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We model a bipartite network in which links connect agents with public goods. Agents play a voluntary contribution game in which they decide how much to contribute to each public good they are connected to. We show that the problem of finding a Nash equilibrium can be posed as a non-linear complementarity one. The existence of an equilibrium point is established for a wide class of individual preferences. We then find a simple sufficient condition, on network structure only, that guarantees the uniqueness of the equilibria, and provide an easy procedure for building networks that respects this condition.

Introduction

In many social or geographic systems, multiple collective goods are produced voluntarily, simultaneously, and at different scales [START_REF] Olson | The Logic of Collective Action[END_REF]. Take for example an irrigated perimeter in which a farmer simultaneously experiments with a new irrigation technology and a new variety of crop. The information obtained from the new irrigation technology may be of interest to one group of farmers, and the results obtained from the new crop variety to another. Similarly, consider a consumer who experiences several new products, where in each case the experience may benefit a specific part of his familial and friendship relationships. Alternatively, a municipality may introduce a number of resource conservation programs at the same time. Water conservation programs may benefit municipalities within the same river basin, energy conservation programs may be advantageous to municipalities near the same production site, and soil conservation programs can have positive effects on neighboring municipalities, for example.

There exists no theoretic model to analyze the provision of many different public goods in social or geographic networks as exemplified above. However, the principle is simple: n agents must choose whether they contribute or not to m local public goods, but these agents interact only with their " neighbors ", in other words, there are local network relationships between the agents for each public good. Consideration of the structure of these relationships raises some interesting questions. Here we focus on two of the more important ones. How concave must the utility functions be to guarantee the existence of an equilibrium point? How is the uniqueness of the equilibrium related to the structure of the network?

To address these questions, we model a bipartite network in which links connect agents with public goods. 1 We investigate the voluntary contribution game in which agents decide how much to contribute to each public good to which they are connected. The agents receive benefits from their own and their neighbors' contributions according to a concave benefit function. 2 The cost of the contribution to each agent is a convex function of the total contribution from the agent. 3 Within this framework, we show that the search for an equilibrium may be posed as a non-linear complementarity problem [START_REF] Cottle | Nonlinear Programs with Positively Bounded Jacobians[END_REF][START_REF] Karamardian | The Nonlinear Complementarity Problem with Applications, Part 1[END_REF][START_REF] Karamardian | The Nonlinear Complementarity Problem with Applications, Part 1[END_REF][START_REF] Kolstad | Necessary and Sufficient Conditions for Uniqueness of Cournot Equilibrium[END_REF].

We herein contribute to two main areas of research. First, we study the voluntary and simultaneous provision of two or more public goods. Much of the work in this field has been concerned with neutrality problems [START_REF] Kemp | A Note on the Theory of International Transfers[END_REF][START_REF] Bergstrom | On the Private Provision of Public Goods[END_REF][START_REF] Cornes | On the Private Provision of Two or More Public Goods[END_REF], problems of equilibrium existence [START_REF] Bergstrom | On the Private Provision of Public Goods[END_REF][START_REF] Cornes | On the Private Provision of Two or More Public Goods[END_REF], and efficiency problems [START_REF] Cornes | Free Riding and the Inefficiency of the Private Production of Pure Public Goods[END_REF][START_REF] Cornes | On the Private Provision of Two or More Public Goods[END_REF]. We extend the basic model of two or more public goods to a network of agents and public goods. 4 In other words, we consider a game involving the provision of many public goods, in which the agents have multidimensional and heterogeneous strategy spaces. Given such a game, we show how the existence of a unique equilibrium is conditioned by the shapes of the individual preferences and the architecture of the network.

The second related area of literature is the analysis of network games with strategic substitutes. This class of games, pioneered among others by [START_REF] Ballester | Who's Who in Networks. Wanted: The Key Player[END_REF], encompasses various well known games. 5 Under complete information 6 , a uniqueness condition that depends on network structure only is established for three cases: linear best responses and unipartite network [START_REF] Corbo | The Importance of Network Topology in Local Contribution Games[END_REF][START_REF] Ballester | Interactions with Hidden Complementarities[END_REF][START_REF] Bramoullé | Strategic Interaction and Networks[END_REF], linear best responses and bipartite network [START_REF] Ilkiliç | Networks of Common Property Resources[END_REF], and non-linear best responses and unipartite network [START_REF] Rébillé | Equilibrium Existence and Uniqueness in Network Games with Additive Preferences[END_REF]. Here we also study a fourth case, of non-linear best responses and bipartite network, which generalizes the three other cases. Using techniques borrowed from non-negative matrix theory, we obtain a uniqueness condition that depends only on the structure of the graph.

In this paper, we are concerned with the existence and uniqueness of a pure-strategy Nash equilibrium (henceforth, PSNE) in a network game involving the provision of many public goods. In Section 2, we define the voluntary contribution game. In Section 3, the existence of a PSNE is established by requiring the appropriate shape in the individual preferences.

getary constraint (see, e.g., [START_REF] Bergstrom | On the Private Provision of Public Goods[END_REF][START_REF] Bramoullé | Public Goods in Networks[END_REF]. 4 The basic model of two or more public goods is a special case of our model when the network is complete and the substitutability between contributions is perfect.

5 Network games of public good provision belong to the class of games of strategic substitutes and positive externalities (see, e.g., [START_REF] Bramoullé | Public Goods in Networks[END_REF][START_REF] Galeotti | Network Games[END_REF]. Network games of Cournot competition and common property resources can be defined as games of strategic substitutes and negative externalities (see, e.g., [START_REF] Ilkiliç | Networks of Common Property Resources[END_REF][START_REF] Bramoullé | Strategic Interaction and Networks[END_REF].

6 See [START_REF] Galeotti | Network Games[END_REF] for the analysis of network games under incomplete information.

In Section 4, we show that the voluntary contribution game admits a unique PSNE whenever the bipartite network is sufficiently sparse. In Section 5, we apply our results to networks in which the number of public goods equals the number of agents. Section 6 concludes. All the proofs are relegated to the Appendix.

A Model

Consider a model where there are m public goods p 1 , . . . , p m and n agents a 1 , . . . , a n . They are embedded in a network that links agents with public goods. We represent the network as a bipartite graph. 7An undirected bipartite graph g = P ∪ A, L consists of a set of nodes formed by public goods P = {p 1 , ..., p m } and agents A = {a 1 , ..., a n }, and a set of links L, each link connecting an agent with a public good. A link between a i and p j is denoted as ij. 8 We say that an agent a i is connected to a public good p j if there is a link between a i and p j . We will assume that an agent can choose whether or not to contribute to a public good if and only if he is connected to it. Let r(g) be the number of links in L.

