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We describe and analyze a quasi-phase-matching scheme for nonlinear optical frequency conversion where

the spatial modulation of mode intensity in coupled parallel waveguides provides the required modulation in the

generation of the frequency conversion signal, instead of a variation of any material parameter or propagation

constant. We analyze this coupling-length phase-matching (CLPM) scheme both for second-order frequency

conversion, such as second harmonic generation or difference-frequency generation, as well as for third-order

four-wave mixing processes, for which we consider the example of generating a longer wavelength by third-order

nonlinear mixing of two shorter wavelength waves. Numerous phase-matching conditions are identified in each

case. We show that the maximum photon conversion efficiencies reached after an optimum propagation length

are always higher than half those obtained for perfect phase matching in a single waveguide, with nearly 100%

photon conversion possible for several of the CLPM conditions we studied.
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I. INTRODUCTION

The phase-matched interaction of optical waves that is

required for efficient nonlinear optical frequency conversion

[1] can be achieved through a spatial modulation of the source

nonlinear optical polarization responsible for radiating the

generated wave. The most common implementation of such

a “quasi-phase-matching” scheme involves spatial changes

of the nonlinear optical response [1,2], as can be obtained,

for instance, by periodically poling ferroelectric nonlinear

crystals. Alternative approaches involve the modulation of

the geometry of a nonlinear waveguide in order to spatially

modulate the effective refractive index or the propagation

constant of the interacting waves [3–6].

An interesting but less known alternative for quasi-phase-

matching consists in modulating the intensities of the inter-

acting waves with individual spatial periodicities, as proposed

earlier for second harmonic generation in coupled waveguides

[7–10].

Such an intensity modulation can be easily obtained if the

interacting waves are made to travel along parallel waveguides

that allow the light to couple from one waveguide to the other.

Figure 1 shows a schematic representation of this idea. The

coupling lengths between the optical modes are then responsi-

ble for an effective coupling length phase-matching (CLPM)

process. The coupling constants between the waveguides play

the role of “coupling wave vectors” that can compensate

any mismatch between the sum of the wave vectors of the

fundamental waves and that of the generated wave. In the

present work we give a systematic treatment of CLPM in two

coupled parallel waveguides in the absence of any modulation

of linear or nonlinear optical properties. We extend previous

work [7–11] by developing a general framework for CLPM,

and we provide a large set of phase-matching conditions for

sum-frequency generation, difference-frequency generation,

and one case of frequency conversion via third-order nonlinear

optical effects. The latter is particularly interesting for use in

multicore fibers. In addition, we will also present an analysis

of the maximum photon-conversion efficiency that can be

reached after an optimum interaction length for the various

possible CLPM configurations.

Below we introduce the CLPM concept starting with

second-order frequency conversion. We discuss the phase-

matching conditions for the interaction of three waves with

different frequencies ω3 > ω2 > ω1, for application such as

optical parametric generation or the generation of a new

frequency from two strong pump waves. In particular, we

will discuss the CLPM conditions for sum-frequency genera-

tion [(SFG) ω3 = ω1 + ω2], difference-frequency generation

[(DFG) ω1 = ω3 − ω2], as well as second harmonic generation

[(SHG) ω3 = 2ω1 = 2ω2] as a special case. This is then
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FIG. 1. (Color online) Schematic diagram of the principle of

coupling-length phase-matching (CLPM). The two waveguides a and

b are assumed to be identical. The pump beams (at frequency ω1 and

ω2 in this example) are injected in waveguide a. The evanescent

coupling between the two waveguides causes the power of the

pump waves to oscillate between the two waveguides (schematically

represented in this sketch by the two lines meandering between

the two waveguides). Under the appropriate CLPM condition it is

possible to arrange for the signal wave at frequency ω3 that is

created by nonlinear optical interaction of the two pump waves to

grow constructively with propagation length, in both waveguides.

The qualitative depiction in this figure corresponds to the case of

sum-frequency generation (ω3 = ω1 + ω2) that will be presented later

in Fig. 2.
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followed by the derivation of the CLPM conditions for one

useful case of frequency conversion based on the third-

order nonlinear optical response: the generation of a longer

wavelength (infrared) radiation at a frequency ω1 = 2ω2 − ω3

from two shorter wavelength (visible or near infrared) waves at

frequencies ω2 and ω3. For each of the above CLPM processes

we give analytical expressions for the growth of the amplitude

of the generated wave in the undepleted pump regime. We also

discuss pump depletion, the corresponding saturation regime,

and the limits to the efficiency of nonlinear optical frequency

conversion when using CLPM.

We use the SI system throughout this work. We define scalar

complex amplitudes E(ω)(z) for waves traveling in the z direc-

tion in such a way that the optical electric field is given by the

real part of E(ω)(x,y,z,t) = E(ω)(z)u(ω)(x,y) exp[i(kz − ωt)],

where the normalized function u(ω) describes the transversal

field distribution (waveguide mode) at the frequency ω. While

in the ideal case all waves propagate in the fundamental TE or

TM waveguide mode, the treatment below holds also without

loss of generality if one or more waves are in a higher order

mode, which might be useful in some cases in order to limit

the phase mismatch.

The nonlinear optical response of matter is described by

second- and third-order susceptibilities [12]. As an example,

given waves with amplitudes E(ω1) and E(ω2) at a certain

coordinate in a nonlinear optical material, the second-order

nonlinear optical polarization that radiates a sum-frequency

wave has, at the same coordinate, the amplitude,

P
(ω3)
NL = ǫ0χ

(2)
eff E

(ω1)E(ω2), (1)

where ǫ0 is the electric constant and χ
(2)
eff (−ω3,ω2,ω1) is

the effective second-order susceptibility that depends on the

polarization of the interacting waves with respect to the third-

rank tensor of the second-order nonlinear optical susceptibility.

For the degenerate case of second harmonic generation (SHG)

one has

P
(2ω)
NL = 1

2
ǫ0χ

(2)
eff [E(ω)]2. (2)

The third-order nonlinear optical polarization responsible

for the third-order difference-frequency process we are inter-

ested in is

P
(ω1)
NL = 3

4
ǫ0χ

(3)
eff [E(ω2)]2E(ω3)∗, (3)

where the superscript asterisk stands for complex conjugation

and χ
(3)
eff (−ω1,ω2,ω2, − ω3) is the effective third-order suscep-

tibility.

II. COUPLED WAVE ANALYSIS

We consider the case of three waves at frequencies ω1, ω2,

and ω3 = ω1 + ω2 interacting with each other via the second-

order nonlinear optical susceptibility. The interaction occurs

within two waveguides that are identical and parallel to each

other. We describe waveguide modes with complex amplitudes

E(a,ωi )(z) and E(b,ωi )(z) that propagate in waveguide a and

waveguide b and can couple from one waveguide to the other.

