a turbulent flow in a high-dimensional context is given as a practical example.

1 Introduction

The framework of this paper concerns state-space models described by general diffusions of the10

form:

dx(t) = f(x(t))dt+σ(x(t))dB(t), (1)

which are partially observed through noisy measurements atdiscrete times. Such models can de-

scribe many dynamical phenomena in environmental sciences, physics, but also in finance or engi-

neering applications. The main motivation of this work concerns environmental applications, where15

non linearity and high-dimensionality arise. Indeed, environmental models and data describe non lin-

ear phenomena over large domains, with high spatial resolution. The continuous dynamical model

(1) is defined froma priori physical laws, while observations are supplied by sensors (satellite data

for instance) and can appear with very low time frequency. Asan example, in the application pre-

sented in the last part of this paper, the dimension of the state and observations is of the order of20

many thousands, and the model is described by the non linear Navier-Stokes equation. Filtering
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and smoothing in such state-space models aim at coupling model and observations, which is called

data assimilation. The goal of the filtering is to estimate the system state distribution knowing past

and present observations. This allows for instance to give proper initial conditions to forecast the

future state of a system characterizing atmospheric or oceanographic flows. On the other hand, the25

smoothing aims at estimating the state distribution using past and future observations, and this retro-

spective state estimation allows to analyze a spatio-temporal phenomenon over a given time period,

for climatology studies for instance. Applications of dataassimilation are numerous and the interest

is growing in environmental sciences with the increase of available data. However, it is still a chal-

lenge to develop filtering and smoothing methods that can be used within a general non linear and30

high-dimensional context.

Monte Carlo sequential methods, contrary to standard Kalman filters, are able to deal with the

filtering problem in non linear state-space models. The particle filtering (Del Moral et al., 2001;

Doucet et al., 2000) solves the whole filtering equations through Monte Carlo approximations of the

state distribution. On the other hand, ensemble Kalman methods (Evensen, 2003) take into account35

in some way the non linearities in the system, but are based ona Gaussian assumption. For high-

dimensional systems, ensemble Kalman methods are preferred in practice to particle filters (Stroud

et al., 2010; Van Leeuwen, 2009) since they reach better performance for limited number of particles.

In order to keep this advantage while alleviating the Gaussian assumption, both methods are com-

bined in Papadakis et al. (2010), leading to a particle filterthat can be applied to high-dimensional40

systems. We will use this technique for the filtering step in the high-dimensional application pre-

sented in Section 5.

The aim of this paper is to propose a new smoothing method. Within the particle filter framework,

the smoothing can be computed backward, reweighting past particles using present observations

(Briers et al., 2010; Godsill et al., 2004). There is howeverone main difficulty for continuous45

models of type (1). As a matter of fact, it is necessary to knowthe transition density of the process

between observation times, which is not available for general diffusions. This transition density

can be approximated through Monte Carlo simulations, as proposed by Durham and Gallant (2002)

to solve inference problems for diffusion processes. However, these approximations are based on

Brownian bridge (or modified versions of it) simulations, that do not take into account the drift part50

of the model. For non linear and high-dimensional models with a drift term that dominates, such

approximations will be inefficient. It is also possible to obtain an unbiased estimate of the transition

density (see Beskos et al. (2006)), but this approach is not adapted to a multi-dimensional context. As

a matter of fact, the use of this technique in a multivariate setting imposes constraints on the diffusion

drift (in particular the drift function has to be of gradienttype). In parallel, within the framework of55

ensemble Kalman methods, Evensen and van Leeuwen (2000) have proposed to estimate backward

the smoothing distribution in a recursive way, based on existing filtering trajectories; Stroud et al.

(2010) presented and applied an ensemble Kalman smoothing method, relying on a linearization of
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the system dynamics.

All previously mentioned smoothing methods require to perform specific assumptions or simpli-60

fications in order to deal with general non linear models of type (1) in a high-dimensional context.

To the best of our knowledge, it remains a challenging problem to develop smoothing methods that

can be used in this general setting. In this paper, we deal with this issue sequentially each time a

new observation is available, by smoothing the hidden statefrom this new observation time up to

the previous one. This approach, called fixed-lag smoothing, constitutes then a partial answer to65

the global smoothing problem that would take into account all available observations. Nevertheless,

it is reasonable to assume that the distribution of the hidden state depends on future observations

through the next observation only, as soon as the time step between measurements is long (which is

typically the case in the environmental applications that motivate this work). Under this assumption,

a new observation will impact the distribution of the hiddenprocess up to the previous observation70

only. This point of view justifies the use of a fixed-lag smoothing in our setting as a reasonable

approximation of the global smoothing problem.

Such a fixed-lag smoothing may be directly obtained from the particle filtering result, reweighting

past trajectories. However, this smoothing will fail in twocases: when the number of particles is

too small compared to the size of the system, or when existingtrajectories do not correspond to75

plausible trajectories of the dynamical model. Unfortunately, these two situations have to be faced

when smoothing in a high-dimensional state-space model. Firstly, the number of particles has to be

reduced for computational reasons. Secondly, particle filters that have been proposed in this high-

dimensional context require to correct trajectories towards the observations (Papadakis et al., 2010;

Van Leeuwen and Ades, 2013). This implies that filtering states are consistent at observation times,80

but that filtering trajectories may not be plausible realizations of the underlying physical model.

