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Abstract

We demonstrate that Appell-Lerch sums with higher order poles as well as their
modular covariant completions arise as partition functions in the cigar conformal field
theory with worldsheet supersymmetry. The modular covariant derivatives of the el-
liptic genus of the cigar give rise to operator insertions corresponding to (powers of)
right-moving momentum, left-moving fermion number, as well as a term corresponding
to an ordinary zero mode partition sum. To show this, we demonstrate how the right-
moving supersymmetric quantum mechanics (and in particular the Hamiltonian and
spectral density) depend on the imaginary part of the chemical potential for angular
momentum. A consequence of our analysis is that varying the imaginary part of the
chemical potential for angular momentum on the cigar gives rise to a wall-crossing
phenomenon in the bound state contribution to the elliptic genus, while the full elliptic
genus is a continuous function of the chemical potential.

1Unité Mixte du CNRS et de l’Ecole Normale Supérieure associée à l’université Pierre et Marie Curie 6,
UMR 8549.
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1 Introduction

Two-dimensional conformal field theories are of physical as well as mathematical interest.
One of many ways in which these physical theories connect to mathematics is through the
calculation of their elliptic genera. In the case of compact target space manifolds for two-
dimensional non-linear sigma-models, the elliptic genera capture a plethora of Dirac indices
on symmetrized and anti-symmetrized tangent vector bundles of the target space [1].

Elliptic genera can be defined for two-dimensional conformal field theories which have
at least one right-moving supercharge. For the right-movers, one mimics the definition of
the Witten index, while computing the partition sum for left-movers, twisted by all charges
which commute with the right-moving supercharge.

In this paper, we discuss further aspects of the elliptic genus in a two-dimensional su-
persymmetric cigar conformal field theory, with an N = (2, 2) superconformal symmetry
algebra. The elliptic genus, twisted by a global angular momentum charge P , is defined as
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the following trace over the Ramond-Ramond sector Hilbert space H:

χ(τ, α, β) = TrH(−1)FL+FRqL0− c
24 zJ

R
0 yP , (1.1)

where we used the notation q = e2πiτ , z = e2πiα and y = e2πiβ. The operator JR0 measures the
left moving U(1) R charge while P measures the global angular momentum of the states2.

The elliptic genera of the supersymmetric Liouville and cigar theories were calculated
in [2–4] using the path integral formulation of these theories. In particular, we will look at
the three variable Jacobi form analyzed in [4] and generalize this result by deriving a path
integral expression for the elliptic genus with complex chemical potentials for the R-charge
and the global charge. This generalization is natural from a mathematical point of view
given that elliptic genera are Jacobi forms, and their arguments are transformed within the
set of complex numbers under elliptic and modular transformations.

Once the chemical potentials are complexified, it becomes straightforward to take mod-
ular covariant derivatives. We will show that this allows us to find physical models for
certain Appell-Lerch sums with higher order poles [5], within the cigar or Liouville confor-
mal field theory. The covariant derivatives correspond to operator insertions of right-moving
momentum and left-moving fermion number, as well as a contribution from a zero mode
partition sum. The right-moving momentum is not strictly conserved, but is a good asymp-
totic quantum number that can be used to label states in partition sums. We will show
that a modification of the supersymmetric quantum mechanics for right-moving primaries
is induced by the insertions, which changes the difference in spectral densities arising in the
integral over the continuum.

As a result of our analysis, we will encounter a wall-crossing phenomenon in a simple
two-dimensional superconformal field theory. By varying the imaginary part of the angular
momentum chemical potential β, some states are subtracted from the discrete part of the
spectrum, as coded in the holomorphic part of the elliptic genus, while other states are
added to the bound state spectrum. The continuum contribution exhibits a complementary
behaviour such that the full elliptic genus is continuous.

Another motivation for our analysis comes from the widening range of applicability of
mock modular forms in physics. Most of the early applications focused on restoring a duality
or modular invariance [6,7] in identifiable holomorphic contributions to e.g. superconformal
characters [8–10] or supergravity partition functions affected by wall-crossing [11]. The mod-
ular completion was shown to arise naturally in the context of the superconformal coset par-
tition function calculation [2], which allowed for many generalizations in the two-dimensional
realm, and applications to the physics of two-dimensional and higher-dimensional black holes
in string theory [12, 13]. Space-time indices inherit mock modularity of the worldsheet in-
dices [14]. Still, most of the mock modularity of space-time indices (see e.g [5, 15]) remains
poorly understood, and providing microscopic models for mock modular forms in two dimen-
sions (e.g. on the worldsheet of an (effective) string) may well be instrumental in identifying
the relevant physics in space-time.

2Following thermodynamics nomenclature, we will often refer to α and β as chemical potentials.
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Our paper is structured as follows. We start in section 2 by proposing the path integral
expression for the elliptic genus with chemical potentials taking values in the complex plane.
We then perform the traditional transform to the Hamiltonian form in order to recover
known results in the mathematics literature, and interpret the result in terms of a modified
right-moving supersymmetric quantum mechanics. We then exploit the result to exhibit a
wall crossing phenomenon as a function of the imaginary part of the chemical potential for
angular momentum.3 In section 3 we further apply the result to consider modular covariant
derivatives of these results. These will serve to model higher order Appell-Lerch sums and to
give a direct conformal field theory interpretation of their modular completions, in particular
in a Hamiltonian form. We conclude in section 4 with a discussion and suggestions for
generalizations and applications.

2 Path integral elliptic genera

Elliptic genera, defined as twisted partition functions on tori, have natural elliptic and mod-
ular properties; they are Jacobi forms [16]. The modular transformation properties of the
three variable elliptic genus of the N = 2 Liouville conformal field theory we will study are:

χ(τ + 1, α, β) = χ(τ, α, β)

χ(−1

τ
,
α

τ
,
β

τ
) = e

c
3
πiα2

τ
− 2πiαβ

τ χ(τ, α, β) . (2.1)

where c = 3 + 6/k is the central charge of the theory and we will take the level k to
be a positive integer. The genus moreover has periodicity properties in α under shifts by
integer multiples of k(1, τ) and in β under shifts by multiples of 1 and τ . Since these
elliptic transformations and the modular transformations in (2.1) shift and rescale chemical
potentials by the complex parameter τ , it is natural to study elliptic genera for complex
chemical potentials. This demands a slight generalization of the analysis in [2–4]. Further
physical motivations for this generalization will become clear in the course of the paper.

2.1 The path integral expression

In an earlier work [4], we obtained the following expression for the elliptic genus of the cigar
superconformal field theory:

χcos(τ, α, β) =

∫ 1

0

ds1,2

θ11(τ, s1τ + s2 − k+1
k
α + β)

θ11(τ, s1τ + s2 − α
k

+ β)

∑
m,w∈Z

e−2πis2w+2πis1(m−α) e
− π
kτ2
|m−α+wτ |2

.

(2.2)

Modularity and ellipticity of the elliptic genus were exhibited in [4] using this expression.
This is therefore the expression that generalizes naturally to the case of complex chemical

3We will use the word wall crossing to refer to a jump in the bound state spectrum arising when a modulus
crosses a particular value.
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potentials α = α1 + τα2 and β = β1 + τβ2. A double Poisson resummation (and combining
holonomy variables and winding numbers) produces the path integral form of the elliptic
genus:

χcos(τ, α, β) = k

∫ +∞

−∞
ds1ds2

θ11(τ, s1τ + s2 − k+1
k
α + β)

θ11(τ, s1τ + s2 − α
k

+ β)
e
− kπ
τ2
|s1τ+s2|2 e−2πiα2(s1τ+s2) . (2.3)

Compared with [4], here we have an additional factor whose exponent is proportional to α2 ,
since we have now allowed for complex α. A path integral derivation of the formula is given
in Appendix A. It is interesting to observe that this extra factor can be combined in the
following way by shifting the integration variable by β − α

k
:

χcos(τ, α, β) = k

∫ +∞

−∞
ds1ds2

θ11(τ, s1τ + s2 − α)

θ11(τ, s1τ + s2)
e
− kπ
τ2

(s1τ+s2+α
k
−β)(s1τ̄+s2+α

k
−β̄)

(2.4)

This manipulation shows explicitly that the elliptic genus is independent of ᾱ and depends
only holomorphically on the α variable4. Interestingly the elliptic genus is not holomorphic
in β. One either sees this by studying the exponent, or by noting that there is a pole in β.
This property will prove crucial in exhibiting a wall crossing phenomenon in the conformal
field theory.