Given a graph g, we will denote N g (p j ) to be the set of agents connected to p j , i.e., N g (p j ) = {a i ∈ A such that ij ∈ L} , and similarly N g (a i ) is the set of public goods to which a i is connected, i.e.,

N g (a i ) = {p j ∈ P such that ij ∈ L} .
Then,

a i ∈A |N g (a i )| = p j ∈P |N g (p j )| = |L| = r(g).
For all a i , we note r i (g) = |N g (a i )| and for all p j , r j (g) = |N g (p j )|. We will assume, without loss of generality, that each agent is connected to at least one public good and vice versa, i.e., r i (g) and r j (g) are in N * for all a i and for all p j .9 

We now define the column vector that shows the contributions flowing at each link in L. Given a graph g, let x g be the column vector of contribu-

a 1 a 2 p 1 p 2 g 1 a 1 a 2 a 3 p 1 p 2 g 2
Figure 1: Networks with two public goods.

tions.10 Hence, x g is the link by link profile of contributions and has size r(g).

In the vector x g , the links are sorted in lexicographic order: the contribution x ij is listed above the contribution x kl when i < k or when i = k and j < l.

For the graphs g 1 and g 2 given in Figure 1,

x g 1 =      x 11 x 12 x 21 x 22      and x g 2 =      x 11 x 21 x 22 x 32     
.

For a given graph g, the utility function of agent a i is U i (x g ). We will assume that the utility functions are additively separable into concave benefit and convex cost functions, all defined on R + and all continuously differentiable. For a given x g ∈ R r(g)

+ , U i (x g ) = p j ∈Ng(a i ) b ij   x ij + a k ∈Ng(p j )\{a i } λ i kj x kj   -c i   p j ∈Ng(a i ) x ij   .
The first term is the (concave) benefit b ij received from a public good p j and summed over the public goods to which a i is connected. The parameter λ i kj ≥ 0 reflects the intensity of the positive externality received by agent a i from agent a k 's contribution to public good p j .11 The second term is the (convex) cost c i incurred by a i . The utility function, although separable in terms of costs and benefits, is not separable with respect to each public good.

In particular, the marginal utility from x ij does depend on the contributions by a i to public goods other than p j . For example in graph g 1 , the contribution by agent a 1 to public good p 1 depends on his contribution to the other public good p 2 .

Consider the following voluntary contribution game. Given a graph g, each agent a i maximizes his utility function with respect to x ij constrained to be non-negative for all p j ∈ N g (a i ). The set of players is therefore the set of agents A = {a 1 , . . . , a n }, and the strategy space of agent a i is (x

g ) i ∈ R r i (g) + . For a contribution profile x g ∈ R r(g) + , each agent a i earns payoffs U i (x g ) ∈ R.
We analyze the existence and the uniqueness of the PSNE when the individual decisions are simultaneous.

Equilibrium Existence

In network games with strategic substitutes, the question of existence of a PSNE has received little attention. This is because individual preferences are generally specified such that best response functions are piece-wise linear, regardless of whether the agents' strategy space is uni- [START_REF] Bramoullé | Public Goods in Networks[END_REF][START_REF] Ballester | Interactions with Hidden Complementarities[END_REF][START_REF] Bramoullé | Strategic Interaction and Networks[END_REF] or multidimensional [START_REF] Ilkiliç | Networks of Common Property Resources[END_REF]. In this section, the existence of a PSNE in a network game of strategic substitutes (i.e., the voluntary contribution game) is established when the strategy spaces of the agents are multidimensional and heterogeneous, and the set of best response functions define non-linear mappings.

Let µ ij be the Karush-Kuhn-Tucker's multiplier associated with the constraint x ij ≥ 0. For all links ij ∈ L, the first order conditions are given by b

′ ij   x ij + a k ∈Ng(p j )\{a i } λ i kj x kj   -c ′ i   p j ∈Ng(a i ) x ij   + µ ij = 0 with µ ij x ij = 0, µ ij ≥ 0.
We then deduce that all PSNEs admitted by the voluntary contribution game are solutions to a non-linear complementarity problem. 12,13 12 Inequalities between vectors implie inequalities between components. The superscript T denotes the transpose of a vector or a matrix. 13 The complementarities in the network are between the contributions, which are either strategic substitutes or complements. For example in the complete graph g 1 (Fig. 1), x 11 and x 21 are strategic substitutes. They both participate in the provision of p 1 . The contribution from one agent decreases the marginal benefit from p 1 . This in turn decreases Property 1. Given a graph g, a profile x g ∈ R r(g) + is a PSNE of the voluntary contribution game if and only if x g satisfies

x g ≥ 0, b ′ (D g x g ) -c ′ (M g x g ) ≤ 0, x g T [b ′ (D g x g ) -c ′ (M g x g )] = 0,
where for all links ij, (b

′ (D g x g )) ij = b ′ ij (x ij + a k ∈Ng(p j )\{a i } λ i kj x kj ) and (c ′ (M g x g )) ij = c ′ i ( p j ∈Ng(a i ) x ij ).
For any graph g, the columns and the rows in D g and M g are the links in g. In both matrices, the links are classified in the same order as in x g : the rows (resp. the columns) are sorted such that the link ij is listed above (resp. to the left of) the link kl when i < k or when i = k and j < l. Then,

D g = [d ij,kl ] r(g)×r(g) is such that d ij,kl =          1, for ij, kl ∈ L s.t. ij = kl; λ i kl , for ij, kl ∈ L s.t. i = k and j = l; 0, for ij, kl ∈ L s.t. j = l.
We call D g the matrix of peer influences. For example, let us take D g 1 and D g 2 .

D g 1 =      1 0 λ 1 21 0 0 1 0 λ 1 22 λ 2 11 0 1 0 0 λ 2 12 0 1      and D g 2 =      1 λ 1 21 0 0 λ 2 11 1 0 0 0 0 1 λ 2 32 0 0 λ 3 22 1      .
Therefore, D g will generally be asymmetric, while M g is symmetric by construction. More precisely,

M g = [m ij,kl ] r(g)×r(g) is such that m ij,kl =    1, for ij, kl ∈ L s.t. i = k; 0, for ij, kl ∈ L s.t. i = k.
We call M g the matrix of personal influences. For example, let us take M g 1 and M g 2 .