In that case, a smoothing based on existing trajectories will fail. Note that these remarks are not

only valid for the fixed-lag smoothing, but also for previously mentioned global techniques relying

on existing trajectories. In particular, a genealogical smoothing based on ancestral particle lines

(Del Moral, 2004) will be deficient in a high-dimensional setting since many trajectories will share85

only a few ancestral lines.

In contrast, our method does not rely on existing particles only. It is built on a conditional simula-

tion technique of diffusions proposed by Delyon and Hu (2006) that provides new state trajectories

at hidden times between observations. This simulation technique is adapted to a multivariate context

where the drift dominates, contrary to techniques based on Brownian bridge sampling (Durham and90

Gallant, 2002). Moreover, it does not require constrainingassumptions for multivariate models, con-

trary to other techniques based on exact simulation of diffusions (Beskos and Roberts, 2005; Beskos

et al., 2006). The proposed smoothing method can then be applied to high-dimensional systems.

Finally, it does not require model linearization nor Gaussian hypotheses, and so is able to deal with

general non linear models.95
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The remaining of the paper is organized as follows. Section 2briefly describes sequential Monte

Carlo filtering methods in state-space models, and presentsthe fixed-lag smoothing problem. Section

3 presents the conditional simulation technique of diffusions of Delyon and Hu (2006), and details

the construction of the proposed Monte Carlo estimate of smoothing distributions. The method is

then experimented on a one-dimensional example in Section 4. Finally, the method is applied in100

section 5 to a practical non linear and high-dimensional case, similar to the problems that have to be

faced in environmental applications. A discussion is givenin Section 6.

2 Monte Carlo filtering and smoothing in state-space models

In this section we recall briefly the particle filtering and smoothing methods for models of type (1),

where the hidden state vectorx ∈ R
n is observed through the observation vectory ∈ R

m at discrete105

times{t1, t2, . . .}:

y(tk) = g(x(tk))+ γtk . (2)

The drift functionf and observation operatorg can be non linear. The dynamical model uncertainty

is described by a n-dimensional Brownian motion with covarianceΣ= σ(x(t))σ(x(t))T . The func-

tionsf , g andσ are assumed to be known, as well as the law of the observation noiseγtk .110

In particular, we present the standard particle filter and the Weighted Ensemble Kalman filter, that

can be used to face the filtering problem in high-dimensionalsystems.

2.1 Particle-based filtering methods

Filtering aims at estimating recursively the distributionp(xt1:tk |yt1:tk) (and in particular its marginal

distributionp(xtk |yt1:tk)) at each observation timetk. This filtering problem can be solved with a115

Monte Carlo sequential approach, called particle filtering(Del Moral et al., 2001; Doucet et al.,

2000). The method relies on a Monte Carlo approximation of the filtering distribution over a set of

weighted trajectories{x(i)
t1:tk

}i=1:N (called particles):

p̂(xt1:tk |yt1:tk) =
N
∑

i=1

w
(i)
tk
δ
x
(i)
t1:tk

(xt1:tk), (3)

whose marginal distribution at timetk writes:120

p̂(xtk |yt1:tk) =

N
∑

i=1

w
(i)
tk
δ
x
(i)
tk

(xtk). (4)

Particle filters rely on a sequential importance sampling scheme that recursively samples particles,

and updates their weights at observation times. The weightscorresponds to the ratio between the

target distribution and the importance sampling distribution π(xtk |xt0:tk−1
,yt1:tk). They are recur-
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sively computed as follows:125

w
(i)
tk

∝ w
(i)
tk−1

p(ytk |x
(i)
tk
)p(x

(i)
tk
|x

(i)
tk−1

)

π(x
(i)
tk
|x

(i)
t0:tk−1

,yt1:tk)
. (5)

In practice, a resampling procedure is added in order to avoid degeneracy. This procedure duplicates

trajectories with large weights and remove small weighted trajectories.

2.1.1 Standard particle filter

When the proposal distributionπ is set to the prior (i.e.π(xtk |xt0:tk−1
,yt1:tk) = p(xtk |xtk−1

), the130

weights updating rule (5) simplifies to the computation of the data likelihoodp(ytk |x
(i)
tk
). This par-

ticular instance of the particle filter is called theBootstrap filteror sequential importance resampling

(SIR) filter Gordon et al. (1993). Due to its simplicity it is the most commonly used particle filter. It

is however a very inefficient distribution for high dimensional space as it does not take into account

the current observation and depends only weakly on the past data through the filtering distribution135

estimated at the previous instant. This distribution requires a great number of particles to explore

meaningful areas of the state space.

2.1.2 Weighted Ensemble Kalman filter (WEnKF)

One way to efficiently incorporate observation within the proposal distribution consists to rely on

the ensemble Kalman filtering mechanism to define this distribution. This is the idea proposed in140

the WEnKF technique (Papadakis et al., 2010). In the WEnKF approach the importance sampling

is taken as a Gaussian approximation ofp(xtk |xtk−1
,ytk). This approach is close to the technique

proposed in Van Leeuwen (2010). A variation of a similar technique based on a deterministic square-

root formulation is also described in Beyou et al. (2013). Inorder to make the estimation of the

filtering distribution exact (up to the sampling), each member of the ensemble must be weighted at145

each observation instanttk with appropriate weightsw(i)
tk

, defined from (5). Therefore, the Weighted

ensemble Kalman filter (WEnKF) procedure can be simply summarized by Algorithm 1.
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Algorithm 1 The WEnKF algorithm

For eachtk = t1, t2, . . .:

• Start from particles set{x(i)
tk−1

, i= 1, . . . ,N} and observationytk

• Obtain particles set{x(i)
tk
, i= 1, . . . ,N} from:

– EnKF step: Getx(i)
tk

, i= 1, . . . ,N , from the assimilation ofytk with an EnKF proce-

dure;

– Computation of weights:w(i)
tk

∝ w
(i)
tk−1

p(ytk
|x

(i)
tk

)p(x
(i)
tk

|x
(i)
tk−1

)

p(x
(i)
tk

|x
(i)
tk−1

,y
(i)
tk

)
;

– Resampling: Forj = 1, . . . ,N , sample with replacement indexI(j) from discrete prob-

ability {w
(i)
tk
, i= 1, . . . ,N} over{1, . . . ,N} and setx(j)

tk
= x

I(j)
tk

. Setw(i)
tk

= 1
N

∀i=

1, . . . ,N .

Note that particle-based filtering techniques update the filtering distribution at observation times

only. However, after the estimatêp(xtk |yt1:tk) has been updated at observation timetk, the filtering

distribution can be predicted in order to have a continuous estimation of p̂(xt|yt1:tk) for all t ∈150

]tk, tk+1[ until the next observation time:

p̂(xt|yt1:tk) =

N
∑

i=1

w
(i)
tk
δ
x
(i)
t

(xt), (6)

where, for alli= 1, . . . ,N , the statex(i)
t is sampled from (1), starting fromx(i)

tk
.

2.2 Fixed-lag smoothing problem155

Contrary to the filtering approach that uses past and presentobservations, the smoothing in state-

space models aims at estimatingp(xt|yt1:tend) for all t ∈ [t1, tend], using all past and future obser-

vations over a given time period. As raised in the introduction, existing smoothing methods do not

apply directly to a general non linear model of type (1) in a high-dimensional context, since assump-

tions have to be made that may not be realistic. Instead of solving the global smoothing, we will160

concentrate in the rest of the paper on a fixed-lag smoothing,which constitutes a partial answer to

the global smoothing problem.

The objective of the fixed-lag smoothing will be to replace the predictive distribution (6) by its

smoothed versionp(xt|yt1:tk+1
) ∀t ∈]tk, tk+1], sequentially each time a new observationytk+1

ar-

rives. This will allow to reduce the temporal discontinuities inherent to the filtering technique, that165

successively predicts the distribution of the state between observations, and updates this distribution

at observation times.

To achieve this, by construction of the particle filter that weights entire trajectories (see equation
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(3)), it is known (see for instance Doucet et al. (2000)) thatthe fixed-lag smoothing distribution

p̂(xt|yt1:tk+1
) can be directly obtained from the marginal at timet of p̂(xt1:tk+1

|yt1:tk+1
). The170

empirical smoothing distribution is then given by:

p̂(xt|yt1:tk+1
) =

N
∑

i=1

w
(i)
tk+1

δ
x
(i)
t

(xt) ∀t ∈]tk, tk+1]. (7)

However, this approximation is simply a reweighting of pastexisting particle trajectories, and relies

on the support of the filtering distribution at timetk. If the number of particles is too small with

respect to the state dimension, the support may be greatly reduced by the correction step (assigning175

small weights to all particles except a few), leading in practice to a bad estimation ofp(xt|yt1:tk+1
).

Moreover, if particle trajectories have been forced towards observations during the filtering step (like

in the WEnKF procedure), a smoothing based on those particleswill fail because it will not be able

to correct discontinuities. Consequently, since we are interested in smoothing techniques that are

efficient in a high-dimensional context, this direct smoothing technique can not be used in its basic180

form and has to be improved.

In the following, we propose to use a conditional simulationtechnique of diffusions that will

enable the sampling of new smoothed trajectories between timestk andtk+1. The approximation of

the smoothing distribution (7) at each hidden time will thenbe improved. The conditional simulation

technique is presented in the next section, before the resulting smoothing procedure we propose.185

3 Fixed-lag smoothing with conditional simulation

The smoothing method we propose is based on a conditional simulation technique that is presented in

section 3.1. We develop then in section 3.2 how this technique can be used to improve the estimation

of the smoothing distribution (7).

3.1 Conditional simulation190

Conditional simulation of a diffusion aims at sampling trajectories from a given process:

dx(t) = f(x(t))dt+σ(x(t))dB(t) (8)

between two timest= 0 andt= T , with the constraintsx(0) = u andx(T ) = v. This simulation

problem is treated by Delyon and Hu (2006), where the authorsshow how to obtain the law of

the constrained process from a Girsanov theorem. In practice, the proposed algorithms consist in195

simulating trajectories according to another diffusion process, which is built to respect the constraints

and is easy to simulate from. The conditional distribution of the constrained process (8) is absolutely

continuous with respect to the distribution of the auxiliary process, with explicitly given density. For

instance, in the case where the drift is bounded (a similar algorithm is proposed in Delyon and Hu

(2006) for the unbounded case) and forσ invertible, the algorithm is based on the simulation of200
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trajectories from the following process:

dx̃(t) =

(

f(x̃(t))−
x̃(t)−v

T − t

)

dt+σ(x̃(t))dB(t), (9)

with initial condition x̃(0) = u. Note that Lemma 4 in Delyon and Hu (2006) deals with the exis-

tence of a unique solution for this equation. This process isa simple modification of (8), where a

deterministic part is added to the drift. It is then easy to simulate unconditional trajectories from this205

process, and all simulated trajectories will satisfyx̃(T ) = v by construction. For simplicity we will

assume in the following thatσ is independent ofx(t) (note however that this is not an assumption in

Delyon and Hu (2006)). The law of the conditioned process is given by:

E[h(x)|x(0) = u,x(T ) = v] = E [h(x̃)α(x̃)] , (10)

for all measurable functionh, where:210

α(x̃) = exp



−

T
∫

0

(x̃(t)−v)TΣ−1f(x̃(t))

T − t
dt



 (11)

is the density coming from Girsanov theorem (see Delyon and Hu (2006)), withΣ= σ(x̃(t))σ(x̃(t))T .