An equivalent, equally useful way to write the path integral answer, is in terms of
holonomies s1,2 in the interval [0, 1] and integer winding numbers m and w:

χcos(τ, α, β) = k
∑
n,m

∫ 1

0

ds1ds2
θ11(τ, s1τ + s2 − α)

θ11(τ, s1τ + s2)
e2πiαn

× e−
kπ
τ2
|(n+s1)τ+m+s2+α

k
−β|2

e−2πiα2(m+s2+α
k

+τ(n+s1)−β) . (2.5)

We have shifted the α and β dependence of the bosons into the exponential factor. This
form of the elliptic genus path integral arises naturally from the derivation in terms of a
gauged linear sigma model [17, 18]. Again, we have generalized the result to complexified α
and β.

2.2 Modularity and periodicity

Another strong argument for the generalized path integral expression in (2.3) is that it can
now be checked directly, using equation (2.3), to be modular and elliptic. Indeed, invariance
under the modular T transformation is easily established by shifting s2 appropriately. Under
the modular S-transformation, the variables transform as

τ → −1

τ
α→ α

τ
β → β

τ
s2 → s1 s2 → −s1 α2 −→ τ α2 − α . (2.6)

4We would like to thank Sameer Murthy for helpful discussions on this point.
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Using these and the appropriate modular properties of the theta function (see Appendix D),
one can check that the integrand picks up an exponential factor that matches the modular
transformation in equation (2.1), with the central charge c = 3 + 6/k of the supersymmetric
cigar theory.

The periodicity properties as well can be checked directly on the path integral expression
(2.3). Consider for concreteness the shift α → α + kτ . The absolute value term in the
exponent of (2.3) is unchanged by this transformation; the last (α2 dependent) factor picks
up a contribution e−2πik(s1τ+s2) . Combining this with the elliptic property of the theta
function recorded in equation (D.2), the integrand of the elliptic genus picks up a combined
factor:

(−1)k+1q−
(k+1)2

2 q(k+1)s1e2πis2(k+1)z−
(k+1)2

k yk+1

(−1)q−
1
2 qs1e2πis2z−

1
k y

e−2πik(s1τ+s2) = (−1)kq−
k2+2k

2 z−(k+2)yk . (2.7)

Using the value of the central charge, we can write the elliptic property of the elliptic genus
as

χcos(τ, α + kτ, β) = (−1)
c
3
ke−

πic
3

(k2τ+2kα)e2πiβkχcos(τ, α, β) . (2.8)

Along these lines we can also check the ellipticity under shift of α by integer multiples of k,
and shifts of β by integer multiplies of 1 and τ . The resulting properties are those recorded
in [4]. Here, we derived these properties directly from the path integral expression which is
now valid for complexified chemical potentials α and β.

2.3 The Liouville elliptic genus

The cigar elliptic genus is related to that of N = 2 Liouville theory by a Zk orbifold [3, 4].
Thus, we find for the Liouville elliptic genus:

χL(τ, α, β) =
∑
n,m

∫ 1

0

ds1ds2
θ11(τ, s1τ + s2 − α)

θ11(τ, s1τ + s2)
e2πiαn

k e
− kπ
τ2
|(n
k

+s1)τ+(m
k

+s2)+α
k
−β|2

× e−2πiα2((n
k

+s1)τ+(m
k

+s2)+α
k
−β) . (2.9)

The Liouville elliptic genus is most simply related [2] to the single pole Appell-Lerch sum
studied in the mathematics literature [6]. Since we wish to compare our results with this
literature, we work in Liouville theory in what follows. All our statements apply, mutatis
mutandis, to orbifolds of Liouville theory, tensor product theories, et cetera. In particular,
they have straightforward equivalents for the two-dimensional black hole superconformal
field theory.

2.4 The Hamiltonian perspective

It is instructive to understand the sum over states coded in the path integral result. In
order to reach this perspective, one needs to switch from a Lagrangian to a Hamiltonian
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viewpoint. This can be achieved after a number of technical steps that were performed
in [2–4]; the generalization of these steps to complexified chemical potentials α and β is
detailed in appendix B. The final result is a sum of two terms, written out in (B.17) and
(B.21); the first one is a holomorphic, right-moving ground state contribution to the elliptic
genus of the form:

χL,hol(τ, α, β) =
iθ11(τ, α)

πη3

∑
m,v,w

[∫
R
−
∫
R− ik

2

]
ds

2is+ v − kβ2

Sm+kw−1

× zv/k−2wykwq−vw+kw2

(qq̄)(is+ v
2
− kβ2

2
)+ s2

k
+

(v−kβ2)2

4k , (2.10)

where v = n + kw represents the right-moving momentum on the asymptotic circle (in
terms of the angular momentum n and winding number w) and Sr is a sum introduced in
appendix D. The contour integral picks up poles corresponding to right-moving ground state
contributions, which are holomorphic. The new ingredient, compared to the earlier works,
is the β2 dependence. We observe that if kβ2 is not an integer, the contour integrals are
unambiguously defined. If kβ2 is an integer, we define our integrals parallel to the real line
to be shifted slightly, by adding a small imaginary part ε to the integration contour. In all
cases, the contours are taken such that we sum the right-moving momentum v over a range
of integers, the highest of which is the integer [kβ2] smaller or equal to kβ2, and the lowest of
which is that integer minus k−1. In total, there are k integer valued right-moving momenta
v between the two contours. We obtain the expression:

χL,hol(τ, α, β) = −
∑
m,w

[kβ2]∑
v=−(k−1)+[kβ2]

(−1)mq(m−1/2)2/2zm−1/2Sm+kw−1z
v/k−2wykwqkw

2−vw .

(2.11)
If we define m = −m̃ + 1 and use the identity (D.4) we find that the holomorphic part of
the elliptic genus is given by:

χL,hol(τ, α, β) =
iθ11(τ,−α)

η3(τ)

∑
w

z−2wykwqkw
2

1− z−1qkw
(z

1
k q−w)[kβ2]

k−1∑
v=0

(z−1qw)v

=
iθ11(τ,−α)

η3(τ)

∑
w

z−2wykwqkw
2

1− z− 1
k qw

(z
1
k q−w)[kβ2]

= z[kβ2]/k iθ11(τ,−α)

η3(τ)

∑
w

(z−2ykq−[kβ2])wqkw
2

1− z− 1
k qw

. (2.12)

This is a sum over extended N = 2 superconformal algebra characters based on Ramond
ground states of R-charge 1/2−l/k+[kβ2]/k where l takes values in the set l = 0, 1, . . . , k−1.
This can be seen from the first line, where we identify w as the spectral flow summation
variable.
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There is also a non-holomorphic contribution to the elliptic genus, which arises from the
difference in spectral densities for fermionic and bosonic right-moving primaries:

χL,rem(τ, α, β) =
iθ11(τ,−α)

πη3(τ)

∑
v,w

∫
R

ds

2is+ v − kβ2

zv/k−2wykwqkw
2−vw(qq̄)

s2

k
+

(v−kβ2)2

4k . (2.13)

These two terms, in (2.12) and (2.13) sum to the modular completion of the Appell-Lerch
sum analyzed in the mathematics literature [6], as we show in the next section.

2.5 The relation to completed Appell-Lerch sums

In this subsection, we wish to show how the path integral result for the Liouville elliptic genus
for complexified arguments, rewritten in the Hamiltonian form, relates to the mathematics
of modularly completed Appell-Lerch sums [6].

2.5.1 Review of the completed Appell-Lerch sum Â

The holomorphic Appell-Lerch sum is defined as5

A1,k(τ, u, v) = ak
∑
n∈Z

qkn(n+1)bn

1− aqn
. (2.14)

In the conventions of [6], the three variables are denoted by q = e2πiτ , a = e2πiu and b = e2πiv.
The remainder of this Appell-Lerch sum, which, when added to the holomorphic part (2.14)
leads to a Jacobi form, is given by [6]

R1,k(τ, u, v) =
i

4k
a

2k−1
2

∑
m(mod)2k

θ11

(
v +m

2k
+

(2k − 1)τ

4k
;
τ

2k

)
R

(
u− v +m

2k
− (τ(2k − 1)

4k
;
τ

2k

)
(2.15)

where the function R is defined as:

R(u; τ) =
∑
ν∈Z+ 1

2

(
sgn(ν)− Erf

[√
2πτ2

(
ν +

Im(u)

τ2

)])
(−1)ν−

1
2a−νq−

ν2

2 . (2.16)

The sum
Â1,k(τ, u, v) = A1,k(τ, u, v) +R1,k(τ, u, v) (2.17)

satisfies good modular and elliptic properties [6]:

Â1,k(τ, u+ 1, v) = Â1,k(τ, u, v) Â1,k(τ, u, v + 1) = Â1,k(τ, u, v) (2.18)

Â1,k(τ, u+ τ, v) = a2kb−2kqkÂ1,k(τ, u, v) Â1,k(τ, u, v + τ) = a−1Â1,k(τ, u, v)

Â1,k(τ + 1, u, v) = Â1,k(τ, u, v) Â1,k(−
1

τ
,
u

τ
,
v

τ
) = τ e

2πi
τ

(vu−ku2)Â1,k(τ, u, v) .