M g 1 =      1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1      and M g 2 =      1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1     
.

the incentive of the other agent to participate in the provision of p 1 . Moreover, x 21 and x 22 are also strategic substitutes. They both come from a 2 . The contribution to one public good increases the marginal cost incurred by a 2 . This in turn decreases the incentive of a 2 to participate in the other public good. So x 11 and x 21 , as well as x 21 and x 22 , are strategic substitutes. This makes x 11 and x 22 complements.

The structure of any graph g is characterized by both M g and D g . We will make use of these matrices in the next section, for the uniqueness problem. Now, for the existence of a solution to the voluntary contribution game, we have the following hypothesis.

Assumption 1 (Technical assumptions).

(A1.1) For all links ij and for all agents

a i , b ′ ij (0) -c ′ i (0) > 0. (A1.
2) For all links ij and for all agents

a i , b ′ ij (∞) -c ′ i (∞) < 0. (A1.
3) For all links ij and for all agents a i , b ij and c i are twice continuously differentiable, with b ij strictly concave and c i convex.

Consideration of Property 1 makes these technical assumptions very intuitive. If A1.1 is not satisfied, then agent a i will not provide any contribution to public good p j , and link ij can be ignored. If A1.2 is not satisfied, then agent a i 's optimization problem with respect to his contribution to public good p j has no solution. A1.3 reflects the convexity of preferences. In other words, A1.1, A1.2 and A1.3 guarantee that each best response defines a continuous function from a compact and convex set to itself. Then, we can rely on Brouwer fixed-point theorem to establish the following result.

Theorem 1 (Existence Theorem). Given a graph g, the voluntary contribution game admits a PSNE whenever Assumption 1 is satisfied.

This result generalizes [START_REF] Bergstrom | On the Private Provision of Public Goods[END_REF]'s existence result to a network of agents and public goods. It also extends [START_REF] Rébillé | Equilibrium Existence and Uniqueness in Network Games with Additive Preferences[END_REF]'s existence result to the multidimensional case. Furthermore, when the benefit and cost functions are quadratic (as, e.g., in [START_REF] Ilkiliç | Networks of Common Property Resources[END_REF], it can be shown that the technical assumptions are always fulfilled.

Corollary 1. Let the benefit function of link ij and the cost function of agent

a i be such that b ij (x) = α ij x - η 2 x 2 and c i (x) = δ i 2 x 2 for x ∈ R + , where α ij , η, δ i > 0.
14 Given a graph g, the voluntary contribution game always admits a PSNE. 14 In that case, a profile

x g ∈ R r(g) +
is a PSNE of the voluntary contribution game if and only if x g satisfies

x g ≥ 0, α g -(ηD g + C g M g ) x g ≤ 0, x g T [α g -(ηD g + C g M g ) x g ] = 0,

Equilibrium Uniqueness

We now establish a sufficient condition for a unique PSNE to the voluntary contribution game. This question has been studied in detail for the case of a single public good. Several conditions have been established, whether the best replies are linear (see, e.g., [START_REF] Bloch | The Effects of Spillovers on the Provision of Local Public Goods[END_REF][START_REF] Ballester | Interactions with Hidden Complementarities[END_REF][START_REF] Bramoullé | Strategic Interaction and Networks[END_REF] or non-linear (see, e.g., [START_REF] Rébillé | Equilibrium Existence and Uniqueness in Network Games with Additive Preferences[END_REF]. However, the more realistic case of several public goods has received much less attention. When there are two or more public goods and the best replies are non-linear, we shall establish the uniqueness of the equilibria using diagonally dominant matrices.

Definition 1 (Hadamard). A real matrix

A = [a ij ] n×n is said to be row diagonally dominant (rdd) if |a ii | ≥ j =i |a ij |, i = 1, . . . , n,
and strictly row diagonally dominant (srdd) if a strict inequality holds for all i.

Square matrices with dominant diagonals play a key role in mathematical economics. This is essentially due to the fact that all the principal minors of a srdd matrix with positive diagonal entries are positive (Berman and Plemmons, 1994, Theorem (2.3) p. 134). All diagonally dominant matrices therefore fall within the scope of the well known Hawkins-Simon condition that guarantees the existence of a solution in the input-output system. They also serve as a basis for establishing the stability of a competitive market (see, e.g., [START_REF] Mckenzie | Matrices with Dominant Diagonal and Economic Theory[END_REF]. 15 With this definition in mind, we impose conditions on the structure of the network only, under which the voluntary contribution game admits at most one PSNE. In contrast with classic results on the uniqueness of solutions

where α g = [α ij ] 1×r(g) and C g = [c ij,kl ] r(g)×r(g) is such that c ij,kl = δ i , for ij, kl ∈ L s.t. ij = kl, 0, for ij, kl ∈ L s.t. ij = kl.
In α g , the links (i.e., the rows) are sorted as in x g . In C g , the links (i.e., the rows and the columns) are sorted as in M g and D g . [START_REF] Ilkiliç | Networks of Common Property Resources[END_REF] studied a particular version of this problem, where

α ij = α for all ij ∈ L, η = 2β, δ i = γ for all a i ∈ A and λ i kj = 1/2 for all ij, kj ∈ L, k = i.
15 In this literature, the usual definition of a diagonal dominant matrix is slightly more general than that adopted herein (see McKenzie, 1960, p. 47).

to the non-linear complementarity problem, we impose no conditions on the mapping (here, the vector-valued function of marginal utilities). 16 We reason by contradiction and obtain the following result.

Theorem 2 (Uniqueness Theorem). Let Assumption 1 be satisfied. Given a graph g, the voluntary contribution game admits a unique PSNE whenever

r i (g) ≤ 2, i = 1, . . . , n,
and

a k ∈Ng(p j )\{a i } λ i kj < 1 for all ij ∈ L.
For the proof, we show that the non-linear complementarity problem associated with the voluntary contribution game (see Property 1) admits at most one solution whenever M g is rdd and D g is srdd. Due to its Boolean nature, the matrix of personal influences M g is rdd if and only if each agent is connected to at most two public goods, i.e.,

r i (g) ≤ 2, i = 1, . . . , n.
This does not mean, however, that there should be a maximum of two public goods in the graph; this depends on the number of connections per agent. For example, in the four graphs given in Figure 2, there are three public goods but the structure of graphs g 3 and g 4 comply with the first assumption of Theorem 2 (i.e., M g 3 and M g 4 are rdd). By contrast, graphs g 5 and g 6 do not, because each of these graphs contains at least one agent with three connections.