We also introduce the amplitudes

A
(a,b)
i (z) =

√

ni

ωi

E(a,b,ωi )(z), (4)

where ni is the effective refractive index for a wave with

frequency ωi . These amplitudes are proportional to the square

root of the photon flux in waveguides a and b, respectively.

Later we will present graphs of the evolution of these

amplitudes as the interacting waves propagate, which will

allow one to directly visualize the photon flux and to easily

evaluate conversion efficiencies based on photon numbers.

This is useful because such photon conversion efficiencies

are independent of the specific frequencies ω1, ω2, and ω3 of

the three interacting waves.

The three coupled wave equations for the evolution of the

mode amplitudes in waveguide a, expressed in terms of the

amplitudes A
(a)
i and A

(b)
i , are

∂

∂z
A

(a)
3 = idA

(a)
1 A

(a)
2 e−i�k z + iκ3A

(b)
3 , (5)

∂

∂z
A

(a)
2 = idA

(a)
3 A

(a)
1

∗
ei�k z + iκ2A

(b)
2 , (6)

∂

∂z
A

(a)
1 = idA

(a)
3 A

(a)
2

∗
ei�k z + iκ1A

(b)
1 . (7)

Three equivalent equations hold for waveguide b. They can

be obtained by permuting the superscripts (a) and (b) in

each of the above equations. Here, �k = k3 − k2 − k1 is

the wave-vector mismatch of the longitudinal propagation

constants of the modes at the three wavelengths. The quantities

κi = κ(ωi) are constants describing the coupling of the given

wave between the two waveguides [13]. We do not allow the

κi to depend on the wave amplitudes, a possible higher order

correction that we neglect in the present work. In the above

equations, the effective nonlinear optical coupling constant

between the interacting waves is given by

d =
χ

(2)
eff

c

√

ω1ω2ω3

n1n2n3

S, (8)

and depends on the effective nonlinear optical susceptibility

χ
(2)
eff introduced above and on the overlap integral S between

the waveguide modes for each frequency,

S =
∫∫ +∞

−∞
u(ω1)(x,y)u(ω2)(x,y)u(ω3)(x,y)f (x,y)dxdy, (9)

where f (x,y) is a function that describes the region where

the nonlinearity is active (|f (x,y)| � 1) and the u(ωi )(x,y)

describe the transverse mode profile of the interacting waves.

We recall that the degenerate limit of Eqs. (5)–(7) that

corresponds to second harmonic generation is obtained by

substituting ω1 = ω2 = ω and ω3 = 2ω in the coupled-wave

equations while at the same time using a nonlinear optical

constant d/2, i.e., half that obtained by doing the same

substitution in (8). This corresponds to the degeneracy factor

of one-half that must appear in (2) when there is only one

distinguishable input wave for SHG.

A. Sum-frequency generation

The case of sum-frequency generation is obtained when

wave 3 has zero amplitude for z = 0 and energy is transferred

to it from the two other waves. We find an analytical

solution under the “undepleted pump approximation,” where

we assume that the conversion efficiency remains small, so

043816-2
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that the two “pump” waves are not depleted by the nonlinear

optical interaction. We also assume that the two pump waves,

with amplitudes A1,0 and A2,0, are both injected in waveguide a

at z = 0, as shown in Fig. 1. This corresponds to the easiest and

most likely practical experimental implementation. Injection

of both waves in both waveguides is possible in principle,

but this would require one to control the relative phase of

the injected waves at each wavelength because the overall

effect will depend on this phase. Under the above conditions,

Eqs. (6) and (7) for the two pump waves can be solved in

a straightforward way to obtain A
(a)
i (z) = Ai,0 cos(κiz) and

A
(b)
i (z) = iAi,0 sin(κiz) (i = 1,2). Inserting these expressions

into (5) for each waveguide leads to the coupled equations

that describe the amplitude A3(z) in waveguides a and b.

Conversion of trigonometric functions to exponential notation

delivers

∂

∂z
A

(a)
3 =

id

4
[ei(κ1+κ2)z + ei(κ1−κ2)z + e−i(κ1−κ2)z

+ e−i(κ1+κ2)z]e−i�kzA1,0A2,0 + iκ3A
(b)
3 , (10)

∂

∂z
A

(b)
3 =

id

4
[ei(κ1+κ2)z − ei(κ1−κ2)z − e−i(κ1−κ2)z

+ e−i(κ1+κ2)z]e−i�kzA1,0A2,0 + iκ3A
(a)
3 . (11)

These equations can be solved by taking the derivative with

respect to z of the first equation, and substituting the second

equation to obtain an equation for A
(a)
3 (z) that contains a sum

over several exponential factors, multiplied by different linear

combinations of the coupling constants and �k. After some

lengthy algebra one obtains an analytical expression for the

amplitude of the sum-frequency wave in waveguide a that can

be written as

A
(a)
3 (z) =

d

4
A1,0A2,0 ξSF(z). (12)

This can be rewritten in terms of the electric fields by

substituting (4) and (8), to obtain

E(a,ω3)(z) =
χ

(2)
eff S ω3

4cn3

E
(a,ω1)
0 E

(a,ω2)
0 ξSF(z). (13)

The complex function ξSF(z) describes the growth with

propagation length of the generated sum-frequency wave and

is given by

ξSF(z) =
2(κ3 − �k)e−iκ3z

K1K3

−
2(κ3 + �k)eiκ3z

K2K4

+
e−i(κ3−K1)z

K1

+
ei(κ3+K2)z

K2

−
e−i(κ3+K3)z

K3

−
ei(κ3−K4)z

K4

, (14)

with

K1 = κ1 − κ2 + κ3 − �k, (15)

K2 = κ1 + κ2 − κ3 − �k, (16)

K3 = κ1 − κ2 − κ3 + �k, (17)

K4 = κ1 + κ2 + κ3 + �k. (18)