5In [6] the Appell-Lerch sum is denoted A2k. Since we go on to define a series of higher pole Appell-Lerch
sums, we use a notation close (but not identical) to [5].
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The map to the conformal field theory variables used earlier is:

u = −α
k

v = −2α− kτ + kβ − τ [kβ2] , (2.19)

Through this map, we can rewrite the Appell-Lerch sum in the form:

A1,k = z−1
∑
w∈Z

qkw
2
(z−2ykq−[kβ2])w

1− z− 1
k qw

, (2.20)

with the usual notation q = e2πiτ , z = e2πiα and y = e2πiβ. Note that the choice of map (2.19)
gives as an immediate match between the holomorphic part of the Appell-Lerch sum and the
holomorphic part of the elliptic genus. Matching the remainder terms is less straightforward
and it will be the object of the rest of this section.

Applying the map (2.19) to the remainder yields

R1,k =
i

4k
z−1+ 1

2k

∑
m(mod)2k

θ11

(
−α
k

+
β

2
− τ [kβ2]

2k
+
m

2k
− τ

4k
;
τ

2k

)
R

(
τ

4k
− β

2
+
τ [kβ2]

2k
− m

2k
;
τ

2k

)
.

(2.21)
With these arguments, the function R in (2.16) evaluates to

R =
∑
ν∈Z+ 1

2

(−1)ν−
1
2y

ν
2 q−ν[kβ2]/2kq−

ν2

4k
− ν

4k e
2πiνm

2k

(
sgn(ν)− Erf

[√
πτ2

k

(
ν +

1

2
− Im(k β − τ [kβ2])

τ2

)])

= −y−
1
4 q

1
16k

∑
r∈Z

(−1)ry
r
2 q−r[kβ2]/2kq[kβ2]/4kq−

r2

4k e
2πi(r− 1

2 )m

2k

×
(

sgn(r − 1

2
)− Erf

[√
πτ2

k

(
r − Im(k β − τ [kβ2])

τ2

)])
.

(2.22)

The θ11 function that appears in (2.21) evaluates to

θ11

(
−α
k

+
β

2
− τ [kβ2]

2k
+
m

2k
− τ

4k
;
τ

2k

)
= i
∑
n∈Z

(−1)nq
n2

4k q−
1

16k z
n
k
− 1

2k y−
n
2

+ 1
4 q

τ [kβ2]
2k

(n− 1
2

)e
2πim

2k
( 1

2
−n) .

(2.23)
Multiplying the two expressions in equations (2.22) and (2.23), all the constant exponents
of q, y and z cancel except for one factor of z. Furthermore, the variable m can be summed
to give ∑

m (mod) 2k

e
2πim

2k
(r−n) = 2k δn−r+2kZ . (2.24)

Substituting the solution to the constraint equation n = r + 2kj, where j ∈ Z, one notices
that the summation over j results in a theta function with indices (r, k) (see equation (D.5)).
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Gathering all these results leads to a more compact expression for the remainder term:

R1,k =
z−1

2

∑
r∈Z

(
sgn(r − 1

2
)− Erf

[√
πτ2

k

(
r − Im(kβ − τ [kβ2])

τ2

)])
y
r
2 q−

r[kβ2]
2k q−

r2

4k

× θr,k

(
τ,
α

k
− β

2
+
τ [kβ2]

2k

)
. (2.25)

Flipping the sign of r and using the fact that both the sign and error functions are odd, we
obtain:

R1,k = −z
−1

2

∑
r∈Z

(
sgn(r +

1

2
)− Erf

[√
πτ2

k

(
r +

Im(kβ − τ [kβ2])

τ2

)])
y−

r
2 q

r[kβ2]
2k q−

r2

4k θr,k

(
τ,−α

k
+
β

2
− τ [kβ2]

2k

)
. (2.26)

Consider the argument of the error function: recalling that β = β1 + τβ2, we find that

r +
1

τ2

Im(kβ − τ [kβ2]) = r + (kβ2 − [kβ2]) (2.27)

We therefore obtain the part of kβ2 that lies in the interval (0, 1), which we will denote by
γ2 = kβ2 − [kβ2]. We then have:

R1,k = −z
−1

2

∑
r∈Z

(
sgn(r +

1

2
)− Erf

[√
πτ2

k
(r + γ2)

])
y−

r
2 q

r[kβ2]
2k q−

r2

4k θr,k

(
τ,−α

k
+
β

2
− [τkβ2]

2k

)
(2.28)

We now add and subtract sgn(r + γ2) in the parenthesis and observe that∑
r∈Z

(sgn(r +
1

2
)− sgn(r + γ2))f(r) = 0 , (2.29)

except when γ2 = 0 (due to the convention sgn(0) = 0). Restricting to γ2 6= 0 – the special
case can be treated analogously –, this leads to

R1,k = −z
−1

2

∑
r∈Z

(
sgn(r + γ2)− Erf

[√
πτ2

k
(r + γ2)

])
y−

r
2 q

r[kβ2]
2k q−

r2

4k θr,k

(
τ,−α

k
+
β

2
− τ [kβ2]

2k

)
.

(2.30)
Using the integral (D.6) we can write the remainder R as

R1,k = −z
−1

π

∑
r∈Z

∫
R+iε

ds

2is+ r + γ2

(qq̄)
s2

k
+

(r+γ2)2

4k y−
r
2 q

r[kβ2]
2k q−

r2

4k θr,k

(
τ,−α

k
+
β

2
− τ [kβ2]

2k

)
.

(2.31)
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We use the definition of the theta function in (D.5), setting j = w and also relabel r = −v
to obtain:

R1,k = −z
−1

π

∑
v∈Z

∑
w∈Z

qkw
2−vwz−2w+ v

k ykwq−w[kβ2]

∫
R

ds

2is− v + γ2

(qq̄)
s2

k
+

(v−γ2)2

4k . (2.32)

Finally, we shift the variable v to v = ṽ − [kβ2] and obtain (after dropping the tilde):

R1,k =
z−1− [kβ2]

k

π

∑
v∈Z

∑
w∈Z

qkw
2−vwz−2w+ v

k ykw
∫
R

ds

2is+ v − kβ2

(qq̄)
s2

k
+

(v−kβ2)2

4k . (2.33)

Here we have also flipped the sign of s in the integral that picks up an extra sign. To
summarize, the modularly completed Appell-Lerch sum Â1,k of [6] can be written as the
sum of the following holomorphic and remainder terms

A1,k = z−1
∑
w∈Z

qkw
2
(z−2ykq−[kβ2])w

1− z− 1
k qw

R1,k =
z−1− [kβ2]

k

π

∑
v∈Z

∑
w∈Z

qkw
2−vwz−2w+ v

k ykw
∫
R

ds

2is+ v − kβ2

(qq̄)
s2

k
+

(v−kβ2)2

4k . (2.34)

If we further multiply this result by the appropriate overall factor we obtain precisely the
elliptic genus of the supersymmetric Liouville theory, as in equations (2.12) and (2.13).

Moreover, we can use the periodicity properties of the completed Appell-Lerch sum Â1,k,
written out in (2.18), as well as the even parity property of the elliptic genus, to simplify
the final result:

χL(τ, α, β) =
iθ11(τ,−α)

η3
z1+

[kβ2]
k Â1,k(τ,−

α

k
,−2α + kβ − kτ − τ [kβ2])

=
iθ11(τ,−α)

η3
Â1,k(τ,−

α

k
,−2α + kβ)

=
iθ11(τ, α)

η3
Â1,k(τ,

α

k
, 2α− kβ) . (2.35)

This agrees with [4] and completes the identification of the elliptic genus as the modular
completed Appell-Lerch sum for complexified chemical potentials.