Let us note that the presence of the drift part of model (8) in the auxiliary process (9) is crucial

to make the simulation efficient. The same process had initially been proposed by Clark (1990) to

solve the conditional simulation problem. On the other hand, standard Brownian bridges that could215

be used as auxiliary processes (Durham and Gallant, 2002) lead in practice to poor approximations of

the original constrained diffusion in our high-dimensional setting, since Brownian bridge trajectories

are too far away from trajectories of (8).

In the following, the conditional marginal of interestp(xt|x(0) = u,x(T ) = v) will then be ap-

proximated as follows:220

p̂(xt|x(0) = u,x(T ) = v) =
M
∑

j=1

α(x̃(j))δ
x̃
(j)
t

(xt) ∀t ∈ [0,T ], (12)

where theM trajectories{x̃(j)
t }j=1:M are simulated from (9) with̃x(j)

0 = u for all j = 1, . . . ,M .

3.2 Proposed fixed-lag smoothing method

We show in the following how the conditional simulation technique can be used to improve the

estimation of the local smoothing distributionp(xt|yt1:tk+1
) for all t ∈]tk, tk+1].225

We first note that this distribution can be decomposed as:

p(xt|yt1:tk+1
) =

∫

p(xt,xtk ,xtk+1
|yt1:tk+1

)dxtkdxtk+1

=

∫

p(xtk ,xtk+1
|yt1:tk+1

)p(xt|xtk ,xtk+1
,yt1:tk+1

)dxtkdxtk+1
. (13)
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Then, from the state-space model properties, we obtain:

p(xt|yt1:tk+1
) =

∫

p(xtk ,xtk+1
|yt1:tk+1

)p(xt|xtk ,xtk+1
)dxtkdxtk+1

. (14)230

Moreover, from the particle filter Monte Carlo approximation described by (3), the joint lawp(xtk ,xtk+1
|yt1:tk+1

)

can be replaced by:

p̂(xtk ,xtk+1
|yt1:tk+1

) =

N
∑

i=1

w
(i)
tk+1

δ
(x

(i)
tk+1

,x
(i)
tk

)
(xtk+1

,xtk), (15)

where thew(i)
tk+1

are the particle filter importance weights.

Plugging (15) into (14) leads then to the following approximation for the fixed-lag smoothing distri-235

bution:

p̂(xt|yt1:tk+1
) =

N
∑

i=1

w
(i)
tk+1

p(xt|x
(i)
tk
,x

(i)
tk+1

). (16)

The conditional distributionp(xt|x
(i)
tk
,x

(i)
tk+1

) can be estimated using (12) for each pair of initial and

end pointsx(i)
tk

andx(i)
tk+1

:

p̂(xt|x
(i)
tk
,x

(i)
tk+1

) =

M
∑

j=1

α(x̃(i)(j))δ
x̃
(i)(j)
t

(xt), (17)240

where each̃x(i)(j)
t is sampled from (9) with initial constraint̃x(i)(j)

tk
= x

(i)
tk

and final constraintx(i)
tk+1

.

The estimation of the smoothing distribution of interest writes finally:

p̂(xt|yt1:tk+1
) =

N
∑

i=1

w
(i)
tk+1

M
∑

j=1

α(x̃(i)(j))δ
x̃
(i)(j)
t

(xt), ∀t ∈]tk, tk+1]. (18)

The algorithm we propose to compute the fixed-lag smoothing distribution on a given time interval245

]tk, tk+1] is therefore the following:

Algorithm 2 Fixed-lag conditional smoothing

For eachtk = t1, t2, . . .:

– Store{x(i)
tk
}i=1:N and compute{x(i)

tk+1
}i=1:N and associated weights{w(i)

tk+1
}i=1:N from a

particle filter algorithm;

– For each pair{x(i)
tk
,x

(i)
tk+1

}, i= 1, . . . ,N :

– SimulateM conditional trajectories{x̃(i)(j)
t }j=1:M for t ∈ [tk, tk+1] from (9) with an

Euler scheme, with the constraintsx̃(i)(j)
tk

= x
(i)
tk

andx̃(i)(j)
tk+1

= x
(i)
tk+1

,

– Compute weightsα(x̃(i)(j)) from (11) for allj = 1, . . . ,M , with final constraintx(i)
tk+1

;

– Computep̂(xt|yt1:tk+1
) =

∑N
i=1w

(i)
tk+1

∑M
j=1α(x̃

(i)(j))δx̃(i)(j)(xt) for all t ∈]tk, tk+1].

9



4 One-dimensional simulation study

In this section, the smoothing method is first experimented on a one-dimensional state space model.

Since the proposed approach relies on a preliminary particle filtering step, filtering results are first250

presented in Section 4.2 (either considering a standard particle filter or the WEnKF). The results

obtained with the standard fixed-lag smoothing method are then shown in Section 4.3. Finally,

Section 4.4 presents the smoothing results obtained with the proposed technique.