Equation (14) has several interesting properties. The first

thing to note is that it is a sum of six terms with different

oscillatory behavior. In general, such a sum will not lead

to a constructive buildup of A
(a)
3 (z) for growing z. This is

the normal case in a non-phase-matched situation. However,

when one of the constants Ki (i = 1, . . . ,4) approaches zero,

then (for general values of the coupling constants) exactly

two of the six terms in (14) diverge, dominating over the

others. Interestingly, their divergence is such that their sum

always remains finite at finite distances. The result of taking

the limit of one Ki → 0 for large z is that the other four terms

remain bounded while the sum of the two diverging terms

grows linearly with z. The conditions Ki = 0 (i = 1, . . . ,4)

give therefore four coupling-length phase-matching (CLPM)

conditions that for a general choice of coupling constants

always result, for large propagation distances, in A
(a)
3 (z) →

izdA1,0A2,0 exp(±iκ3z)/4, where the negative sign in the

exponent belongs to K1 = 0 and K3 = 0, and the positive sign

belongs to K2 = 0 and K4 = 0 (these four CLPM conditions

are listed in the first four rows of Table I). An example of

a SFG process is shown in Fig. 2, which plots the growth

of the sum-frequency signal for the case where the CLPM

TABLE I. CLPM Conditions for SFG and DFG in two coupled waveguides. The CLPM column lists which of the Ki verify the Ki = 0

condition and the resulting phase-matching conditions are summarized in the following column. The initial growth in the undepleted regime of

the sum-frequency (difference-frequency) amplitude of the wave at ω3 (ω1) in the limit where z → ∞ is given by Eq. (13) [Eq. (19)], with the

factor ξSF(z) of Eq. (14) [ξDF(z) of Eq. (20)] tending to the propagation distance z multiplied by the values given in the third and fifth columns.

The quantities ηSF
max and ηDF

max give the maximum photon-conversion efficiencies in the depleted regime for each CLPM condition. Condition 9

corresponds to conventional phase matching in a single waveguide (�k = 0).

CLPM rule Effective condition lim
z→∞

(ξSF/z) ηSF
max(%) lim

z→∞
(ξDF/z) ηDF

max(%)

1 K1 = 0 �k = +κ1 − κ2 + κ3 ie−iκ3z ∼50 ie−iκ1z ∼50

2 K2 = 0 �k = +κ1 + κ2 − κ3 ieiκ3z ∼50 ie−iκ1z ∼50

3 K3 = 0 �k = −κ1 + κ2 + κ3 ie−iκ3z ∼50 ieiκ1z ∼50

4 K4 = 0 �k = −κ1 − κ2 − κ3 ieiκ3z ∼50 ieiκ1z ∼50

5 K1 = K2 = 0 �k = κ1, κ2 = κ3 2i cos(κ3z) ∼50 2ie−iκ1z ∼100

6 K1 = K3 = 0 �k = κ3, κ1 = κ2 2ie−iκ3z ∼100 2i cos(κ1z) ∼50

7 K2 = K3 = 0 �k = κ2, κ1 = κ3 2i cos(κ3z) ∼50 2i cos(κ1z) ∼100

8 K1 = K2 = K3 = 0 �k = κ1 = κ2 = κ3 3i cos(κ3z) + sin(κ3z) ∼86 3i cos(κ1z) + sin(κ1z) ∼98

9 K1 = K2 = K3 = K4 = 0 �k = κ1 = κ2 = κ3 = 0 4i 100 4i 100
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FIG. 2. (Color online) Spatial evolution of the absolute values of

the wave amplitudes in the case of SFG under the CLPM condition

K2 = 0 in parallel waveguides of length L. All solid curves are

obtained in the pump depletion regime by a numerical solution

of Eqs. (5)–(7) and the corresponding equations for waveguide b.

Panels (a) and (b) give the amplitudes, in waveguide a, of the

pump waves at frequency ω1 and ω2, respectively. The generated

sum-frequency wave amplitude is shown for both waveguides in

(c) and (d), respectively. The amplitudes are normalized to Ã =
|A(a)

1,0A
(a)
2,0|

1/2
and the nonlinearity constant used for the plots is

given by Ld = 2/Ã, with L the length of the waveguide. The other

parameters are κ1L = 160, κ2L = 80, κ3L = 40, and �kL = 200.

The nondepleted analytical solution (12) corresponds to the initial

part at short distances and is given explicitly in (c) as a dotted black

curve.

condition K2 = κ1 + κ2 − κ3 − �k = 0 is valid. The curves

are obtained in the pump depletion regime by numerically

solving Eqs. (5)–(7) together with the corresponding equations

for waveguide b. The initial linear growth of the envelope of

the wave at frequency ω3 seen in Figs. 2(c) and 2(d) reflects

the analytical solution (13) valid in the undepleted pump

regime. It can be seen that this analytical solution describes the

conversion process very well in the weak conversion regime.

As a rule of thumb, a departure from the analytic behavior

approximately takes place for propagation distances exceeding

the point where roughly 20% of the maximum convertible

photons have been frequency converted. This is true for most

CLPM configurations discussed in this work. We note also that

in the case depicted in Fig. 2 both waveguides carry essentially

the same sum-frequency intensity. This is no longer the case for

some other interesting CLPM conditions that we will discuss

later.

In summary, for a general choice of coupling constants a

CLPM condition Ki = 0 causes two of the six terms in (14)

to become dominant and to combine constructively to give a

signal wave intensity that grows quadratically with distance.

The effective nonlinearity that describes this growth in each

waveguide is χ
(2)
eff /4, which is smaller than the 2χ

(2)
eff /π one gets

for conventional quasi-phase-matching in a single waveguide

through the periodic inversion of the sign of the nonlinearity.

However, as seen in Figs. 2(c) and 2(d), in the above CLPM

cases both waveguides carry the same power, and therefore

the total sum-frequency power has to be multiplied by two, as

discussed in more detail later.

Table I gives the various CLPM cases that are obtained

under the condition that all coupling constants κi between

the two waveguides are positive. For each case, we give the

limiting value at large z for the complex amplitude of the

signal wave. The four simplest phase-matching conditions

discussed above correspond to lines 1–4 in Table I. It must

be noted that these conditions remain valid if one or two of

the coupling constants κi vanish. For instance, the condition

in line 2 keeps its validity if �k = κ1 + κ2 and κ3 = 0, which

gives lim
z→∞

(ξSF/z) = i and lim
z→∞

(ξDF/z) = ie−iκ1z. The latter

limit will be discussed below in connection with the case of

difference-frequency generation.

Since evanescent coupling is expected to be stronger at

the longer than at the shorter wavelengths, one may expect

in general that κ3 < κ2 < κ1. Among the CLPM conditions

1–4, the second one (K2 = 0) appears therefore as the easier

to implement because the coupling constants κ1 and κ2 sum

up with the same sign to compensate for larger �k’s. The

CLPM condition 4 is interesting when �k is negative, which

may be the case for nonlinear processes involving polarization

conversion.