We see from the final expression that an alternative appropriate identification of variables
is [2, 4]:

u =
α

k
, v = 2α− kβ . (2.36)

Yet another road to the same result is obtained if one starts out with the identification of
variables

u =
α

k
, v = 2α− kτ − kβ . (2.37)
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Note that the corresponding Appell-Lerch sum differs from the holomorphic part of the
elliptic genus in equation (2.12). One then adds the difference to the holomorphic part, and
subtracts the difference from the remainder term. The latter term can be written as a sum
over the difference of sign functions (see e.g. [5]). These various forms of identifications of
variables, use of the periodicity formulas, as well as additions and subtractions code some
interesting physics that we explore in the next subsection.

2.6 Supersymmetric Quantum Mechanics and Wall Crossing

We have obtained a Hamiltonian form for the elliptic genus, and matched it onto results in
mathematics. We now wish to interpret these formulae in physical terms. We indicate at
least two interesting phenomena. First of all we note that the final formula for the Hamilto-
nian form of the elliptic genus, equations (2.12) and (2.13), factorizes into a part which we
can associate to a free oscillator sum over all generators of the N = 2 superconformal alge-
bra on the left, multiplied by an Appell-Lerch sum, which is associated to weighted traces
in the radial supersymmetric quantum mechanics problems associated to the right-moving
primaries [2, 4, 20].

Consider the remainder term (2.13) first:

χL,rem(τ, α, β) =
iθ11(τ,−α)

πη3(τ)

∑
n,w

∫
R

ds

2is+ n+ kw − kβ2

z
n−kw
k ykwq−nw(qq̄)

s2

k
+

(n+kw−kβ2)2

4k .

(2.38)
We note a shift in the right-moving momentum due to the imaginary part β2 of the chemical
potential for angular momentum. Indeed, there is an extra term in the Lagrangian due to
the angular momentum operator insertion which is proportional (as far as the right-movers
are concerned) to the right-moving angular momentum. This term shifts the definition of the
right-moving momentum, which in turn shifts the definition of the right-moving supercharge.
It therefore influences the measure to be the one indicated in equation (2.38). The right-
moving Hamiltonian, a function of the right-moving momentum squared, is shifted as well,
as can be seen from the exponent of q̄ in equation (2.38):

L̃0 −
c

24
=
s2

k
+

(n+ kw − kβ2)2

4k
. (2.39)

Due to the correlated shift in the right-moving supercharge and right-moving Hamiltonian,
we see that the pole contributions are still holomorphic, right-moving ground state con-
tributions. The contributions to the left-moving momentum are fixed by the fact that a
continuous deformation keeps the locality condition L0 − L̃0 = −nw intact.6

6For future purposes, we have recalled some properties of the right-moving supersymmetric quantum
mechanics in appendix C (which in turn is based on e.g. [19]). Our discussion in words can be followed in
technical detail by making the identifications L̃0 − c/24 = H, s2/k = p2, Φ2

0 = (v − kβ2)2/(4k) between the
variables here and those in appendix C. As in [20], each value of the right-moving momentum v gives rise to
one radial supersymmetric quantum mechanical system.
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The second phenomenon, and in fact most phenomena discussed in this paper, is a
consequence of the first. We note that the imaginary part β2 in the angular momentum
chemical potential also influences the holomorphic contribution to the elliptic genus:

χL,hol(τ, α, β) = −
∑
m,w

[kβ2]∑
v=−(k−1)+[kβ2]

(−1)mq(m−1/2)2/2zm−1/2Sm+kw−1z
v/k−2wykwqkw

2−vw .

(2.40)
The k poles in the radial momentum s plane that we pick up are a function of the size of
β2. Whenever kβ2 crosses an integer value, we will see a subtraction and addition to our
holomorphic right-moving ground state sum, as can be seen from equation (2.40).

One can also understand this phenomenon from the perspective of the radial right-moving
supersymmetric quantum mechanics (see [19] and appendix C). This is a consequence of the
fact that the constant term in the supercharge, associated to the right-moving momentum,
flips sign as a function of β2, rendering a given ground state either normalizable or not.7 For
integer kβ2, this influences the sum over the right-moving momentum n + kw, both in its
upper and lower bound. The integer number k of extended N = 2 superconformal character
contributions to the elliptic genus (and in particular the Witten index of the model) remains
unchanged under these deformations. As one radial quantum mechanics problem looses a
state, another one gains a state. Still, we see jumps in the bound state spectrum, and in
particular the R-charges of the Ramond sector ground states whose extended characters
contribute to the holomorphic part of the elliptic genus.

As explained below equation (2.12), one can in fact write the holomorphic piece schemat-
ically as follows:

χL,hol =
∑

spectral

flow

k−1∑
`=0

[
iθ11(τ,−α)

η3(τ)
z

[kβ2]−`
k

1

1− z−1

]
spectral

flow

. (2.41)

The term in the parenthesis is an N = 2 superconformal character in the Ramond sector,
where the R-charge of the ground state, on which the character is built, is given by QR =
1
2
− `

k
+ [kβ2]

k
. The discrete sum is over the Ramond ground states while the final sum is

over all states obtained by spectral flow of the ground states by kw units, with w being an
integer. This expression shows clearly that the bound state spectrum jumps across the walls
where kβ2 is integer.

3 A model for higher order Appell-Lerch sums

In this section, we perform a modular covariant differentiation of the elliptic genus to obtain
more general Appell-Lerch sums and their modular completions. The analysis carried out
in the previous section will then enable us to provide a Hamiltonian interpretation for the
modular completions of these higher order Appell-Lerch sums.

7 (∂x + Φ0)ψ(x) = 0 for x ∈ [0,∞] gives rise to a state state ψ(x) ∝ e−Φ0x which is normalizable or not
depending on the sign of the constant Φ0. The conjugate supercharge exhibits a conjugate phenomenon.
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3.1 Modular covariant derivatives

We confirmed in section 2 that the Liouville elliptic genus χL with complexified chemical
potentials is proportional to a (completed) Appell-Lerch sum. It thus transforms as a Jacobi
form under modular transformations. In this section, we temporarily strip away the iθ11/η
prefactor from the elliptic genus (2.35). We can then study modular covariant derivatives of
Appell-Lerch sums, following [5]. For the isolated Appell-Lerch sum relevant to us, we have
the modular transformation property (see equation (2.18)):

Â1,k

(
aτ + b

cτ + d
,

u

cτ + d
,

v

cτ + d

)
= (cτ + d) e

2πic
cτ+d

(vu−ku2)Â1,k(τ, u, v) . (3.1)

The chemical potentials in the conformal field theory are related to the variables u and v
above by the relations

u = α/k , v = 2α− kβ . (3.2)

For our purposes, it is convenient to calculate in terms of the conformal field theory variables
(α, β). To make this less cumbersome, we introduce the notation:

Î1,k(τ, α, β) = Â1,k(τ,
α

k
, 2α− kβ) . (3.3)

The notation Î is a reminder of the fact that this quantity codes generalized Witten indices
of an infinite set of radial supersymmetric quantum mechanics problems [2, 4, 20]. In this
notation, we have:

Î1,k

(
aτ + b

cτ + d
,

α

cτ + d
,

β

cτ + d

)
= (cτ + d) e

2πic
cτ+d

(α
2

k
−αβ)Î1,k(τ, α, β) . (3.4)

This can equally well be derived from the modular transformation of the elliptic genus by
stripping away the modular properties of the theta- and eta-functions.