Furthermore, we can always add a new public good to a graph respecting the condition r i (g) ≤ 2. If there exist two agents with only one connection, the addition of a new public good can be achieved simply by creating a new connection from these agents to the new public good. Otherwise, the addition of a new public good requires the introduction of new agents in the graph. Graphs g 3 ′ and g 4 ′ given in Figure 3 illustrate these two situations.

a 1 a 2 a 3 a 4 p 1 p 2 p 3 g 3 a 1 a 2 a 3 p 1 p 2 p 3 g 4 a 1 a 2 p 1 p 2 p 3 g 5 a 1 a 2 a 3 p 1 p 2 p 3 g 6
Figure 2: Networks with three public goods. Graphs g 3 and g 4 support the first condition of Theorem 2, while g 5 and g 6 do not.

The matrix of peer influences D g is srdd if and only if each agent does not benefit too much from his peers, i.e.,

a k ∈Ng(p j )\{a i } λ i kj < 1
for all ij ∈ L. Geometrically, these conditions on M g and D g imply that the voluntary contribution game admits a unique PSNE whenever the bipartite network is sufficiently sparse. If one agent is connected to three (or more) public goods17 or if peer influences are too high, then the voluntary contribution game might admit multiple PSNEs. When there are only two public goods and peer influences are identical for a given public good, we have the following stronger results.

Corollary 2. Let Assumption 1 be satisfied, and let λ i kj = λ j for all ij, kj ∈ L, k = i.

(i) Given a graph g where P = {p 1 , p 2 }, the voluntary contribution game admits a unique PSNE whenever

a 1 a 2 a 3 a 4 p 1 p 2 p 3 g 3 new public good a 1 a 2 a 3 a 4 p 1 p 2 p 3 p 4 g 3 ′ a 1 a 2 a 3 p 1 p 2 p 3 g 4 new public good a 1 a 2 a 3 a 4 a 5 p 1 p 2 p 3 p 4 g 4 ′
λ j < 1 r j (g) -1 , j = 1, 2.
(ii) Given a complete graph g where P = {p 1 , p 2 }, the voluntary contribution game admits a unique PSNE whenever

λ j < 1 n -1 , j = 1, 2.
For instance, graph g 2 falls within the scope of part (i) of Corollary 2, while part (ii) applies to graph g 1 .

Application: the case n = m

We now apply our results to networks in which the number of agents n equals the number of public goods m. We begin by specifying the nature of the public goods we consider in this section. Definition 2. A public good p j is a collective good if at least two agents participate in its provision, i.e., r j (g) ≥ 2. A public good p j is an individual good if only one agent participates in its provision, i.e., r j (g) = 1.

The structure of a graph g = P ∪ A, L indicates which public goods are collectively produced, and which are produced individually. Let C and I denote the sets of collective and individual goods, respectively. Then, the set of public goods is the union of the sets of collective and individual goods, P = C ∪ I. Let c denote the number of collective goods. Then c = |C| and 0 ≤ c ≤ m.

The first condition of Theorem 2 entails that, in a graph admitting a unique PSNE, no agent should have three or more connections, i.e., r i (g) ≤ 2 for all a i ∈ A. Then necessarily, the number of public goods has an upper bound given by twice the number of agents, m ≤ 2n. In particular, m = 2n if and only if each agent is connected to two individual goods, i.e., m = |I| or c = 0. In the same vein, the number of collective goods has an upper bound given by the number of agents, c ≤ n. Indeed, for each collective good p j ∈ C, we have r j (g) ≥ 2, so r(g) = j r j (g) ≥ 2c. Moreover, the number of links cannot exceed twice the number of agents, i.e., r(g) = i r i (g) ≤ 2n, because each agent has at most two connections. Hence c ≤ n, or in other words, the number of collective goods in a graph admitting a unique PSNE cannot exceed the number of agents.

We now focus on the case in which the number of collective goods equals the number of agents, c = n. So r j (g) = r i (g) = 2 for all p j and for all a i . A straightforward way of building a bipartite graph with c = n is to consider the circular bipartite graph C n,n or the circular (unipartite) graph C n over the set of agents.

For i = 1, . . . , n -1, agent a i is connected to public goods p i and p i+1 and agent a n is connected to public goods p n and p 1 . The collective good p j is therefore provided by agents a j and a j-1 for j = 2, . . . , c, and p 1 is provided by agents a 1 and a n . Hence, any circular bipartite graph can be identified with a circular graph where nodes are identified with agents and links with public goods. For example, g 3 ′ is similar to the c = n = 4 circular bipartite graph C 4,4 , which is identified with graph C 4 (Fig. 4).

Circular bipartite graphs provide a simple procedure for building c = n bipartite graphs. Let C n 1 ,n 1 , . . . , C n K ,n K be K circular bipartite graphs with

C n k ,n k = P k ∪ A k , L k . Then, we may build a c 1 + . . . + c K = n 1 + . . . + n K bipartite graph C n 1 ,n 1 + . . . + C n K ,n K = P ∪ A, L by disjoint union forming with P = ∪ K k=1 P k , A = ∪ K k=1 A k and L = ∪ K k=1 L k .
For instance, two of the possible representations of the c = n = 6 bipartite graph are given by C 6,6 and C 4,4 + C 2,2 (Fig. 5). The converse also holds, i.e., any c = n bipartite graph is a disjoint union of circular bipartite graphs. That is, for any c = n bipartite graph g, there are circular bipartite graphs C n 1 ,n 1 , . . . , C n K ,n K with K k=1 n k = n and n k ≥ 2 for all k such that g = C n 1 ,n 1 + . . . + C n K ,n K . This result can be formalized as follows.

Proposition 1. Let g = P ∪ A, L be a graph. Then, g is a c = n bipartite graph if and only if there exists circular bipartite graphs

C n 1 ,n 1 , . . . , C n K ,n K such that g = C n 1 ,n 1 + . . . + C n K ,n K .
Moreover, the decomposition is unique.