We now discuss the effect of having more than one

vanishing constant Ki in (14). The corresponding CLPM

conditions are given in rows 5–8 of Table I. In these cases

more than two of the six terms in (14) become resonant

and the solution for A
(a)
3 (z) can display additional interesting

behaviors. As an example, the interference between terms

with different exponential factors in (14) can lead to a signal

amplitude that, while still growing linearly with distance, is

accompanied by rapid oscillation of the intensity between

the two waveguides. This is, for example, the case when

κ2 = κ3, which for κ1 = �k leads to both K1 = 0 and K2 = 0

(row 5 in Table I), and to the interference of four terms in

(14). As shown in Fig. 3, this results in an amplitude of

the growing sum-frequency wave that is modulated by an

oscillatory term 2 cos(κ3z). This is completely different from

the case depicted in Fig. 2, where the generated wave grew

hand-in-hand in both waveguides. In contrast, for the case of

Fig. 3, the generated wave intensity oscillates between the two

waveguides, synchronously with the pump wave at ω2. The

same result is obtained in the symmetric case where κ1 = κ3

and κ2 = �k (row 7). On the other hand, the choice κ1 = κ2

and κ3 = �k, which corresponds to K1 = 0 and K3 = 0 (row

6), leads to constructive interference of three terms in (14)

that all oscillate in phase, and generates a SFG amplitude

043816-4
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FIG. 3. (Color online) Spatial evolution of the absolute values of

the SFG wave amplitudes under the CLPM condition K1 = K2 = 0

(row 5 in Table I) in parallel waveguides of length L. The curves

are obtained as in Fig. 2 and for the same nonlinearity. Panels (a)

and (b) give the amplitudes, in waveguide a, of the pump waves

at frequency ω1 and ω2, respectively. The generated sum-frequency

wave amplitude is shown for both waveguides in (c) and (d),

respectively. The solid curves are all in the pump depletion regime.

The black dotted curve in (c) corresponds to the analytic undepleted

regime according to (12) and (14). For these plots Ã = |A(a)
1,0A

(a)
2,0|

1/2
,

�kL = κ1L = 200, κ2L = κ3L = 60, and LdÃ = 2.

that grows as A
(a)
3 (z) = zdA1A2 exp(−iκ3z)/2. It is interesting

to note that in this last case it is the two pump waves that

have the same coupling constants and oscillate synchronously

between the two waveguides. Because of this, both pump

waves keep oscillating between the two waveguides while they

are depleted in amplitude and create sum-frequency waves

that grow hand-in-hand in both waveguides, a process that

can go on until both pump waves are almost depleted to zero

and almost complete 100% conversion of the fundamental

photons to the sum-frequency wave is reached. This is the same

behavior observed for the case of SHG, where the best CLPM

phase-matching condition will be discussed below (first row of

Table II). In contrast, for the case of row 5 in Table I (depicted

in Fig. 3), the two pump waves have different coupling

constants, their oscillation between the two waveguides is not

synchronized, and the maximum photon conversion efficiency

is limited to 50% (fourth column of Table I). Please see later

for a further discussion of photon-conversion efficiencies.

For completeness, Table I lists all possible CLPM situa-

tions, including those that may at first sight seem impossible

to realize because they require several coupling constants to

be equal to each other. However, one can envisage devices

where the oscillation of two of the interacting waves between

the two waveguides remains essentially synchronized over the

available length of the waveguides, which would then corre-

spond to an effective κi = κj situation. Also, the derived cases

with an extra condition κi = 0 for one or more of the coupling

constants can be experimentally approximated if the length of

the waveguides is less than the corresponding coupling length.

We note that the CLPM condition listed in line 8 of Table I

corresponds to a fully degenerate case and we do not expect it

to ever become important in practice. It gives rise to an oscil-

latory phenomenon where the sum-frequency amplitude in a

waveguide still grows linearly with propagation distance z but

rapidly oscillates (with spatial frequency 2κ3) by ±50% around

its growing mean value. Finally, it has to be noted that the last

condition in row 9 of Table I, even though it arises naturally

from our formalism, is not a CLPM condition in the strict sense.

It corresponds to the limiting case of perfect conventional

phase matching in a single waveguide, with no coupling to the

other waveguide for any of the interacting waves.

B. Second harmonic generation

Second harmonic generation corresponds to the limit of

sum-frequency generation for ω1 = ω2 and κ1 = κ2 with the

effective nonlinear optical coupling constant (8) reduced by

a factor of two to take into account degeneracy factors. In

this limit K1 = −K3 = κ3 − �k and (14) becomes the sum

of five terms. The number of CLPM conditions is reduced,

and those that remain are listed in Table II. We first note

that the CLPM condition in line 2 has the same form as

the usual quasi-phase-matching condition with the coupling

constants playing the role of wave vectors. Nevertheless, the

most interesting condition is the one in the first row of the

table, which is valid for all values of κ1 �= κ3 and requires

tuning of only the coupling constant for the generated wave.

The corresponding growth of the second harmonic wave

amplitude is illustrated in Fig. 4 for two different values

of κ1, which only influences the small spatially transient

oscillations but not the general slope. The CLPM condition in

the first row leads to the most efficient frequency conversion

scheme. In this case the effective nonlinearity that describes

the second harmonic growth is χ
(3)
eff /2. This is the same

value obtained for bulk quasi-phase-matching when assuming

a sinusoidally modulated nonlinearity and leads to a signal

intensity four times larger than any other CLPM conditions

with nonoscillatory growth of the second harmonic wave.

It is interesting to note that, in the present case, the second

harmonic field amplitude at the output of each waveguide is

half the one that one would have for perfect phase matching in a

single waveguide of equal length, and therefore the intensity is

four times less. However, the waves out of the two waveguides,

each with an amplitude A = A(a) = A(b) can be coherently

combined into a single mode with amplitude (A(a) + A(b))/
√

2,

for instance, by an inverse Y junction (half Mach-Zehnder).

In this way one can ultimately obtain an intensity in a single

coherent output beam that is equal to the sum of the intensities
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TABLE II. CLPM conditions for SHG in two coupled waveguides. Lines are numbered in the same way as for Table I to allow for easy

comparison. The last column gives the maximum photon-conversion efficiency ηSH
max in the depleted regime.