To obtain a new interesting index [5], we act with the derivative operator

D =
1

2πi

[
2
d

dβ
+ k

d

dα

]
(3.5)

on both sides of equation (3.4) to obtain

D · Î1,k

(
aτ + b

cτ + d
,

α

cτ + d
,

β

cτ + d

)
= (cτ + d)e

2πic
cτ+d

(α
2

k
−αβ)D · Î1,k(τ, α, β)

− c kβ e
2πic
cτ+d

(α
2

k
−αβ)Î1,k(τ, α, β) . (3.6)

In order to compensate for the anomalous second term, consider the modular transformation
property of the non-holomorphic expression – recall that β2 = Im(β)

τ2
–:

β2 → (cτ + d)β2 − cβ . (3.7)

13



It follows that the combination

Î2,k(τ, α, β) = (D − kβ2) · Î1,k(τ, α, β) (3.8)

is a three variable function that transforms modularly: 8

Î2,k

(
aτ + b

cτ + d
,

α

cτ + d
,

β

cτ + d

)
= (cτ + d)2e

2πic
cτ+d

α2

k
−αβÎ2,k(τ, α, β) . (3.9)

This technique was used in [5] to obtain higher weight Appell-Lerch sums and their modular
completions. The differentiation process will augment the order of the denominator in the
Appell-Lerch sum. Since the covariantization does not depend upon the weight of the form
on which the derivative acts, one can continue this process and obtain higher weight Jacobi
forms iteratively

În,k(τ, α, β) = (D − kβ2) · În−1,k(τ, α, β) , (3.10)

where the label n specifies the weight of the modular form.
Here, we are interested in providing a Hamiltonian interpretation for the Jacobi forms

În,k(τ, α), obtained by setting β = 0, for both their holomorphic and remainder terms. We
will also provide a microscopic model for the degrees of freedom coded in these generalized
indices.

3.2 Completed Appell-Lerch sums as state space sums

In this section we will exhibit the decomposition of the completed Jacobi form În,k into a
holomorphic piece and a remainder. We use the integral representation naturally provided
by the Liouville elliptic genus, stripped of theta- and eta-function factors. Since the integrals
allow for a radial supersymmetric quantum mechanics interpretation, this will lead to a nat-
ural Hamiltonian interpretation for the Appell-Lerch sums and their modular completions.

The Hamiltonian viewpoint

Consider the Appell-Lerch sum I1,k written as in equation (2.12):

I1,k = −z[kβ2]/k
∑
w∈Z

qkw
2
(z−2ykq−[kβ2])w

1− z− 1
k qw

. (3.11)

The remainder term, expressed as an integration over states, is (see equation (2.13)):

R1,k = − 1

π

∑
v∈Z

∑
w∈Z

qkw
2−vwz−2w+ v

k ykw
∫
R

ds

2is+ v − kβ2

(qq̄)
s2

k
+

(v−kβ2)2

4k . (3.12)

To simplify the discussion, we choose β2 to be in the interval ]0, 1/k[ . This is equivalent to
setting [kβ2] = 0 in what follows. This may look dangerous, since we are planning to take

8Other covariant differentiations to higher weight modular forms exist.
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a derivative with respect to β . Note however that the sum of the terms in equations (3.11)
and (3.12) behave well as functions of β, so that we can ignore this subtlety. This property of
continuity and differentiability in β is also clear from the expression for the Liouville elliptic
genus in path integral form.

I2,k(τ, α, β) = DI1,k =
∑
w

qw(kw+1)ykwz−
1
k
−2w

(1− z− 1
k qw)2

. (3.13)

We will refer to expression (3.13) as the double pole Appell-Lerch sum.
Let us now act with the derivative operator on the integral representation of the remain-

der:

DR1,k = − 1

π

∑
v∈Z

∑
w∈Z

qkw
2−vwz−2w+ v

k ykw

×
∫
R
ds

(
− k

2πτ2

1

(2is+ v − kβ2)2
+

kβ2

2is+ v − kβ2

)
(qq̄)

s2

k
+

(v−kβ2)2

4k . (3.14)

The first term in the parenthesis can be rewritten using integration by parts to combine it
with the second term:

DR1,k = − 1

π

∑
v∈Z

∑
w∈Z

qkw
2−vwz−2w+ v

k ykw
∫
R
ds

(
−1 +

v

2is+ v − kβ2

)
(qq̄)

s2

k
+

(v−kβ2)2

4k .

(3.15)
The measure in the second term is identical to that of the remainder in the single pole case
and the integral over radial momentum s can be done as before by using equation (D.6). We
will now make a brief digression to make contact with the results of [5].

Relation to earlier work

Setting β = 0 in equation (3.15), we obtain the remainder for I2,k:

R2,k(τ, α) =
1

2π

√
k

τ2

∑
v,w

qkw
2−vwz−2w+ v

k (qq̄)
v2

4k

− 1

π

∑
v,w

v qkw
2−vwz−2w+ v

k

∫
R

ds

2is+ v
(qq̄)

s2

k
+ v2

4k . (3.16)

Using the definition of the theta function with finite index and the integral (D.6), we find

R2,k(τ, α) =
1

2π

√
k

τ2

∑
v∈Z

q̄
v2

4k θv,k(τ,−
α

k
)− 1

2

∑
v∈Z

v q−
v2

4k θv,k(τ,−
α

k
)

(
sgn(v)− Erf

[√
πτ2

k
v

])
,

(3.17)
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which is equal to:

R2,k(τ, α) =
1

2π

√
k

τ2

∑
v∈Z

q̄
v2

4k θv,k(τ,−
α

k
)− 1

2

∑
v∈Z

|v| q−
v2

4k θv,k(τ,−
α

k
) Erfc

[√
πτ2

k
|v|
]
.

(3.18)
In order to compare this result with the one in [5], we split the variable v ∈ Z as

v ≡ 2kN + ` , with N ∈ Z , ` ∈ Z2k , (3.19)

and define

λ ≡ v

2k
= N +

`

2k
. (3.20)

In terms of these new variables, the expression (3.18) can be rewritten as

R2,k(τ, α) = k
∑
`∈Z2k

θl,k(τ,−
α

k
)
∑

λ∈Z+ `
2k

(
1

2π
√
kτ2

q̄kλ
2 − |λ| q−kλ2

Erfc
[
2|λ|

√
πτ2k

])
. (3.21)

This matches the remainder in [5] using the map between chemical potentials.

The Hamiltonian interpretation

We return now to the Hamiltonian interpretation of the covariantly derived Appell-Lerch
sums. As recalled from [2, 4, 20] in subsection 2.6, there is an interpretation of the bound
state sum, as well as the remainder integral, in terms of supersymmetric quantum mechanics
systems labeled by the right-moving momentum v = n + kw.9 It is therefore natural to
express the remainder as a sum over the right-moving momentum quantum number:

R1,k(τ, α, β) =
∑
v

S1,k(τ, α, β, v) , (3.22)

where we introduced

S1,k(τ, α, β, v) = − 1

π

∑
w∈Z

qkw
2−vwz−2w+ v

k ykw
∫
R

ds

2is+ v − kβ2

(qq̄)
s2

4k
+

(v−kβ2)2

4k . (3.23)

From equation (3.15), it is clear that the covariant derivative acts on S1,k(v), which is the
contribution from the continuous spectrum, as follows:

(DS1,k)(τ, α, β, v) = v S1,k(τ, α, β, v) + Y2,k(τ, α, β, v) . (3.24)

9This interpretation does not depend on the free oscillator sum iθ11/η
3 over the modes of the N = 2

superconformal algebra. It has a more universal character as argued in [13]. This is true even at finite level
k as can be seen from the results of [20].

16



Here we have introduced the notation Y2,k to denote an ordinary partition sum obtained by
integrating over the radial momentum:

Y2,k(τ, α, β, v) =
1

π

√
k

τ2

∑
w∈Z

qkw
2−vw z−2w+ v

k ykw(qq̄)
(v−kβ2)2

4k . (3.25)

We can finally write the holomorphic and remainder pieces of the completed Jacobi form
Î2,k in a compact form:

I2,k(τ, α, β) =
∑
w

qw(kw+1)ykwz−
1
k
−2w

(1− z− 1
k qw)2

R2,k(τ, α, β) = −kβ2 Î1,k(τ, α, β) +
∑
v

(v S1,k(τ, α, β, v) + Y2,k(τ, α, β, v)) . (3.26)

Our derivation clarifies the Hamiltonian interpretation of these expressions. The Appell-
Lerch sum can be interpreted as an index sum with a right-moving momentum insertion.
This is consistent with the wedge sum formula for the Appell-Lerch sum [5]:

I2,k(τ, α, 0) =

(∑
w≥0

∑
v≥0

−
∑
w<0

∑
v≤0

)
v qkw

2+vw z−2w− v
k . (3.27)

The first term in the remainder R2,k arises from a simple multiplication in the covariant
derivative. The second term arises from a right-moving momentum operator insertion. The
third term finds its origin in the dependence of the spectral asymmetry as well as the Hamil-
tonian on the right-moving momentum. This fact is explained in detail in appendix C,
equation (C.11). This indeed identifies Y2,k as a partition sum of degrees of freedom living
on the asymptotic cylinder. We have thus found a Hamiltonian interpretation of the modular
double pole Appell-Lerch sum.