Nevertheless, for a given c = n, there exist different possible decompositions into circular bipartite graphs. For instance, a 6 = 6 bipartite graph can be obtained through

C 6,6 , C 4,4 + C 2,2 , C 3,3 + C 3,3 or C 2,2 + C 2,2 + C 2,2 .
This question is intimately related to the partition of an integer. 18Any integer n can be partitioned into sums of integers. Let p(n) be the number of (unordered) partitions of n. Formally,

p (n) = |{(n 1 , . . . , n K ) : n = n 1 + . . . + n K , n 1 ≥ . . . ≥ n K ≥ 1, n k ∈ N}| ,
for n ≥ 1. Similarly, the number of (unordered) decompositions of a circular c = n bipartite graph is given by p 2 (n), the number of (unordered) partitions of n with classes of size at least 2,

p 2 (n) = |{(n 1 , . . . , n K ) : n = n 1 + . . . + n K , n 1 ≥ . . . ≥ n K ≥ 2, n k ∈ N}| , for n ≥ 2. The connection is made through p 2 (n) = p(n) -p(n -1), that is p(n) = p(n -1) + p 2 (n).
Indeed, a partition of n either includes a class of size 1 or it does not. If the partition includes a class of size 1, then the partition without this class of size 1 is a partition of n -1. Otherwise, there is no class of size 1 in the partition, so each class is of size at least 2. Alternatively, we have

p (n) = (p (n) -p (n -1)) + . . . + (p (2) -p (1)) + p (1) = p 2 (n) + . . . + p 2 (2) + 1.
Any partition of n may contain l ≤ n-2 classes of size 1, thus n-l remains to be shared into classes of size at least 2, and hence p 2 (n-l) possible partitions. Otherwise, the partition contains at least n -1 classes of size 1, in which case it coincides with the trivial partition into n classes of size 1. Table 1 illustrates this result when c = n ≤ 6. Finally, let us provide an approximation of p 2 (n). Hardy and Ramanujan (1917, Eq. (5.22) p. 130) establish the following asymptotic formula for p(n),

p (n) = exp    π 2n 3 (1 + ǫ n )    where lim n ǫ n = 0, that is, ln p (n) ∼ π 2n 3 .
We may wonder if one can obtain a similar one for p 2 (n). The answer is affirmative, in fact p 2 (n) admits the same asymptotic formula. 4 + 2

C 3,3 + C 3,3 3 + 3 C 2,2 + C 2,2 + C 2,2 2 + 2 + 2 5 C 5,5 1 + 5 C 3,3 + C 2,2 1 + 3 + 2 4 C 4,4 1 + 1 + 4 C 2,2 + C 2,2 1 + 1 + 2 + 2 3 C 3,3 1 + 1 + 1 + 3 2 C 2,2 1 + 1 + 1 + 1 + 2 1 1 + 1 + 1 + 1 + 1 + 1
Proposition 2 (Asymptotic Enumeration). For an integer n ≥ 2, let p 2 (n) denote the number of unordered partitions of n with classes of size at least 2. Then,

ln p 2 (n) ∼ π 2n 3 . Hence, ln p 2 (n) ∼ ln p(n).
Therefore, the number of decompositions of a c = n bipartite graph into circular bipartite graphs approaches exp {π 2n 3 } as the number of public goods (and the number of agents) approaches infinity.

Conclusion

We have analyzed a network game of public good provision in which there are many public goods. Under conditions on individual preferences that are as weak as possible, we show that there exists a unique PSNE whenever the bipartite network is sufficiently sparse. A simple procedure to build networks respecting the uniqueness condition is finally established for graphs in which the number of agents equals the number of public goods.

These results have been derived for the (general) case of network games with non-linear best replies and multidimensional strategy spaces. To our knowledge, all previous results on equilibrium existence for network games of the provision of one public good are special cases of our existence result. We believe, however, that the main contribution of the paper is Theorem 2, because this result is the first to provide a sufficient condition, that depends on network structure only, for the uniqueness of equilibria in network games of the provision of many local public goods. Interestingly, it applies to all games that can be studied through the same complementarity problem as that described by Property 1. This is the case, for instance, for network games of strategic substitutes and negative externalities such as the game of Cournot competition or the water extraction game (see, e.g., [START_REF] Okuguchi | The Cournot Oligopoly and Competitive Equilibria as Solutions to Non-Linear Complementarity Problems[END_REF][START_REF] Kolstad | Necessary and Sufficient Conditions for Uniqueness of Cournot Equilibrium[END_REF][START_REF] Ilkiliç | Networks of Common Property Resources[END_REF].

Our analysis paves way for further research. Firstly, the question should be explored of whether a sharper condition for uniqueness can be obtained. In particular, does the P -matrix condition established when there is only one public good hold when there are two or more public goods? Answering this question might require the use of other algebraic techniques such as, e.g., determinantal inequalities for the product and sum of matrices. Secondly, given that we know when the equilibrium exists and is unique, it may be possible to study the structure of the equilibrium. When the best replies are linear, numerous authors on network games have expressed the equilibrium in terms of the Katz-Bonacich centrality vector (see, e.g., [START_REF] Ballester | Who's Who in Networks. Wanted: The Key Player[END_REF][START_REF] Ballester | Interactions with Hidden Complementarities[END_REF]. When the best replies are non-linear, the relationship between the equilibrium and the Katz-Bonacich centrality vector is less obvious, but this question nevertheless remains an important challenge. Then, it may be interesting to implement our model in an experiment, in order to test whether the behaviors conform well with theoretical predictions.

Agent a i 's utility is given by

U i (x g ) = p j ∈Ng(a i ) b ij (x ij + S -i,j ) -c i (x ij + C i,-j )
By assumption, b ij is strictly concave and c i is convex, so b ′ ij -c ′ i is strictly decreasing and continuous. Given S -i,j and C i,-j , the best response for each link ij ∈ L is

φ ij (S -i,j , C i,-j ) =            b ′ ij (. + S -i,j ) -c ′ i (. + C i,-j ) -1 (0) , if b ′ ij (0 + S -i,j ) -c ′ i (0 + C i,-j ) > 0; 0, otherwise. Since b ′ ij (. + S -i,j ) ≤ b ′ ij (.) and c ′ i (. + C i,-j ) ≥ c ′ i (.), we have b ′ ij (. + S -i,j ) -c ′ i (. + C i,-j ) ≤ b ′ ij (.) -c ′ i (.) , so φ ij (S -i,j , C i,-j ) ≤ φ ij (0, 0) = x * ij .
It follows that the autarkic contribution is always greater than the equilibrium contribution in a bipartite network.

We now check that the best response is continuous w.r.t. S -i,j and C i,-j . Let S -i,j , C i,-j ≥ 0.