4.1 State space model

The one-dimensional state space model of interest is a sine diffusion, partially observed with noise255

(used as an illustration by Fearnhead et al. (2008) for a particle filtering method) :

dx(t) = sin(x(t))dt+σxdB(t), (19)

ytk = xtk + γtk , (20)

whereσ2
x = 0.5 andγtk ∼N (0,σy) with σ2

y = 0.01. One trajectory of the process is first simulated

from (19) with an Euler-type discretization scheme of time step∆t= 0.005. This trajectory will260

constitute the hidden process, observed throughytk generated according to (20) at every time step

tk, with tk − tk−1 = 20∆t. The trajectory is plotted on Figure 1, together with the corresponding

discrete observations at timestk.

265
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x(
t)

Fig. 1: Simulated sine diffusion trajectoryx(t) and partial observationsy(tk) (dots) withtk − tk−1 = 20∆t.

4.2 Particle filtering results

The filtering results are presented for the standard particle filter (denoted PF in the following) and

the Weighted Ensemble Kalman filter (WEnKF). Two situations are shown, with reduced (N = 20)

and high number (N = 10000) of particles. The case with a high number of particles is shown as

the reference for comparison purpose, note however that this ideal situation is not reachable in a270
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high-dimensional context, since the number of particles has to be reduced for evident computational

cost reasons.

The results for the two configurations are presented on Figure 2, where the dotted lines represents

the filtering mean estimates. The filtering distributionp(xtk |yt1:tk) is estimated at each observation

time tk using (4), and predicted between observation times from (6). The mean is then estimated275

from weighted particles as
∑N

i=1w
(i)
tk
x
(i)
t , for all t ∈ [tk, tk+1[. Figure 2 (a)-(b) show that the stan-

dard particle filter results diverge from the reference solution between observation times, for low or

high number of particles. As a matter of fact, when no observation is available, the state distribu-

tion is predicted from the dynamics only, so that particles trajectories are not guided towards the

next observation. At observation timestk, high weights are given to particles that are close to the280

observation, so that the estimated mean suddenly gets closer to the solution. These discontinuities

between measurement times can also be observed on the WEnKF results (Figure 2 (c)-(d)), because

particle trajectories are brutally corrected with the EnKFstep at observation times. A smoothing will

aim at reducing these temporal discontinuities while providing dynamically consistent solutions.
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(a) Standard PF (N = 20) (b) Standard PF (N = 10000)
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(c) WEnKF (N = 20) (d) WEnKF (N = 10000)

Fig. 2: Standard PF and WEnKF results. Thick line: hidden diffusion; Dots: partial observations; Dotted line:

estimated filtering mean.
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4.3 Standard fixed-lag smoothing results

From the particle filtering results, we present now the results obtained with the direct particles

smoothing procedure described in section 2.2. This procedure relies on existing trajectories. The

smoothing distribution̂p(xt|yt1:tk+1
) is computed backward for allt ∈]tk, tk+1] using expression290

(7), each time a new observationytk+1
becomes available. The smoothing mean is computed as

∑N
i=1w

(i)
tk+1

x
(i)
t for all t ∈]tk, tk+1], and the standard deviation is computed in the same way from

the weighted particles.

It can be observed on Figure 3(a) that the smoothing based on the standard particle filter is not

efficient when the number of particlesN is small: Only a few particles are close to the observation295

at timetk and have nonzero weights, implying that the smoothing distribution is poorly estimated

(see for instance between observation timest= 100 andt= 120 where the smoothing distribution

is artificially peaked but far from the hidden trajectory). The smoothing result obtained from the

reference configurationN = 10000 is plotted on Figure 3(b). In that situation, since many trajecto-

ries have high weights at observation times, the estimationof backward smoothing distributions is300

improved and includes the hidden trajectory.

Moreover, Figure 3(c)-(d) shows that the standard smoothing based on the WEnKF result fails for

low or high number of particles. As a matter of fact, particletrajectories are artificially corrected by

the EnKF step at each observation time. Resulting trajectories are highly non-plausible. Even for a

huge number of particles, a smoothing based on those existing trajectories is not able to reduce the305

induced time discontinuities.
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(a) Standard smoothing from PF (N = 20) (b) Standard smoothing from PF (N = 10000)
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(c) Standard smoothing from WEnKF (N = 20) (d) Standard smoothing from WEnKF (N = 10000)

Fig. 3: Standard smoothing from PF and WEnKF results. Thick line: hiddendiffusion; Dots: partial observa-

tions; Dotted line: estimated filtering mean.

4.4 Proposed smoothing results

In this section, we show how the proposed method can improve the estimation of backward smooth-310

ing distributions when it is not adequate to rely on existingtrajectories only. This is the case if the

number of particles is too small, as demonstrated from the experiment presented on Figure 3(a), or

if the existing trajectories do not correspond to plausibletrajectories of the model (as shown for the

WEnKF result on Figure 3(c)-(d)).