CLPM rule Effective condition lim
z→∞

(ξSF/z) ηSH
max(%)

1,3,6 K1 = K3 = 0 �k = κ3 2ie−iκ3z ∼100

2 K2 = 0 �k = 2κ1 − κ3 ieiκ3z ∼50

4 K4 = 0 �k = −2κ1 − κ3 ieiκ3z ∼50

2′,4′ K2 or K4 = 0, κ3 = 0 �k = ±2κ1, κ3 = 0 i ∼50

5,7,8 K1 = K2 = K3 = 0 �k = κ1 = κ3 3i cos(κ3z) + sin(κ3z) ∼86

in the two waveguides. The total SHG power is then given by an

effective nonlinearity that is one-half that achieved for exact

phase matching. This is better than the factor 4/π2 ≈ 0.41

achievable by conventional quasi-phase-matching using a

periodical square-wave modulation of the nonlinearity. The

possibility of coherently combining the modes in the two

waveguides exists for all CLPM scenarios discussed in this

work and would be useful for all cases where the generated

waves grow in both waveguides. As an example, coherent

combination of the generated modes could be employed for

the case depicted in Fig. 2—where the generated waves

grows hand-in-hand in both waveguides—while it would be

unnecessary for the case shown in in Fig. 3—where the

generated wave oscillates between the two waveguides and can

thus be fully accessed at the end of one of the two waveguides.

Going back to Table II, we would like to mention that the

conditions 2′ and 4′ of the fourth row are not pure CLPM

conditions, since they have been expanded by the additional

rule requiring κ3 = 0. We have added them explicitly here

since this case can be easily understood in terms of conven-

tional quasi-phase-matching where the second harmonic wave

stays in one waveguide while the nonlinear polarization that

generates it is modulated by the fundamental wave oscillating

between the two waveguides. It is a less interesting case than

the one discussed above because it is only valid when the
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FIG. 4. (Color online) Growth of the second-harmonic signal

amplitude for the optimum CLPM condition (first line of Table II)

and for the same effective nonlinearity (Ld = 2/|A(a)
1,0|) as in Figs. 2

and 3. Both curves are for �kL = κ3L = 40; the solid red curve is

for κ1L(= κ2L) = 120, and the dotted blue curve is for κ1L = 70.

The general growth behavior is independent of κ1, which only affects

the small oscillations shown enlarged in the inset.

second harmonic has zero coupling between the waveguides,

which may be too stringent a requirement. As soon as there

is some coupling of the second harmonic wave, then this

condition goes over smoothly to the condition in line 2 that we

already discussed above. The CLPM condition in row 4 would

be interesting in case of anomalous dispersion or birefringence

such that �k < 0, corresponding to the case where the

effective refractive index for the second harmonic wave is

smaller than that for the fundamental wave. The last line in the

table is the degenerate case. As for SFG, this case leads to a

strong spatial oscillation in the generated signal wave.

C. Difference-frequency generation

We now consider the case of difference-frequency gener-

ation (DFG), where a wave is generated with a frequency

corresponding to the difference of the frequencies of two

interacting waves. In this case the coupled wave equations are

the same as Eqs. (5)–(7) but the initial condition is different.

We now start with the two waves ω3 and ω2 injected in one

waveguide, and solve for the z dependence of the wave at

the lower frequency ω1 = ω3 − ω2, which initially has zero

amplitude, in the undepleted pump approximation. Following

the same procedure described above for SFG one finds

E(a,ω1)(z) =
χ

(2)
eff ω1

4cn1

E
(a,ω3)
0

[

E
(a,ω2)
0

]∗
ξDF(z), (19)

where

ξDF(z) = −
2(κ1 − �k)e−iκ1z

K1K2

+
2(κ1 + �k)eiκ1z

K3K4

+
e−i(κ1−K1)z

K1

+
e−i(κ1−K2)z

K2

−
ei(κ1−K3)z

K3

−
ei(κ1−K4)z

K4

. (20)

The values assumed by ξDF for the CLPM conditions

in the case of DFG are listed in the second-to-last column

of Table I. Note that in the SFG case the generated wave

oscillates fully between the two waveguides for line 5 but not

for line 6, while it is the other way around for DFG. This is

because we have chosen the wave at ω1 as the generated wave

for DFG. Again, the condition in line 2 (K2 = 0) appears as

the easiest to implement. Condition 5 leads to an optimum

conversion but might be achievable only if the wavelengths

ω3 and ω2 are fairly close to each other. The corresponding

evolution of the normalized wave amplitudes is illustrated

in Fig. 5. It is evident that in this case essentially all the

photons at the frequency ω3 can be ultimately converted to
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FIG. 5. (Color online) Spatial evolution of the absolute values of

the DFG wave amplitudes under the CLPM condition K1 = K2 = 0

(row 5 in Table I) in parallel waveguides of length L. The curves

are obtained as in Fig. 2 and for the same nonlinearity. Panels (a)

and (b) give the amplitudes, in waveguide a, of the pump waves at

frequency ω3 and ω2, respectively. The amplitude of the generated

difference-frequency wave is shown for both waveguides in (c) and

(d), respectively. The solid curves are all in the pump depletion

regime. The black dotted curve in (c) corresponds to the analytical

solution in the undepleted regime according to Eqs. (19) and (20). For

these plots Ã ≡ |A(a)
3,0A

(a)
2,0|1/2, �kL = κ1L = 200, κ2L = κ3L = 60,

and LdÃ = 2.

photons at frequency ω1, distributed equally between the two

waveguides, which leads to a maximum photon-conversion

efficiency of ∼100% (see the discussion of conversion

efficiency later in this article). The undepleted solution given

by (19) and (20) is still satisfactory up to about half the

distance at which full depletion of the pump occurs.

We conclude this discussion of second-order effects by not-

ing that, while we have only explicitly treated the cases of SFG

and DFG, the CLPM conditions in Table I are valid in general

for any second-order three-wave interaction, and they can also

be used to realize phase-matched optical parametric generation

or optical parametric amplification in two coupled waveguides.

D. Frequency down-conversion by third-order nonlinear optics

We now analyze the use of a third-order nonlinear optical

material to generate a longer wavelength wave by the third-

order interaction of two waves with shorter wavelengths. Here,

two waves at frequencies ω3 > ω2 generate a wave at fre-

quency ω1 = 2ω2 − ω3 through the third-order susceptibility

χ (3)(−ω1,ω2,ω2, − ω3). The third-order polarization created

by such a process is given by (3) and, in the same notation that

we used above, the coupled-wave equations that describe the

third-order interaction between these three waves are

∂

∂z
A

(a)
3 = iχA

(a)
1

∗[
A

(a)
2

]2
e−i�k z + iκ3A

(b)
3 , (21)

∂

∂z
A

(a)
2 = 2 iχA

(a)
1 A

(a)
2

∗
A

(a)
3 ei�k z + iκ2A

(b)
2 , (22)