1 st case: b ′ ij (0 + S -i,j ) -c ′ i (0 + C i,-j ) < 0. Then, φ ij (S -i,j , C i,-j ) = 0. Since b ′
ij and c ′ i are continuous, there exists some neighborhood V of S -i,j and W of

C i,-j such that b ′ ij (S)-c ′ i (C) < 0 for S ∈ V and C ∈ W . Thus, φ ij (S, C) = 0 for S ∈ V and C ∈ W , so φ ij is continuous at S -i,j and C i,-j . 2 nd case: b ′ ij (0 + S -i,j ) -c ′ i (0 + C i,-j ) ≥ 0. By definition, (x ij , S -i,j , C i,-j ) with x ij = φ ij (S -i,j , C i,-j ) is a solution to the equation z ij (x, S, C) = b ′ ij (x + S) -c ′ i (x + C) = 0.
Now, we observe that

∂z ij ∂x (x ij , S -i,j , C i,-j ) = b ′′ ij (x ij + S -i,j ) -c ′′ i (x ij + C i,-j ) < 0
by strict-concavity, so in accordance with the implicit function theorem, there exists some differentiable function ζ such that

ζ (S -i,j , C i,-j ) = x ij
on some open neighborhood V of (S -i,j , C i,-j ), satisfying

z ij (ζ(S, C), S, C) = b ′ ij (ζ(S, C) + S) -c ′ i (ζ(S, C) + C) = 0.
Thus, φ ij (S -i,j , C i,-j ) = x ij = ζ (S -i,j , C i,-j ) on V ∋ (S -i,j , C i,-j ), so φ ij is continuous at S -i,j and C i,-j .

Consider the mapping Φ :

ij∈L 0, x * ij → ij∈L 0, x * ij x g →   φ ij   a k ∈Ng(p j )\{a i } λ i kj x kj , p l ∈Ng(a i )\{p j } x il     ij
Φ is continuous w.r.t. x g since φ ij , x g → a k ∈Ng(p j )\{a i } λ i kj x kj and x g → p l ∈Ng(a i )\{p j } x il are continuous for all ij. According to Brouwer fixed-point theorem, Φ admits a fixed-point x g which is a PSNE of the voluntary contribution game, by construction.

The following lemma plays an important role in establishing our uniqueness result.

Lemma 1. Let g be a graph. For all x 1 g , x 2 g in R r(g) + with x 1 g = x 2 g , there exists a link ij such that

x 1 ij -x 2 ij ∂U i ∂x ij x 1 g - ∂U i ∂x ij x 2 g < 0
whenever M g is rdd and D g is srdd.

For its proof, we need to recall the class of P -matrices.

Definition 3 [START_REF] Fiedler | On Matrices with Non-Positive Off Diagonal Elements and Positive Principal Minors[END_REF]). An n × n real matrix A is said to be a P-matrix if there exists k such that x k (Ax) k > 0 for all nonzero x in R n .

A srdd matrix with positive diagonal entries is a P -matrix (see Berman and Plemmons, 1994, Theorem (2.3) p. 134, M 35 implies A 5 ).

Proof of Lemma 1. Let x 1 g and x 2 g be two arbitrary vectors in R r(g)

+ . For each link ij, let ψ ij (ε) = ∂U i ∂x ij εx 1 g + (1 -ε) x 2 g . Since R r(g) + is convex, εx 1 g + (1 -ε)x 2 g ∈ R r(g) +
for all 0 ≤ ε ≤ 1. We have

ψ ij (1) -ψ ij (0) = ∂U i ∂x ij x 1 g - ∂U i ∂x ij x 2 g , ψ ′ ij (ε) = ∇ ∂U i ∂x ij (x g ) x 1 g -x 2 g ,
where

x g = εx 1 g + (1 -ε)x 2 g ∈ R r(g) + and ∇ ∂U i ∂x ij (x g ) is the gradient of ∂U i ∂x ij at x g . Then, ∇ ∂U i ∂x ij (x g
) is a row vector of size r(g), in which the columns (i.e., the links) are sorted as in (the transpose of) x g . Applying the mean-value theorem on ψ ij , we have

ψ ij (1) -ψ ij (0) = ψ ′ ij (ε ij ) = ∇ ∂U i ∂x ij x[ij] g x 1 g -x 2 g for some 0 < εij < 1, where x[ij] g = εij x 1 g + (1 -εij )x 2 g ∈ R r(g) + . Thus, for each link ij, ∂U i ∂x ij x 1 g - ∂U i ∂x ij x 2 g = J U ′ (x g ) x 1 g -x 2 g ij
where J U ′ (x g ) is the r(g)×r(g) " Jacobian " matrix19 of the marginal utilities, where the rows and the columns (i.e., the links) are sorted as in M g and D g . Then, J U ′ (x g ) is such that each row ij is given by the gradient

∇ ∂U i ∂x ij (x [ij] g ). 20 J U ′ (x g1 ) =            ∇ ∂U 1 ∂x 11 x[11] g1 ∇ ∂U 1 ∂x 12 x[12] g1 ∇ ∂U 2 ∂x 21 x[21] g1 ∇ ∂U 2 ∂x 22 x[22] g1            =            ∇ ∂U 1 ∂x 11 ε11 x 1 g1 + (1 -ε11 ) x 2 g1 ∇ ∂U 1 ∂x 12 ε12 x 1 g1 + (1 -ε12 ) x 2 g1 ∇ ∂U 2 ∂x 21 ε21 x 1 g1 + (1 -ε21 ) x 2 g1 ∇ ∂U 2 ∂x 22 ε22 x 1 g1 + (1 -ε22 ) x 2 g1            . Now, given ∂U i ∂x ij (x [ij]
g ) where ij ∈ L, we observe that

∂ 2 U i ∂x kl ∂x ij x[ij] g =                                                        b ′′ ij   x[ij] ij + a k ∈Ng(p j )\{a i } λ i kj x[ij] kj   -c ′′ i   p j ∈Ng(a i ) x[ij] ij   , for kl ∈ L s.t. kl = ij; -c ′′ i   p j ∈Ng(a i ) x[ij] ij   , for kl ∈ L s.t. k = i and l = j; λ i kj b ′′ ij   x[ij] ij + a k ∈Ng(p j )\{a i } λ i kj x[ij] kj   ,
for kl ∈ L s.t. k = i and l = j; 0, for kl ∈ L s.t. k = i and l = j.