Our smoothing is first applied using the filtering output of the standard particle filter withN = 20315

particles. Figure 4(a) shows the result obtained with a sampling of M = 50 conditional trajec-

tories between each pair{x(i)
tk
,x

(i)
tk+1

}, i= 1, . . . ,N . The smoothing distribution̂p(xt|yt1:tk+1
) is

computed from (18), so the smoothing mean is computed as
∑N

i=1w
(i)
tk

∑M
j=1α(x̃

(i)(j))x̃
(i)(j)
t for

all t ∈]tk, tk+1], and similarly for the standard deviation. This result highlights the fact that since

the proposed method creates new trajectories, it is able to correct the deficiencies of the standard320

smoothing approach presented on Figure 3(a) when the initial number of filtering particles is too

small. On Figure 4(b), the same experiment is presented using M = 500 conditional trajectories. In

that case, the result is very similar to the reference particles smoothing result presented on Figure

3(b), obtained from a particle filter withN = 10000.
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In parallel, the proposed smoothing has been tested using the output of the WEnKF filtering325

technique withN = 20 particles. Again, the smoothing is computed withM = 50 andM = 500

conditional trajectories, and the corresponding results are presented on Figure 3(c)-(d). Instead on

relying on existing WEnKF trajectories that may not be plausible trajectories of the model (because

of the EnKF correction step), the proposed method samples new trajectories between observation

times. This leads to a good estimation of the smoothing distributions, contrary to the standard330

smoothing presented of Figure 3(c). Note that the smoothingresults are very similar to the result

obtained from the standard particle filter (Figure 3(a)-(b)) because both filters have similar behaviour

at observation times.
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(a) Proposed smoothing from standard PF (b) Proposed smoothing from standard PF

(N = 20 andM = 50) (N = 20 andM = 500)
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(c) Proposed smoothing from WEnKF (d) Proposed smoothing from WEnKF

(N = 20 andM = 50) (N = 20 andM = 500)

Fig. 4: Proposed conditional smoothing result. Thick line: hidden diffusion; Dots: partial observations; Dotted

line: estimated backward smoothing mean; Thin line: estimated standard deviation.
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5 Application to a high-dimensional assimilation problem

This section aims at illustrating the applicability of our method to a high-dimensional and non linear

scenario, without extensive study at this stage. The methodis applied to a turbulence assimilation

problem, where the model of interest is of type (1). The goal is to recover temporal estimates of

velocity/vorticity over a given spatial domain of sizen= 64 ∗ 64, from a sequence of noisy obser-340

vations and a continuousa priori dynamical model based on a stochastic version of Navier-Stokes

equation. Within an environmental framework, a direct application would be the estimation of wind

fields or sea surface currents from satellite data.

5.1 State space model

Let ξ(x) denote the scalar vorticity at pointx= (x,y)T , associated to the 2D velocityw(x) =345

(wx(x),wy(x))
T throughξ(x) = ∂wy

∂x
− ∂wx

∂y
. Letξ ∈ R

n be the state vector describing the vorticity

over an= 64 ∗ 64 square domain, andw ∈ R
2n the associated velocity field over the domain. We

will focus on incompressible flows such that the divergence of the velocity field is null. A stochastic

version of Navier-Stokes equation in its velocity-vorticity form can then be written as:

dξt =−∇ξt ·wtdt+
1

Re
∆ξtdt+σdBt, (21)350

whereℜ denotes the flow Reynolds number (Re= 3000). The uncertainty is modeled by a Brownian

motion of sizen, with covarianceΣ= σσT , whereσ ∈ R
n. A velocity field example, generated from

the model (21), is shown on Figure 5(a), together with the corresponding vorticity map (b).

We assume the hidden vorticity vectorξ is observed through noisy measurementsytk at discrete

timestk, wheretk − tk−1 = 100∆t, and∆t= 0.1 is the time step used to discretize (21). In our355

experimental setup, measurements correspond to PIV (Particle Image Velocimetry) image sequences

used in fluid mechanics applications. Note however that other kind of data can be used similarly

within this state space model, like meteorological or oceanographic data for instance. The state

and observation are related in our case throughytk = g(ξtk)+ γtk , whereg is a non linear function

linking the vorticity to the image data, andγtk is a Gaussian noise, uncorrelated in time.360

15



(a) (b)

Fig. 5: State example. (a) Velocity fieldwt; (b) Associated vorticity mapξ
t
.

5.2 Implementation details

We recall that the smoothing relies first on a particle filter step. Due to the high dimensionality of the

state vector, the use of a standard particle filter is not adapted to solve the filtering problem, as dis-365

cussed by Snyder et al. (2008) or Van Leeuwen (2009). We make then use of the method presented

by Papadakis et al. (2010) which combines the benefits of the ensemble Kalman filter, known to per-

form well in practice for high dimensional systems (Stroud et al., 2010), and the particle filter (which

solves theoretically the true filtering problem, without approximating the filtering distributions with

Gaussian distributions). Since the method of Papadakis et al. (2010) is intrinsically a particle filter, it370

leads then at each observation timetk to a set of particles and weights{ξ(i)t1:tk
,wtk}i=1:N , as required

by the algorithm proposed in section 3.

The particle filter step requires simulations from the dynamical model (21), and the conditional

simulation step requires to sample trajectories from its constrained version, which consists in a

similar problem with modified drift (see process (9)). The model is discretized in time with time375

step∆t= 0.1; more information about the discretization scheme may be obtained in Papadakis et al.