∂

∂z
A

(a)
1 = iχ

[

A
(a)
2

]2
A

(a)
3

∗
e−i�k z + iκ1A

(b)
1 , (23)

where �k = k3 − 2k2 + k1 is the wave-vector mismatch,

χ =
3

8

χ
(3)
eff

c

√

ω1ω
2
2ω3

n1n
2
2n3

S (24)

is the effective nonlinear optical coupling constant for this

third-order interaction, and S is an overlap integral similar

to (9) but involving one additional term. For the process

of interest here, the wave at frequency ω1 is initially zero

and grows because of energy transfer from the other two

waves. We again assume that the energy in the two pump

waves is initially injected in one waveguide, and follow the

same procedure outlined earlier for the case of second-order

nonlinearities to find the z dependence of the signal wave in the

undepleted pump approximation. The two coupled equations

for the amplitudes A
(a)
1 and A

(b)
1 are

∂

∂z
A

(a)
1 =

iχ

8
e−i(2κ2+κ3)z(ei2κ2z + 1)2(ei2κ3z + 1)

× e−i�kzA2
2,0A3,0 + iκ1A

(b)
1 , (25)

∂

∂z
A

(b)
1 = −

iχ

8
e−i(2κ2+κ3)z(ei2κ2z − 1)2(ei2κ3z − 1)

× e−i�kzA2
2,0A3,0 + iκ1A

(a)
1 , (26)

where sine and cosine functions have again been expressed in

exponential form. The solution for A
(a)
1 (z) is

A
(a)
1 (z) =

χ

8
A2

2,0A
∗
3,0 ξ (3)(z). (27)

After substituting (4) and (24) one finds

E(a,ω1)(z) =
3χ

(3)
eff ω1

64cn1

[

E
(a,ω2)
0

]2[

E
(a,ω3)
0

]∗
ξ (3)(z), (28)

with

ξ (3)(z) =
κ2

1 − 2κ2
2 + κ1κ3 + (2κ1 + κ3)�k + �k2

K1K3K5

4eiκ1z

−
κ2

1 − 2κ2
2 + κ1κ3 − (2κ1 + κ3)�k + �k2

K2K4K6

4e−iκ1z

−
2ei(κ1−K1)z

K1

+
2e−i(κ1−K2)z

K2

−
ei(κ1−K3)z

K3

+
e−i(κ1−K4)z

K4

−
ei(κ1−K5)z

K5

+
e−i(κ1−K6)z

K6

, (29)
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and

K1 = κ1 − κ3 + �k, (30)

K2 = κ1 − κ3 − �k, (31)

K3 = κ1 − 2κ2 + κ3 + �k, (32)

K4 = κ1 − 2κ2 + κ3 − �k, (33)

K5 = κ1 + 2κ2 + κ3 + �k, (34)

K6 = κ1 + 2κ2 + κ3 − �k. (35)

Here we see that the third-order interaction can be de-

scribed with the exact same methodology we followed for

the second-order interaction. The CLPM conditions for the

third-order interaction are obtained from Ki = 0, i = 1, . . . ,6

as well as a combination of these cases. Again one finds

several possibilities. This time, though, the situation is more

symmetric and in view of this symmetry it is convenient to

collect the above quantities pairwise by defining

Kα = κ1 − κ3 ± �k, (36)

Kβ = κ1 − 2κ2 + κ3 ± �k, (37)

Kγ = κ1 + 2κ2 + κ3 ± �k. (38)

Inspection of Eq. (29) delivers the CLPM conditions summa-

rized in Table III, which are expressed using these quantities.

Note that a condition such as Kα = 0 means that either K1 = 0

or K2 = 0, but not both. Table III shows that the meaning

of all CLPM conditions can be essentially summarized as

κ1 − κ3 = ±�k and κ1 ± 2κ2 + κ3 = ±�k, which are the

cases listed in rows 1–3, corresponding to the conditions when

exactly two terms in (29) are dominant. The CLPM conditions

in rows 4–6 can all be derived from those in rows 1–3 in special

cases where some of the coupling constants are degenerate or

equal to zero. Note that adding a third equality in the first

column (Kα = 0,Kβ = 0,Kγ = 0) does not lead to any more

CLPM conditions in addition to those already listed in the

table. Also, as was the case for the second-order processes, the

condition in row 7 is not a true CLPM condition because it

corresponds to conventional exact phase matching in a single

waveguide.

Among the CLPM conditions listed in Table III, the one

in the first line, involving K1 or K2, is the most generally

interesting. It is independent of the coupling constant for the ω2

wave and delivers a steady growth of the amplitude of the signal

wave with distance to reach a photon-conversion efficiency of

∼100% at an appropriate propagation length (see next section

for a discussion of photon-conversion efficiencies). Figure 6

visualizes this situation for the case where K2 = 0. Again,

the analytical solution according to (28) and (29) for the

undepleted case follows well the exact numerical solution until

pump depletion starts becoming significant.

The other primary CLPM conditions (lines 2 and 3 of

Table III) depend on all three coupling constants and deliver

less signal intensity. The degenerate limiting cases for κ3 =
κ2 = 0 or κ1 = κ2 = 0 given in row 5 deliver the best efficien-

cies. While the case κ1 = κ2 = 0 does not appear practically

realistic, the one requiring κ3 = κ2 = 0 is conceivable. In fact,

for a large difference in wavelength between short-wavelength

pump waves at ω3 and ω2 and long-wavelength signal wave

at ω1 one could achieve the limit κ1 ≫ κ2,κ3, which may

make the coupling length for the two short-wavelength pump

waves longer than the waveguide length necessary to generate

sufficient signal power. Finally, we note that the only solution

for this example where the generated wave oscillates between

the waveguides is the one for the second case of row 4

in Table III. However, also in this case the related CLPM

condition is unlikely to be realized in practice as it requires the

equality of the coupling constants for two potentially rather

distant wavelengths.

III. ADDITIONAL DISCUSSION

In addition to the derivations of CLPM conditions and

effective nonlinearity that we presented in the previous

sections, the nature of the CLPM process also necessitates

a deeper discussion of the ultimate efficiency of the nonlinear

optical frequency conversion at longer propagation lengths, for

which pump depletion occurs. This is important because a full

analysis based on the coupled-wave equations [Eqs. (5)–(7)] in

the two parallel waveguides shows that not all CLPM condi-

tions allow one to reach the maximum possible conversion

efficiency just by increasing the interaction length. As an

example, consider the SFG process shown in Fig. 2: The two

pump waves clearly trend towards a situation where half of

TABLE III. CLPM conditions for a third-order interaction generating a wave ω1 = 2ω2 − ω3 in two coupled waveguides. The maximum

photon-conversion efficiency η(3)
max in the depleted regime is also given.