3.3 Higher order Appell-Lerch sums and their completion

We can also find a Hamiltonian integral representation for the remainder functions of all
higher order Appell-Lerch sums. We act with the covariant derivative n− 1 times to obtain
the holomorphic and remainder piece of În,k. To compute the explicit expression one needs
the action of the covariant derivative on the partition sum Y2,k, which is:

(D − kβ2)Y2,k = 0 . (3.28)

This knowledge is sufficient to write down the explicit integral representations of the re-
mainders for any order n and level k in terms of the integral S1,k over the supersymmetric
quantum mechanics labeled by the right-moving momentum, and the partition sum Y2,k.
The holomorphic parts of these higher weight Appell-Lerch sums, when β = 0, are written
out in [5] in terms of Euler functions. Explicitly, these are given by

In+1,k(τ, α) = DnI1,k(τ, α, β)|β=0 =
∑
w∈Z

qkw
2

z2wEn+1(qwz−
1
k ) , (3.29)
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where the En are Euler functions, that have a series expansion of the form

En+1(x) =
∑
m>0

mnxm if |x| > 1

= −
∑
m<0

mnx−m if |x| < 1 . (3.30)

The remainders for these generalized Appell-Lerch sums become:

Rn+1,k(τ, α) = (D − kβ2)n Î1,k(τ, α, β)
∣∣∣
β=0
− In+1,k(τ, α) . (3.31)

Explicitly, these are given by

Rn+1,k(τ, α) = DnR1,k |β=0 +
∑
m

rm
m!

(
k

2πτ2

)m
Dn−2m Î1,k |β=0 (3.32)

The coefficient rm is a product of binomial coefficients, given by

rm =
m∏
`=1

(
n− 2`

2

)
(3.33)

The first term in equation (3.32) corresponds to insertion of powers of the right-moving
momentum, as well as the dependence of the remainder term on the chemical potential
through the partition sum Y2,k and its derivatives. The list of other terms arises from the
explicit β2 dependence of the covariant derivative, which needs to be derived and taken into
account at every given order, giving rise to the combinatorics exhibited in equation (3.33).

3.4 Generalized elliptic genera

In subsection 3.1, we isolated the Appell-Lerch sum Î1,k from the elliptic genus χL in order to
widen the applicability of our Hamiltonian interpretation of the holomorphic and remainder
contributions to the higher order Appell-Lerch sums. In this subsection, we return to the con-
text of two-dimensional conformal field theory, in which the radial supersymmetric quantum
mechanics models have a direct interpretation in terms of the dynamics of the right-moving
superconformal primaries. We thus wish to dress the covariant differentiation of higher order
Appell-Lerch sums with the factors corresponding to a free N = 2 superconformal algebra
generator sum for the left-movers.

Recall that the elliptic genus transforms as follows under a modular transformation:

χ

(
aτ + b

cτ + d
,

α

cτ + d
,

β

cτ + d

)
= e(1+ 2

k
) πiα

2

cτ+d
− 2πiαβ
cτ+d χ(τ, α, β) . (3.34)

To account for the modular properties of the prefactors, we introduce a modification of the
modular covariant derivative (3.5):

χ(1)(τ, α, β) =
(
D + α2 − kβ2

)
χ(τ, α, β) . (3.35)

18



We then obtain a weight one Jacobi form that transforms with the same index as the original
elliptic genus. The extra factor of α2 takes care of the anomalous transformation of the
derivative of the theta function. The technical points and Hamiltonian interpretations we
proposed in the previous subsections go through for the modularly derived elliptic genus,
with one modification. Since we have multiplied in the theta-function which depends on
the chemical potential α, we find terms that are associated to fermion number operator
insertions. This can also be seen by recalling the definition of the elliptic genus in (1.1):

χ(τ, α, β) = TrH(−1)FL+FRqL0− c
24 zJ

R
0 yP . (3.36)

A naive action with the differential operator D in (3.5), yields the insertion

D · χ(τ, α, β) ≈ TrH

[(
k JR0 + 2P

)
(−1)FL+FRqL0− c

24 zJ
R
0 yP

]
. (3.37)

Now, the R-charge and the total angular momentum in the coset conformal field theory can
be written explicitly in terms of the asymptotic left and right moving momenta as well as
the fermion number as follows (see for instance [21]):

JR0 = −2

k
PL + FL P = PL + PR . (3.38)

Substituting this into the derivative expression, we find

D · χ(τ, α, β) ≈ TrH

[
(2PR + k FL) (−1)FL+FRqL0− c

24 zJ
R
0 yP

]
. (3.39)

We recognize the insertion of the right moving momentum operator we observed in (3.26);
in addition we find contributions from the fermion number insertion. The derivation we
gave here is naive, since it does not take into account the dependence of the measure on the
variables with respect to which we derive. However, since there is no dependence on α in the
measure, nor in the right-moving supersymmetric quantum mechanics, the fermion number
insertion is the only modification in the picture we painted previously. This is related to the
holomorphic dependence of the elliptic genus on the chemical potential for R-charge. We
stress that in this conformal field theory context, the origin of the radial supersymmetric
quantum mechanics systems for the right-movers can be derived from first principles.

4 Conclusions

We have obtained path integral expressions for the Liouville and cigar elliptic genera with
complexified chemical potentials, and checked the modular and periodicity properties directly
from these expressions. We have also shown that the spectral density asymmetry depends on
the imaginary part of the chemical potential β for the angular momentum on the asymptotic
circle. We were able to exhibit a wall-crossing phenomenon in which bound states appear and
disappear from the spectrum as a function of the imaginary part of the chemical potential.
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From the path integral form of the elliptic genus it is clear that the discontinuity in the
holomorphic part is mirrored in a discontinuity of the continuum contribution such that the
full expression is continuous in β.10

Furthermore, the generalization to complexified chemical potentials allowed us to take
modular covariant derivatives to obtain higher order Appell-Lerch sums and their modular
completions. This enabled us to provide a microscopic model for higher order Appell-Lerch
sums in which we could give an interpretation to the individual contributions as arising from
bound state sums and the continuous spectrum, whose presence results from the spectral
asymmetry. Modular derivatives moreover give rise to operator insertions, and a new in-
gredient in the Hamiltonian interpretation, which is an ordinary partition sum (with trivial
spectral weight).

There are many directions for further research. One is the generalization of our analysis
to the Jacobi forms of [17, 18, 25], corresponding to models with more space-time directions
(and in the gauged linear sigma-model language, to models with N charged chiral scalar
fields). The generalization of the expression (2.2) for higher N is

χN(τ, α, βi) =

∫ 1

0

ds1ds2

N∏
i=1

[
θ11(τ, s1τ + s2 − α− Nα

k
+ βi)

θ11(τ, s1τ + s2 − Nα
k

+ βi)

]
×
∑
m,w∈Z

e−2πis2we2πis1(m−Nα)e
− π
kτ2
|m−Nα+wτ |2

. (4.1)

One can check that it is modular covariant and elliptic, with central charge c = 3N(1 +
2N
k

) . We can obtain the analogue of the path integral expression (2.5) via double Poisson
resummation:

χN(τ, α, βi) = k

∫ 1

0

ds1ds2

N∏
i=1

[
θ11(τ, s1τ + s2 − α− Nα

k
+ βi)

θ11(τ, s1τ + s2 − Nα
k

+ βi)

]
×
∑
m,w∈Z

e2πiNαw e−2πiNα2((s1+w)τ+s2+m) e
−πk
τ2
|m+wτ+(s1τ+s2)|2

. (4.2)

This is a good starting point for an analysis of the generalized Hamiltonian interpretation,
covariant differentiation, etc. A similar analysis can also be carried out for orbifold and
tensor product models.

Another direction for future research was one of the original motivations of this paper. We
have given a microscopic interpretation of the higher level Appell-Lerch sums, dressed with
further theta- and eta-functions. It should be clear from our analysis that the radial quantum
mechanics giving rise to the Appell-Lerch sums exhibits universal features independent of
the particular dressing factor. We hope that these features will provide useful hints towards
a microscopic interpretation of the mock Jacobi forms arising in the context of microscopic
black hole entropy counting, and in particular the modularly completed single or multi-
centered black hole partition sums of [5].