Hence,

J U ′ (x g ) = B (x g ) D g -C (x g ) M g ⇐⇒ -J U ′ (x g ) = C (x g ) M g -B (x g ) D g where B (x g ) = [b ij,kl ] r(g)×r(g) is such that 21 b ij,kl =          b ′′ ij   x[ij] ij + a k ∈Ng(p j )\{a i } λ i kj x[ij] kj   , for ij, kl ∈ L s.t. ij = kl; 0, for ij, kl ∈ L s.t. ij = kl; and C(x g ) = [c ij,kl ] r(g)×r(g) is such that c ij,kl =          c ′′ i   p j ∈Ng(a i ) x[ij] ij   , for ij, kl ∈ L s.t. ij = kl; 0, for ij, kl ∈ L s.t. ij = kl.
By assumption, D g is srdd. Then, so is -B(x g )D g since -B(x g ) is a diagonal matrix with positive diagonal entries (by strict-concavity of the benefit functions). In addition, M g is rdd. Then, so is C(x g )M g since C(x g ) is a diagonal matrix with nonnegative diagonal entries (by convexity of the cost functions). Thus, -J U ′ (x g ) is a P -matrix, since it is a srdd matrix with positive diagonal entries [START_REF] Berman | Nonnegative Matrices in the Mathematical Sciences[END_REF]. By definition, there exists a link ij such that

x 1 ij -x 2 ij -J U ′ (x g ) x 1 g -x 2 g ij > 0 ⇐⇒ x 1 ij -x 2 ij J U ′ (x g ) x 1 g -x 2 g ij < 0, thus, x 1 ij -x 2 ij ∂U i ∂x ij x 1 g - ∂U i ∂x ij x 2 g < 0.
We are now ready to prove Theorem 2.

Proof of Theorem 2. Let us assume that there are two PSNE, x 1 g = x 2 g . In accordance with Property 1, for each link ij,

x α ij   b ′ ij   x α ij + a k ∈Ng(p j )\{a i } λ i kj x α kj   -c ′ i   p j ∈Ng(a i ) x α ij     = 0, α = 1, 2, and b ′ ij   x α ij + a k ∈Ng(p j )\{a i } λ i kj x α kj   -c ′ i   p j ∈Ng(a i ) x α ij   ≤ 0, α = 1, 2.
Since x 1 g , x 2 g ≥ 0, for each link ij, it holds

x 1 ij   b ′ ij   x 2 ij + a k ∈Ng(p j )\{a i } λ i kj x 2 kj   -c ′ i   p j ∈Ng(a i ) x 2 ij     ≤ 0 and x 2 ij   b ′ ij   x 1 ij + a k ∈Ng(p j )\{a i } λ i kj x 1 kj   -c ′ i   p j ∈Ng(a i ) x 1 ij     ≤ 0.
It follows that, for each link ij,

x 1 ij   b ′ ij   x 2 ij + a k ∈Ng(p j )\{a i } λ i kj x 2 kj   -c ′ i   p j ∈Ng(a i ) x 2 ij     + x 2 ij   b ′ ij   x 1 ij + a k ∈Ng(p j )\{a i } λ i kj x 1 kj   -c ′ i   p j ∈Ng(a i ) x 1 ij     -x 1 ij   b ′ ij   x 1 ij + a k ∈Ng(p j )\{a i } λ i kj x 1 kj   -c ′ i   p j ∈Ng(a i ) x 1 ij     -x 2 ij   b ′ ij   x 2 ij + a k ∈Ng(p j )\{a i } λ i kj x 2 kj   -c ′ i   p j ∈Ng(a i ) x 2 ij     ≤ 0, thus, ✞ ✝ ☎ ✆ A : x 1 ij -x 2 ij   b ′ ij   x 2 ij + a k ∈Ng(p j )\{a i } λ i kj x 2 kj   -c ′ i   p j ∈Ng(a i ) x 2 ij   -b ′ ij   x 1 ij + a k ∈Ng(p j )\{a i } λ i kj x 1 kj   + c ′ i   p j ∈Ng(a i ) x 1 ij     ≤ 0.
Since r i (g) ≤ 2 for all a i ∈ A, M g is rdd. Moreover, D g is srdd as

a k ∈Ng(p j )\{a i } λ i kj < 1 for all ij ∈ L.
Then, according to Lemma 1, there exists a link ij such that

x 1 ij -x 2 ij ∂U i ∂x ij x 1 g - ∂U i ∂x ij x 2 g < 0 ⇐⇒ x 1 ij -x 2 ij ∂U i ∂x ij x 2 g - ∂U i ∂x ij x 1 g > 0,
or equivalently,

x 1 ij -x 2 ij   b ′ ij   x 2 ij + a k ∈Ng(p j )\{a i } λ i kj x 2 kj   -c ′ i   p j ∈Ng(a i ) x 2 ij   -b ′ ij   x 1 ij + a k ∈Ng(p j )\{a i } λ i kj x 1 kj   + c ′ i   p j ∈Ng(a i ) x 1 ij     > 0, contradicting ✞ ✝ ☎ ✆
A . So, x 1 gx 2 g = 0 and uniqueness is established. Proof of Proposition 1. We now prove this by induction on N the number of agents. We can immediately check that a 2 = 2 or a 3 = 3 bipartite graph is a circular bipartite graph C 2,2 or C 3,3 .

Assume for N ≥ 3, that any c = n bipartite graph with c ≤ N can be decomposed into circular bipartite graphs. Let g be a c = n = N +1 bipartite graph. Let (a i 1 , p j 1 ) ∈ A×P with i 1 j 1 ∈ L. There exists p j 2 ∈ P with j 2 = j 1 such that i 1 j 2 ∈ L (since r i 1 (g) = 2) and then, there exists some a i 2 ∈ A with i 2 = i 1 such that i 2 j 2 ∈ L (since r j 2 (g) = 2).

If i 2 j 1 ∈ L, then g admits a 2 = 2 bipartite subgraph and g ′ , the restriction of g to A\{a i 1 , a i 2 } and P \{p j 1 , p j 2 }, remains a c = n = N -1 bipartite graph, so by induction hypothesis g ′ allows a decomposition into circular bipartite graphs C n 1 ,n 1 +. . .+C n K ,n K . Thus, g is the disjoint union of C n 1 ,n 1 +. . .+C n K ,n K and C 2,2 .