CLPM rule Effective condition lim
z→∞

[ξ (3)/z] η(3)
max(%)

1 Kα = 0 ∓�k = κ1 − κ3 2ie±iκ1z ∼100

2 Kβ = 0 ∓�k = κ1 − 2κ2 + κ3 ie±iκ1z ∼50

3 Kγ = 0 ∓�k = κ1 + 2κ2 + κ3 ie±iκ1z ∼50

4 Kα = Kβ = 0

{

±�k = −κ1 + κ2, κ2 = κ3

±�k = κ2 − κ3, κ1 = κ2

3ie±iκ1z

ie∓iκ1z + 2i cos(κ1z)

∼80

∼86

5 Kα = Kγ = 0

{

±�k = κ1, κ2 = κ3 = 0

±�k = κ3, κ1 = κ2 = 0

4ie∓iκ1z

4i

∼100

∼100

6 Kβ = Kγ = 0

{

±�k = κ1 + κ3, κ2 = 0

±�k = 2κ2, κ1 = κ3 = 0

2ie∓iκ1z

2i

∼100

∼50

7 Several �k = κ1 = κ2 = κ3 = 0 8i 100
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FIG. 6. (Color online) Spatial evolution of the amplitudes of

the interacting waves for third-order frequency down-conversion,

ω1 = 2ω2 − ω3 under CLPM condition K2 = 0 (row 1 in Table III)

in parallel waveguides of length L. Panels (a) and (b) give the

amplitudes, in waveguide a, of the pump waves at frequency ω3

and ω2, respectively. The generated wave amplitude at the frequency

ω1 is shown for both waveguides in (c) and (d), respectively. The

solid curves are all in the pump depletion regime. The black dotted

curve in (c) corresponds to the analytical solution from (28) and

(29) in the undepleted regime. For these plots Ã ≡ (|A(a)
3,0||A

(a)
2,0|2)1/3,

�kL = 200, κ1L = 240, κ2L = 60, κ3L = 40, and LχÃ2 = 2. The

curves are normalized to the initial amplitude of the wave ω3 injected

in waveguide a.

each normalized amplitude (one-quarter of the initial number

of photons) is left in each one of the two waveguides. At

this point, only 50% of the initial number of photons is in

the sum-frequency wave, and by extending the calculations to

longer propagation lengths we have seen that after this ∼50%

conversion state is reached, further propagation leads to the

full re-creation of the two pump waves accompanied by the

depletion of the generated sum-frequency wave. This imposes

a maximum of ∼50% on the photon-conversion efficiency of

this process, a maximum that is not apparent from the CLPM

solution in the nondepleted wave approximation. In this section

we present the definitions of photon-conversion efficiency that

we reported in the previous tables, and discuss the maximum

efficiencies that can be reached in every CLPM configuration.

It is useful to first discuss the case of SHG. In an ideal

case of conventional phase matching in a single waveguide,

obtained, for example, using birefringence or the modulation
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FIG. 7. (Color online) Periodic behavior of second-harmonic

generation in the pump depletion regime. (a) Dependence of the

photon-conversion efficiency ηSH on propagation distance under the

CLPM condition in the first line of Table II (�k = κ3). (b) Evolution

of the corresponding total normalized pump wave photon intensity,

where Iω(z) ∝ |A(a)
1 (z)|2 + |A(b)

1 (z)|2 and Iω(z = 0) ∝ |A(a)
1 (0)|2. The

inset in (b) shows the photon intensity of the fundamental wave in each

individual waveguide around the point of maximum pump depletion.

The parameters are as in Fig. 4, �kL0 = κ3L0 = 40, κ1L0 = 120,

and L0d = 2/|A(a)
1,0|.

of the nonlinearity, the classical theory for SHG predicts

that 100% conversion efficiency is approached asymptotically

with propagation length following a tanh2 functional form

[1,12] and that ultimately only the second harmonic wave

remains. This corresponds to a photon-conversion efficiency

ηSH = 100%. In addition, the classical theory does not predict

any nonlinear back-conversion to the fundamental frequency

after this state has been reached, because the direction of

energy flow between the two interacting waves is determined

only by their respective phase shifts, which do not change

during propagation.

Figure 7 shows the propagation length dependence of

the photon-conversion efficiency, ηSH, for SHG in parallel

waveguides using the first CLPM case listed in Table II. In

this case, ηSH reaches essentially 100%, like in the case of an

individual uncoupled waveguide, or bulk crystal under perfect

phase matching, but a small portion of the fundamental wave

is left over. As propagation continues, the fundamental wave

is recreated again in full, depleting the SH wave back to zero,

and then the process starts again, creating the periodic behavior

shown in the figure, which is not predicted for standard phase-

matched SHG. It is interesting to note that the oscillations

observed for CLPM in coupled waveguides are similar—

even though they have a completely different origin—to the

behavior predicted by a quantum mechanical analysis of SHG

[14], where vacuum fluctuations and spontaneous emission

processes produce an accumulated phase shift between the

interacting waves that ultimately leads to the reversal of the

direction of energy flow between the two waves.

The periodic modulation of the frequency conversion

efficiency observed in the CLPM case [Fig. 7(a)] is due to the

fact that CLPM phase matching is achieved by compensating

043816-9



IVAN BIAGGIO, VIRGINIE CODA, AND GERMANO MONTEMEZZANI PHYSICAL REVIEW A 90, 043816 (2014)

the phase differences accumulated during propagation in a

waveguide with the phase differences accumulated because

of the fields oscillating between the two waveguides, which

makes the process also dependent on the distribution of

field amplitudes between the two waveguides. While the

analytical results we presented earlier show that the CLPM

conditions correspond to complete phase matching, pump

depletion can lead to a power distribution between the two

waveguides that does not support further conversion. Often,

this state is characterized by a pump wave becoming equally

distributed between the two waveguides. For the SHG example

discussed above, this has a negligible effect on the maximum

photon-conversion efficiency; but when the maximal ηSH ∼
100% is reached, there is still a small remnant fundamental

wave amplitude oscillating between the two waveguides. With

further propagation, this remnant wave then seeds a reverse

conversion process 2ω − ω → ω, which is also phase matched

and is described by the same CLPM condition and coupled

wave equations that lead to SHG conversion in the first

place. The (phase-matched) reverse process then “explodes,”

recreating the fundamental with almost 100% efficiency, and

the whole cycle repeats.

We find that all the CLPM phase-matching processes

studied in this work exhibit a periodic modulation of the

photon-conversion efficiency in the depleted pump regime;

in some cases the maximum efficiency observed is very close

to the ideal case for a given nonlinear optical process, in some

other cases it is not. To characterize the effectiveness of the

CLPM process we defined a photon-conversion efficiency for

all frequency conversion processes we considered. In all cases,

our initial condition was the practically interesting one of all

pump waves injected in one of the two waveguides, with

the generated wave starting at zero amplitude. We defined

the photon-conversion efficiencies as the number of photons

created in the generated wave (summing those found in each

waveguide) divided by the number of photons ideally expected

for 100% conversion in each nonlinear process. The maximum

photon-conversion efficiencies for SHG (ηSH
max), SFG (ηSF

max),

DFG (ηDF
max), and for third-order frequency down-conversion

(η(3)
max), are given for each CLPM condition in Tables I–III. In

some cases, an effective conversion efficiency of nearly 100%

is reached, similar to the case of SHG discussed above; in other

cases the maximum conversion efficiency is limited to ∼50%.