(2010). The random perturbations are assumed to be realizations of Gaussian random fields that

are correlated in space with Gaussian covariance functionΣ(xi,xj) = η exp(− ||xi−xj ||
2

λ
), where

η = 0.01 andλ= 13. In practice, the simulation of these perturbations is performed in Fourier

space, with the method described in Evensen (2003).380

Finally, the estimation of the smoothing distributions require the computation of conditional tra-

jectories weights, corresponding to Girsanov weights given by (11). After a Riemann sum approx-

imation of the integral, the computation of weights requires the inversion of the matrixΣ of size

(n,n), wheren= 64 ∗ 64 is the number of grid points. We choose to computeΣ−1 empirically

using a singular value decomposition computed from theM realizations of the perturbation fields385

used for the constrained trajectories simulations. LetZ be the matrix of size(n,M) containing the

M centered fields of sizen= 64 ∗ 64, the SVD leads toZ=UDVT , so thatZZT =UDDTUT .

The inverse of the covariance matrixΣ−1 is finally computed as:

M(ZZT )−1 =MU(DDT )−1UT , (22)
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which only requires the inversion of a diagonal. Note that more efficient procedures could be imple-390

mented in our case (homogeneous Gaussian covariance) sincethe covariance function is separable in

x andy directions. This means that the covariance matrixΣ can be written as the Kronecker product

of smaller matrices and more easily inverted (Sun et al., 2012). However, the SVD inversion can be

applied to any covariance structure, in particular it coulddeal with a non homogeneous covariance

matrix.395

5.3 Results

In this section, we illustrate the capability of the proposed method to reduce the temporal disconti-

nuities inherently introduced by the filtering in continuous-discrete state-space models.

The smoothing result relies on the output of the WEnKF filtering step, computed withN = 500

particles. Compared to the size of the system, the number of particles is theoretically too small for400

the filter to be truly efficient. In practice, many filtering trajectories have close to zero weights at

observation times. Histograms of filtering weights are given as illustration on Figure 6(a)-(b) at two

times t= 400 and t= 500. Note however that the filter is not degenerate and is able to provide

results that get close to he hidden vorticity at measurementtimes. This can be observed on Figure 7,

where the mean square error is plotted with full line, averaged at each time over the image domain405

of sizen= 64 ∗ 64. Since the ground truth vorticity sequence is known in our experimental setup,

the mean square error is computed between the hidden vorticity and the estimated filtering mean,

given by
∑N

i=1w
(i)
tk
ξ
(i)
t for all t ∈ [tk, tk+1[. The correction steps lead to successive error decreases

at observation times.

The proposed smoothing method has been applied withM = 200. Note that we take benefit410

from the fact that many filtering have close to zero weights. Indeed, the smoothing method relies

in practice on a reduced number̃NM of sampled conditional trajectories (with̃N <<N ), which

makes the problem computationally tractable. On this experiment, we have retained around5%

of initial filtering trajectories. The smoothing distribution p̂(ξt|yt1:tk+1
) is computed for allt ∈

]tk, tk+1] from (18), and its mean is computed as
∑N

i=1w
(i)
tk+1

∑M
j=1α(ξ̃

(i)(j))ξ̃
(i)(j)
t . Histograms415

of conditional simulation weightsα(ξ̃(i)(j)) are given as illustration on Figure 6(c)-(d) for a given

particle(i) at two timest= 400 andt= 500.

The mean square error is computed between the true vorticityand the estimated smoothing mean,

and plotted on Figure 7 with dotted line. As expected, the smoothing method reduces the error at

hidden times between observations.420
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Fig. 6: Filtering and conditional simulation weights
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Fig. 7: Full line: mean square error between ground truth vorticity and estimated filtering mean; Dotted line:

mean square error between ground truth vorticity and estimated backward smoothing mean.

In addition, we present below a qualitative evaluation of the smoothing result for the same exper-425

iment, over a specific time interval.

The WEnKF result is first presented on Figure 8 for the time interval [400,500] between two obser-

vations, where estimated mean vorticity maps are computed as
∑N

i=1w
(i)
400ξ

(i)
t for all t ∈ [400,500[,
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and as
∑N

i=1w
(i)
500ξ

(i)
t for t= 500. The temporal discontinuity between estimations can be observed

when reaching observation timet= 500: the vorticity map is suddenly modified in order to fit to430

the observations, introducing inconsistencies in the vorticity temporal trajectories. Note that the ap-

plication of the standard particles smoothing (described in section 2.2) will fail here, and not only

because the number of particles is too small. As a matter of fact, we recall that the filtering trajec-

tories have been computed from the method presented in Papadakis et al. (2010), which uses the

ensemble Kalman filter step as importance distribution in the particle filter algorithm. The ensemble435

Kalman filter consists of a prediction step from the dynamical model (21), and a correction step

which shifts particles towards the observation. Because ofthis correction step, the sampled filter-

ing trajectories between two observation times do not correspond to trajectories of the dynamical

model. This implies that from such a particle filter, the standard smoothing based on existing tra-

jectories will not be able to reduce the temporal discontinuities observed on Figure 8. This can be440

observed on Figure 9, where smoothed vorticity maps are computed as
∑N

i=1w
(i)
400ξ

(i)
t for t= 400,

and as
∑N

i=1w
(i)
500ξ

(i)
t for all t ∈]400,500]. The discontinuity at timet= 500 is still present.

t= 400 t= 420 t= 450

t= 470 t= 490 t= 500

Fig. 8: Filtering result with the method of Papadakis et al. (2010). Estimatedmean vorticity maps for different

timest between observation timest= 400 andt= 500.

445
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t= 400 t= 420 t= 450

t= 470 t= 490 t= 500

Fig. 9: Standard particles smoothing result (see Section 2.2). Estimated mean vorticity maps for different times

t between observation timest= 400 andt= 500.