Otherwise, i 2 j 1 / ∈ L. So there exists p j 3 ∈ P with j 3 = j 1 , j 2 such that i 2 j 3 ∈ L. Then, there exists some a i 3 ∈ A with i 3 = i 1 , i 2 (since r i 1 (g), r i 2 (g) ≤ 2) such that i 3 j 3 ∈ L. Again, if i 3 j 1 ∈ L, g admits a 3 = 3 circular bipartite subgraph and g ′′ , the restriction of g to A\{a i 1 , a i 2 , a i 3 } and P \{p j 1 , p j 2 , p j 3 }, remains a c = n = N -2 bipartite graph. Thus, g is the disjoint union of C n 1 ,n 1 + . . . + C n K ,n K and C 3,3 .

Otherwise, i 3 j 1 / ∈ L, and so on. The process is finite because we may extract at most N + 1 public goods. In this case, the final link is i N +1 j 1 . Hence, the c = n = N + 1 bipartite graph is precisely C N +1,N +1 .

Proof of Proposition 2. We may follow the same lines as in Hardy and Ramanujan (1918, Section 3, p. 88).

The number of unrestricted partitions of n is given by the coefficient of x n in the expansion of the function,

f (x) = 1 (1 -x) (1 -x 2 ) (1 -x 3 ) . . . = 1 + ∞ n=1 p (n) x n ,
for |x| < 1. Let g be defined by

g (x) = 1 (1-x 2 )(1-x 3 )(1-x 4 )... = (1 -x) f (x) = 1 + ∞ n=1 (p (n) -p (n -1)) x n = 1 + ∞ n=2 p 2 (n) x n = ∞ n=0 a n x n .
Now, since the sequence (a n ) n ≥ 0 where a n = p 2 (n) for n ≥ 2 and a 0 = 1, a 1 = 0, and since ln g(x) ∼ 1 π 2 6 (1 -x) -1 , it follows by Theorem C in [START_REF] Hardy | Asymptotic Formulae for the Distribution of Integers of Various Types[END_REF] 

that ln p (n) ∼ π 2n 3 ,
where p(n) = 1 + n k=2 p 2 (k) = n k=0 a k . We can make the same reasoning for p 2 (n) as for p(n). Let h be defined by

h (x) = (1 -x) g (x) = (1 -x) (1 + ∞ n=2 p 2 (n) x n ) = (1 + x + ∞ n=3 p 2 (n) x n ) -(x + ∞ n=2 p 2 (n) x n+1 ) = 1 + ∞ n=3 (p 2 (n) -p 2 (n -1)) x n = ∞ n=0 b n x n ,
where b 0 = 1, b 1 = b 2 = 0 and b n = p 2 (n) -p 2 (n -1) for n ≥ 3. Now, (b n ) n ≥ 0. Indeed any partition (n 1 , n 2 , . . . , n K ) of n with n 1 ≥ n 2 ≥ . . . ≥ n K into classes of size at least 2 can be incremented into (n 1 + 1, n 2 , . . . , n K ), a partition of n + 1 into classes at least 2. This mapping is one-to-one. Thus, p 2 (n) -p 2 (n -1) ≥ 0. We have 

Figure 3 :

 3 Figure 3: Adding public goods whilst respecting the first condition of Theorem 2.

Figure 5 :

 5 Figure 5: Two representations of the c = n = 6 bipartite graph.

  (1 -x) ln h (x) = (1 -x) ln (1 -x) + (1 -x) ln g (x) → π 2 6 when x → 1, since (1 -x) ln (1 -x) → 0 when x → 1. Thus, ln h(x) ∼ 1 π 2 6 (1 -x) -1 .And then, by the second part of Theorem C in[START_REF] Hardy | Asymptotic Formulae for the Distribution of Integers of Various Types[END_REF], it comesln p 2 (n) ∼ π 2n 3 , where p 2 (n) = p 2 (2) + n k=3 (p 2 (k) -p 2 (k -1)) = n k=0 b k .

Table 1 :

 1 Decompositions of c = n ≤ 6 bipartite graphs, and the 11 partitions of 6.

	n Decompositions of c = n	Partitions of 6
		bipartite graphs	
	6	C 6,6	6
		C 4,4 + C 2,2	

Some of the basic notation introduced in this section is borrowed from[START_REF] Corominas-Bosch | Bargaining in a Network of Buyers and Sellers[END_REF] and[START_REF] Ilkiliç | Networks of Common Property Resources[END_REF].

 8 To avoid confusion, and because the network is undirected, we will respect the following rule in the notation of a link: the first small letter in italics always refers to an agent and the second refers to a public

good.9 In general, a public good is provided by at least two agents. Up to Section 5, we will implicitly adopt this definition. However, because our results hold even if some public goods are provided by a single agent, we only need to impose that r j (g) ≥ 1 for all p j ∈ P . See Section 5 for a discussion.

All vectors considered in this paper are column vectors and are denoted by lowercase bold letters. We reserve the use of uppercase bold letters for matrices.

Hence, λ i kj denotes the degree of substitutability between contribution x ij and contribution x kj , from the point of view of agent a i (i.e., in general, λ i kj = λ k ij ).

For instance, in contrast with[START_REF] Karamardian | The Nonlinear Complementarity Problem with Applications, Part 1[END_REF], we do not assume that the vectorvalued function of marginal utilities is (strictly) monotonic. Moreover, unlike[START_REF] Kolstad | Necessary and Sufficient Conditions for Uniqueness of Cournot Equilibrium[END_REF], we do not exclude the possibility that at PSNE, an agent may be just at the margin of choosing whether to contribute to a given public good. See[START_REF] Facchinei | Finite Dimensional Variational Inequalities and Complementarity Problems[END_REF] for a survey of sufficient conditions on the mapping for the uniqueness of solutions to the non-linear complementarity problem.

This happens particularly when the number of public goods exceeds the number of agents. See Section 5 for a discussion.

See, e.g., Chapter 5 in Bóna (2006) for an introduction to this problem.

This is not the " true " Jacobian matrix, since the Jacobian matrix J F (x) of a differentiable mapping F : D → R n , where D is a closed rectangular region of R n , is evaluated at a given x ∈ D.

 20 For example, let us take J U ′ (x g1 ) (cf. graph g 1 at Fig.1).

In both B(x g ) and C(x g ), the rows and the columns (i.e., the links) are sorted as in M g and D g .

Appendix

x kj ≥ 0 and C i,-j = p l ∈Ng(a i )\{p j } x il ≥ 0.