10A similar phenomenon arises in the context of massive N = 2 theories in two dimensions [22] and N = 2
gauge theories in four dimensions [23].
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A The path integral of the axially gauged coset model

In this appendix we show how to obtain the path integral expression for the elliptic genus
when the chemical potentials α and β are taken to be complex. As shown in [4] the path
integral can be written in the factorized form

χPI(τ, α) =

∫
C

d2u

2iτ2

Zg(τ, α)Zf (τ, α)ZY (τ, α)Zgh(τ)Za(τ, α) . (A.1)

We follow the notations and conventions of [4] and refer to that reference for details. The
subscripts denote the various sectors: the SL(2,R) group, the fermions, a compact boson Y
and the ghosts. The very last contribution is an anomalous contribution that results from
a U(1)R rotation of the fermions due to their twisted boundary conditions. In the above
equation, u = s1τ+s2 is the complexified holonomy that takes values over the entire complex
plane.

Here, we will use a slightly different method to obtain the twisted partition functions11.
We first write down a modular invariant expression for the path integral in each sector.
These are straightforward generalizations of the expressions in [4], with the modification
that we make the contribution from each sector modular invariant

Zg(τ, α) =

√
kκ
√
τ2

e
2π
τ2

(Imu− Imα
k

)2

|θ11τ, u− α
k
|2

Zf (τ, α) =
1

κ|η(τ)|2
[
e
− π
τ2

(|u−α−α
k
|2−(u−α−α

k
)2)
θ11(τ, u− α− α

k
)
]

×
[
e
− π
τ2

(|u−α
k
|2−(ū− ᾱ

k
)2)
θ11(τ̄ , ū− ᾱ

k
)
]

ZY (τ, α) =

√
k

τ2

1

|η(τ)|2
e
− kπ
τ2
|u|2

Zgh = τ2|η(τ)|4 . (A.2)

The further anomaly factor results from a chiral rotation of the fermions that is necessary
to write the action as a sum over independent sectors; we find

Za = e
π

2τ2
(uᾱ−ūα)

. (A.3)

This is, once again, a generalization of the result in [4], now taking the chemical potentials
to be complex. The exponent can be understood as coming from a chiral rotation of the

11The method is close to the one used in [24], for instance.
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fermions that depends on the chemical potential α, which measures the R-charge. This leads
to an anomaly exponent of the form ∫

AR ∧ dY u , (A.4)

where AR is the background gauge field coupling to the R-charge and dY u is the differential of
the twisted compact boson. Making use of the Riemann bi-linear identity and the definition
of the holonomies, we obtain the quoted result. Putting all this together, we find

χPI(τ, α) = e
πĉ(α2−|α|2)

τ2 k

∫
C

d2u

2iτ2

θ11(u− k+1
k
α)

θ11(u− α
k
)
e
− kπ
τ2
|u|2
e
−2πi

α2
τ2
u
. (A.5)

One can check that the α-dependent prefactor is such that under a modular transformation,
the path integral elliptic genus is modular invariant. The Hamiltonian expression for the
elliptic genus is simply obtained by omitting this prefactor (see e.g. [24]); we finally find

χ(τ, α) = k

∫
C

d2u

2iτ2

θ11(u− k+1
k
α)

θ11(u− α
k
)
e
− kπ
τ2
|u|2
e
−2πi

α2
τ2
u
. (A.6)

This calculation can easily be generalized to include the chemical potential β.

B Towards the Hamiltonian viewpoint

In section 2, we obtained the path integral form of the Liouville elliptic genus χL with
complexified chemical potentials α and β

χL(τ, α, β) =
∑
n,m

∫ 1

0

ds1ds2
θ11(τ, s1τ + s2 − α)

θ11(τ, s1τ + s2)
e2πiαn

k e
− kπ
τ2
|(n
k

+s1)τ+(m
k

+s2)+α
k
−β|2

× e−2πiα2((n
k

+s1)τ+(m
k

+s2)+α
k
−β) . (B.1)

In this appendix we will show how to rewrite this in a form that lends itself to a Hamiltonian
interpretation, following [2, 4] closely. We perform Poisson resummation on the m quantum
number in equation (B.1) and find:

χL(τ, α, β) =
√
kτ2

∑
n,w

∫ 1

0

ds1ds2
θ11(τ, s1τ + s2 − α)

θ11(τ, s1τ + s2)
e2πiαn

k e−2πiw(ks2+α−kβ1)

× q(kw−(n+ks1−kβ2))2/4kq̄(kw+(n+ks1−kβ2))2/4k . (B.2)

We have shifted the complexified chemical potentials into the exponents to easily expand
the denominator theta function following [2,4]. Using the expansions in equations (D.1) and
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(D.3), we obtain

χL(τ, α, β) = −
√
kτ2

1

η3

∑
m,r,n,w

∫ 1

0

ds1ds2(−1)mq(m−1/2)2/2(ze−2πis2q−s1)m−1/2(e2πis2qs1)r+1/2

Sr(q)z
n/ke−2πiw(ks2+α−kβ1)q(kw−(n+ks1−kβ2))2/4kq̄(kw+(n+ks1−kβ2))2/4k . (B.3)

The holonomy integral over s2 imposes the Gauss constraint r−m+ 1 = kw , leading to the
simplified expression

χL(τ, α, β) = −
√
kτ2

1

η3

∑
m,n,w

∫ 1

0

ds1(−1)mq(m−1/2)2/2zm−1/2Sm+kw−1(q)

zn/ke−2πiw(α−kβ1)qkws1q(kw−(n+ks1−kβ2))2/4kq̄(kw+(n+ks1−kβ2))2/4k . (B.4)

Since we know that the power of q̄ will be zero for the right-moving ground states, it is
advantageous to recombine the exponents of the last two factors as follows:

q(kw−(n+ks1−kβ2))2/4kq̄(kw+(n+ks1−kβ2))2/4k = q−nw+kw(β2−s1)(qq̄)(kw+n+ks1−kβ2)2/4k . (B.5)

The elliptic genus then simplifies to:

χL(τ, α, β) = −
√
kτ2

1

η3

∑
m,r,n,w

∫ 1

0

ds1(−1)mq(m−1/2)2/2zm−1/2Sm+kw−1(q)

zn/k−wykwq−nw(qq̄)(kw+n+ks1−kβ2)2/4k . (B.6)

Next we define the right-moving momentum variable v ≡ n+ kw to obtain:

χL(τ, α, β) = −
√
kτ2

1

η3

∑
m,r,v,w

∫ 1

0

ds1δr−m+1−kw(−1)mq(m−1/2)2/2zm−1/2Sr(q)

zv/k−2wykwqkw
2−vw(qq̄)(v+ks1−kβ2)2/4k . (B.7)

In order to linearize the exponent in s1, we use the familiar trick of introducing a new variable
s, which will later play the role of the momentum along the radial direction:

χL(τ, α, β) = −2τ2

η3

∑
m,r,v,w

∫ 1

0

ds1

∫ +∞

−∞
ds (−1)mq(m−1/2)2/2zm−1/2Sm+kw−1(q)

zv/k−2wykwqkw
2−vw(qq̄)s1(is+ v

2
− kβ2

2
)+ s2

k
+

(v−kβ2)2

4k . (B.8)

This in turn permits us to calculate the integral over the holonomy s1 in a convenient form:

χL(τ, α, β) =
1

πη3

∑
m,v,w

∫ +∞

−∞

ds

2is+ v − kβ2

(−1)mq(m−1/2)2/2zm−1/2Skw+m−1(q)

zv/k−2wykwqkw
2−vw[(qq̄)(is+ v

2
− kβ2

2
) − 1](qq̄)

s2

k
+

(v−kβ2)2

4k . (B.9)

23



As in [2,25], there is a simple way to extract the holomorphic piece and remainder term from
this expression. We begin with the “1” term in the square parenthesis. In this term, we do
a combined shift of variables:

s −→ s+
ik

2
v −→ v + k , (B.10)

which leads to the following expression:

χ1
L(τ, α, β) = − 1

πη3

∑
m,v,w

∫
R− ik

2

ds

2is+ v − kβ2

(−1)mq(m−1/2)2/2zm−1/2Skw+m−1(q)zq−kw

zv/k−2wykwqkw
2−vw(qq̄)(is+ v

2
− kβ2

2
)+ s2

k
+

(v−kβ2)2

4k . (B.11)

Now, we use the relation

Sm+kw−1(q) = 1− S−m−kw(q) . (B.12)

The part proportional to “1” we again split off and we refer to it as the remainder; we will
deal with this piece later. What remains of the term we denote χ1,S