The result obtained with the proposed method is plotted on Figure 10. Estimated mean vorticity

maps are computed as
∑N

i=1w
(i)
500

∑M
j=1α(ξ̃

(i)(j))ξ̃
(i)(j)
t for all t ∈ [400,500]. Spatio-temporal vor-

ticity trajectories are gradually modified until observation time t= 500, preserving the fluid flow

properties. As a matter of fact, since the proposed method samples new trajectories from the law450

of the physical process (21), the smoothed vorticity trajectories are by construction consistent with

the a priori dynamical model. In order to sample the smoothed trajectories, the method relies on

the model and on filtering marginals at observation times, but not on filtering trajectories at hidden

times. It is then able to smooth the discontinuities inherent to the particle filtering technique we have

used, contrary to the standard smoothing presented on Figure 9.455
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Fig. 10: Smoothing result with the proposed method. Estimated mean vorticitymaps for different timest

between observation timest= 400 andt= 500.

6 Conclusion and discussion

In this paper we introduced a smoothing algorithm based on a conditional simulation technique of

diffusions. The proposed smoothing is formulated as fixed-lag, in the sense that it is performed460

sequentially each time a new observation appears, in order to correct the state at hidden times up to

the previous observation. Note that a decomposition similar to equations (13) to (18) can be written

from an integration up to a previous timetk−h, with h > 1. This implies that the smoother can be

formulated with a larger fixed-lag, in order to correct the state backward not only up to the previous

observation, but up to further measurement times. Yet, due to the successive resampling steps that465

have been performed in the filtering steps before timetk, there are in practice only a few distinct

filtering trajectories at timestk−h if h is large. Consequently, the estimation of the joint law in (15)

will not be reliable anymore for a too large value ofh.

We have shown the practical applicability of the method to a high-dimensional problem. Never-

theless, the algorithm remains costly since a second Monte Carlo step is added to the Monte Carlo470

nature of particle filter algorithms. Yet, from an algorithmic point of view, the sequential nature of

the proposed technique allows the smoothing to be implemented with a similar structure as filtering

methods (sequential sampling and weighting of model trajectories). It is then easy to couple this

smoothing to an operational filtering system and benefit fromparallelization strategies for instance.

Since the proposed smoothing uses the filtering result as input, it relies on the success of the475
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underlying particle filter. For high-dimensional systems,a standard particle filter is not adapted and

it is necessary to use filtering techniques that guide particles towards observations. In this paper, we

use the WEnKF algorithm. In practice, any efficient particle filtering technique with such a guiding

can be used within our framework. Note however that the construction of such techniques remains

an open area of research.480

We plan to work on the application of the smoothing method to areal high-dimensional case (for

the estimation of sea surface currents from satellite imagesequences). However, such a work will

imply numerous difficulties which are not related to the smoothing technique but to the definition of

the state-space model: definition of a suitable physical model, good characterization of state noise

structure and model parameters. Therefore, this will be part of a future work.485

22



References

Beskos, A. and Roberts, G. O.: Exact simulation of diffusions, The Annals of Applied Probability, 15, 2422–

2444, 2005.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead,P.: Exact and computationally efficient

likelihood-based estimation for discretely observed diffusion processes(with discussion), Journal of the490

Royal Statistical Society: Series B, 68, 333–382, 2006.

Beyou, S., Cuzol, A., Gorthi, S., and Ḿemin, E.: Weighted Ensemble Transform Kalman Filter for Image

Assimilation, TellusA, 65, 2013.

Briers, M., Doucet, A., and Maskell, S.: Smoothing algorithms for state-space models, Annals of the Institute

of Statistical Mathematics, 62, 61–89, 2010.495

Clark, J.: The simulation of pinned diffusions, in: Proceedings of the 29th IEEE Conference on Decision and

Control, pp. 1418–1420, 1990.

Del Moral, P.: Feynman-Kac Formulae. Genealogical and InteractingParticle Systems with Applications,

Springer, 2004.

Del Moral, P., Jacod, J., and Protter, P.: The Monte Carlo Method forfiltering with discrete-time observations,500

Probability Theory and Related Fields, 120, 346–368, 2001.

Delyon, B. and Hu, Y.: Simulation of conditioned diffusions and applications to parameter estimation, Stochas-

tic Processes and Applications, 116, 1660–1675, 2006.

Doucet, A., Godsill, S., and Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering,

Statistics and Computing, 10, 197–208, 2000.505

Durham, G. and Gallant, A.: Numerical techniques for maximum likelihoodestimation of continuous-time

diffusion processes, Journal of Business and Economic Statistics, 20,297–316, 2002.

Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean dynam-

ics, 53, 343–367, 2003.

Evensen, G. and van Leeuwen, P.: An ensemble Kalman Smoother fornonlinear dynamics, Monthly Weather510

Review, 128, 1852–1867, 2000.

Fearnhead, P., Papaspiliopoulos, O., and Roberts, G.: Particle filtersfor partially observed diffusions, Journal

of the Royal Statistical Society B, 70, 755–777, 2008.

Godsill, S. J., Doucet, A., and West, M.: Monte Carlo smoothing for nonlinear time series, Journal of the

American Statistical Association, 99, 156–168, 2004.515

Gordon, N., Salmond, D., and Smith, A.: Novel approach to non-linear/non-Gaussian Bayesian state estimation,

IEEE Processing-F, 140, 1993.
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