Tables I–III show that for every one of the CLPM conversion

processes one can reach at least 50% photon-conversion

efficiency and that at least one CLPM condition with nearly

100% conversion exists for each type of nonlinear interaction.

We mentioned one example when the maximum conversion

efficiency is 50% at the beginning of this section: It is the

SFG case presented in Fig. 2, where the maximum conversion

state is characterized by half of the fundamental photons

being distributed equally between the two waveguides and is

followed by a return to the initial condition and a subsequent

periodic modulation with propagation distance. The same

behavior is observed for all of the CLPM conditions in the first

four rows of Table I. The period of the oscillation in conversion

efficiency is similar for all cases, and depends essentially only

on the effective nonlinearity, varying little with the value of

the coupling constants. Another example is DFG, also using

any of the CLPM conditions in the first four rows of Table I.

In DFG, a pump photon at ω3 is annihilated to create a photon

at ω2 and one at the difference frequency ω1. A DFG process

reaches 100% photon-conversion efficiency once the pump

at ω3 has been fully depleted (and the pump at ω2 has been

correspondingly amplified). This is possible for DFG using the

CLPM condition in row 5 of Table I, a case that we depicted

in Fig. 5. But for the CLPM conditions in the first four rows of

Table I, the pump wave at ω3 can only be depleted down to half

its initial amplitude in each waveguide. This corresponds to

half the initial number of photons at ω3 still surviving, equally

distributed between the two waveguides, giving a maximum

photon-conversion efficiency of 50%. From this analysis we

can in general say that for some CLPM conditions half the

photons from a pump wave get “trapped” in an equidistributed

state between the two waveguides, and cannot be converted

anymore. Once this situation with equal pump power in both

waveguides has been reached, the direction of energy flow

changes sign, causing the pump power to “rebound” (going

back to the initial state of full oscillation between the two

waveguides) while the generated wave is depleted again.

The cases where the maximum conversion efficiency has

been given as ∼86%, ∼80% or ∼98% are in general character-

ized by a complex spatial dynamics, and the photon-conversion

efficiencies provided in the tables are the value observed for

the first maximum in conversion efficiency. For instance, for all

cases with ηmax ∼ 86% there is a spatially transient maximum

of the conversion efficiency, followed by a damped oscillation

towards a quasi-steady-state with ∼50% efficiency, all this

being followed by the reversed conversion process that finally

makes the evolution of the amplitudes with propagation length,

as in general expected for CLPM, periodic.

We conclude this section with a note on what we think are

the most promising situations in which CLPM schemes could

be effectively employed.

The second-order CLPM processes seem particularly at-

tractive for frequency conversion applications in isotropic

materials that possess large optical nonlinearities, but for

which birefringent phase matching cannot be applied and

conventional quasi-phase-matching methods are difficult. As

an example we mention gallium arsenide (GaAs), which

has a large nonlinearity and a wide transparency range,

making it very attractive for mid-IR coherent sources (e.g.,

with generated wavelengths in the atmospheric transmission

windows). While relevant efforts to engineer quasi-phase-

matching in GaAs have been ongoing—starting from diffusion

bonding of periodically orientation-reversed thin wafers [15]

and more recently followed by directly grown orientation-

patterned crystals [16–20]—the use of the CLPM processes

discussed in this work represents a valid alternative that can

be easily realized by simply creating two parallel waveguides

using well-established methods. CLPM would then enable,

e.g., difference-frequency generation between wavelengths of

1.5 and 2.1 μm to deliver radiation near 5.25 μm, while a

source at ∼10 μm could be built by difference-frequency

generation between 2.5 μm and 2 μm. For GaAs, this last

example is associated with a phase mismatch of the order of

�k ≈ 75 mm−1, for which one can achieve CLPM in parallel

waveguides by, e.g., a K2 = 0 process using coupling constants

of the same order of magnitude. Such values are well under

reach for waveguides based on GaAs/AlGaAs technology
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[10]. Another intriguing possibility is that of designing two

waveguides that are not exactly parallel, so that the coupling

coefficients, and therefore the wavelength at which CLPM

is achieved, vary over the length of the waveguides. This

may lead to a wavelength converter that, working over large

bandwidths, can support tunable laser sources.

The third-order DFG process we presented could be

naturally implemented in dual-core fibers. Microstructured and

photonic bandgap fibers also offer an attractive playground

both for controlling the optical modes at different wavelengths

and for tuning the coupling constants between the cores, while

at the same time providing large interaction lengths. Depend-

ing on the application, silica fibers as well as chalcogenide

fibers or other oxide fibers could be used. Again, no periodic

modulation of the fiber properties are required to implement

CLPM; it is sufficient to design two appropriately spaced cores.

Then, depending on the transparency range of the fiber material

it would be possible to use the 2ω2 − ω3 → ω1 CLPM process

to combine two near-infrared laser sources to obtain longer

wavelength radiation. As an example, mixing the outputs of a

1550-nm fiber laser and of a 1064-nm Nd:YAG laser would

deliver radiation near 2.85 μm, or combining the output of a

960-nm laser diode that pumps an erbium fiber laser with the

output of the fiber laser itself would produce a wavelength of

4 μm. Further in the infrared, mixing of 2.1 μm and 1.2 or

1.3 μm would deliver a source at 8.4 or 5.5 μm, and so on.

IV. CONCLUSIONS

We presented an in-depth discussion of how it is possible

to obtain an effective quasi-phase-matched nonlinear optical

three-wave interaction process in two parallel, coupled waveg-

uides without any spatial modulation of linear or nonlinear

optical properties along the propagation length. We called this

effect coupling-length phase matching and demonstrated that

it works for any second-order nonlinear optical interaction,

from second harmonic generation to parametric processes,

and also for third-order nonlinear optical interactions. We

derived all the CLPM conditions for second-order nonlinear

optical frequency conversion and for third-order difference-

frequency generation based on a 2ω2 − ω3 → ω1 process, and

we determined the effective optical nonlinearity for all of them,

as well as the corresponding maximum photon-conversion

efficiency, which was found to vary between 50% and 100%,

depending on the CLPM configuration.
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