L and it equals

χ1,S
L (τ, α, β) =

1

πη3

∑
m,v,w

∫
R− ik

2

ds

2is+ v − kβ2

(−1)mq(m−1/2)2/2zm−1/2zq−kw S−m−kw(q)

zv/k−2wykwqkw
2−vw(qq̄)(is+ v

2
− kβ2

2
)+ s2

k
+

(v−kβ2)2

4k . (B.13)

We now define m̃ = m+1, which allows us to absorb the extra z factor into the m̃ summation.
It also leads to an extra overall sign factor. Moreover there is an extra q-dependent factor
given by q1−m̃; putting all this together we find (after omitting the tilde on m)

χ1,S
L (τ, α, β) = − 1

πη3

∑
m,v,w

∫
R− ik

2

ds

2is+ v − kβ2

(−1)mq(m−1/2)2/2zm−1/2q−m+1−kw S−m−kw+1

zv/k−2wykwqkw
2−vw(qq̄)(is+ v

2
− kβ2

2
)+ s2

k
+

(v−kβ2)2

4k . (B.14)

We can now use another relation that the series S satisfies

qrSr(q) = S−r(q) . (B.15)

This allows us to write

χ1,S
L (τ, α, β) = − 1

πη3

∑
m,v,w

∫
R− ik

2

ds

2is+ v − kβ2

(−1)mq(m−1/2)2/2zm−1/2Sm+kw−1

zv/k−2wykwqkw
2−vw(qq̄)(is+ v

2
− kβ2

2
)+ s2

k
+

(v−kβ2)2

4k . (B.16)
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What is remarkable is that (B.9) can be combined with χ1,S above to give a contour integral,
which we denote

χL,hol =
1

πη3

∑
m,v,w

[∫
R
−
∫
R− ik

2

]
ds

2is+ v − kβ2

(−1)mq(m−1/2)2/2zm−1/2Sm+kw−1

zv/k−2wykwqkw
2−vw(qq̄)(is+ v

2
− kβ2

2
)+ s2

k
+

(v−kβ2)2

4k . (B.17)

This is a holomorphic contribution, since, at the location of the poles, the exponent of the
non-holomorphic piece vanishes. The piece that is left over will be denoted the remainder
and is the “1” term in χ1, given by

χL,rem = − 1

πη3

∑
m,v,w

∫
R− ik

2

ds

2is+ v − kβ2

(−1)mq(m−1/2)2/2zm−1/2zq−kw

zv/k−2wykwqkw
2−vw(qq̄)(is+ v

2
− kβ2

2
)+ s2

k
+

(v−kβ2)2

4k . (B.18)

To obtain the state sum interpretation, we translate the s-contour back onto the real axis
using the inverse transformations

s −→ s− ik

2
v −→ v − k . (B.19)

This also has the effect of removing the imaginary piece from the (qq̄) exponent along with
the left over zq−kw factor. As a result we obtain (after suitably relabeling the variables):

χL,rem = − 1

πη3

∑
m,v,w

∫
R

ds

2is+ v − kβ2

(−1)mq(m−1/2)2/2zm−1/2zv/k−2wykwqkw
2−vw(qq̄)

s2

k
+

(v−kβ2)2

4k .

(B.20)
Using the theta expansion in (D.1), this can be written as

χL,rem =
iθ11(τ,−α)

πη3

∑
v,w

∫
R

ds

2is+ v − kβ2

zv/k−2wykwqkw
2−vw(qq̄)

s2

k
+

(v−kβ2)2

4k . (B.21)

The final result for the elliptic genus is therefore a sum of two contributions, in (B.17) and
(B.21). We relate these results to the mathematics of completions of Appell-Lerch sums in
the bulk of the paper.

C Supersymmetric quantum mechanics

Suppose we have a quantum-mechanical system with Hamiltonian H:

H = p2 + Φ2 − [ψ†, ψ]Φ′(x) (C.1)
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where Φ(x) is a function of the variable x parameterizing the manifold on which the super-
symmetric particle propagates. The commutation relations:

[p, x] = −i {ψ†, ψ} = 1 (C.2)

lead to a supersymmetry algebra:
{Q,Q†} = H (C.3)

for the supercharges

Q = (p+ iΦ)ψ†

Q† = (p− iΦ)ψ . (C.4)

The Witten index in models with continuous part to their spectrum is given by:

Tr(−1)F e−βH = Nbos(E = 0)−Nferm(E = 0)

+

∫ +∞

Etreshhold

dEe−
E
T (ρbos(E)− ρferm(E)) . (C.5)

If we assume the quantum mechanics to live on a half-line (e.g. because of a steep potential
at x = 0 or x = −∞), then we have a scattering problem with bosonic and fermionic waves
bouncing of the wall. The supercharge relates the wave-functions of these excitations near
x = +∞ (where the potential is assumed to take the constant value Φ0):

Ψbos(x) ∝ eikx + abos(k)e−ikx

Ψferm(x) ∝ eikx + aferm(k)e−ikx

∝ (ik + Φ0)eikx + (−ik + Φ0)abos(k)e−ikx . (C.6)

That leads to a difference in spectral densities equal to:

ρbos(k)− ρferm(k) =
1

2πi

d

dk
log

abos
aferm

=
1

2π

(
1

ik + Φ0

− 1

ik − Φ0

)
. (C.7)

From the behaviour of the potential at infinity, we find that the continuum of states starts
at an energy E = Φ0. We can write the (generalized) Witten index as:

Tr(−1)F e−
H
T = Nbos(E = 0)−Nferm(E = 0) +

∫ +∞

0

dk

2π

(
1

ik + Φ0

− 1

ik − Φ0

)
e−

E(k2)
T

= Nbos(E = 0)−Nferm(E = 0) +

∫ +∞

−∞

dk

2π

1

ik + Φ0

e−
E(k2)
T .

(C.8)
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The conserved energy can be evaluated at infinity to be E = p2 +Φ2
0, such that this simplifies

further to:

Tr(−1)F e−
H
T = Nbos(E = 0)−Nferm(E = 0) +

∫ +∞

−∞

dk

2π

1

ik + Φ0

e−
1
T

(k2+Φ2
0) . (C.9)

Up to here, the analysis is a minor variation of [19]. What we wish to stress is that, when
we derive this weighted trace with respect to the constant Φ0, we find:

d

dΦ0

Tr(−1)F e−
H
T =

∫ +∞

−∞

dk

2π

(
− 1

(ik + Φ0)2
− 2

T

Φ0

ik + Φ0

)
e−

1
T

(k2+Φ2
0) , (C.10)

which through partial integration becomes:

d

dΦ0

[
Tr(−1)F e−

H
T

]
= − 1

πT

∫ +∞

−∞
dke−

1
T

(k2+Φ2
0)

= − 1√
πT

e−
Φ2

0
T . (C.11)

Thus, the derivative with respect to the constant in the potential is proportional to an
integral over the bosonic continuum, weighted as an ordinary partition function.

D Useful formulae

The theta function has a power series expansion

θ11(τ, α) = −i
∑
m∈Z

(−1)mq
(m− 1

2 )2

2 zm−
1
2 . (D.1)

The modular and elliptic properties of the theta function are given as follows:

θ11(−1

τ
,
α

τ
) = −i(−iτ)

1
2 e

πiα2

τ θ11(τ, α)

θ11(τ, α +mτ + n) = (−1)m+n q−
m2

2 z−m θ11(τ, α) . (D.2)

For the variable s1 in the interval s1 ∈ [0, 1] , the inverse theta function can be expanded as

η3(τ)

iθ11(τ, s1τ + s2)
=

∑
r∈Z

(e2πis2qs1)r+1/2Sr(q) ,

with Sr(q) =
∞∑
n=0

(−1)n q
n(n+2r+1)

2 . (D.3)

Another useful identity is

iθ11(τ, α)

1− zqp
=
∑
m∈Z

(−1)mq
1
2

(m− 1
2

)2

zm−
1
2S−m+p(q) . (D.4)
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See e.g. [25] for proofs of these relations. We also use the theta series with finite index,
defined as follows: ∑

j∈Z

qk(j+ r
2k

)2

z2k(j+ r
2k

) = θr,k(τ, α) . (D.5)

We have made use of the integral:

sgn(r + γ2)− Erf

(√
πτ2

k
(r + γ2)

)
=

2

π

∫
ds

2is+ r + γ2

e−
πτ2
k

(4s2+(r+γ2)2) . (D.6)
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