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Abstract

We model a bipartite network in which links connect agents with
public goods. Agents play a voluntary contribution game in which
they decide how much to contribute to each public good they are con-
nected to. We show that the problem of finding a Nash equilibrium
can be posed as a non-linear complementarity one. The existence of
an equilibrium point is established for a wide class of individual prefer-
ences. We then find a simple sufficient condition, on network structure
only, that guarantees the uniqueness of the equilibria, and provide an
easy procedure for building networks that respects this condition.
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1 Introduction

In many social or geographic systems, multiple collective goods are produced
voluntarily, simultaneously, and at different scales (Olson, 1965). Take for
example an irrigated perimeter in which a farmer simultaneously experiments
with a new irrigation technology and a new variety of crop. The informa-
tion obtained from the new irrigation technology may be of interest to one
group of farmers, and the results obtained from the new crop variety to an-
other. Similarly, consider a consumer who experiences several new products,
where in each case the experience may benefit a specific part of his familial
and friendship relationships. Alternatively, a municipality may introduce a
number of resource conservation programs at the same time. Water con-
servation programs may benefit municipalities within the same river basin,
energy conservation programs may be advantageous to municipalities near
the same production site, and soil conservation programs can have positive
effects on neighboring municipalities, for example.

There exists no theoretic model to analyze the provision of many dif-
ferent public goods in social or geographic networks as exemplified above.
However, the principle is simple: n agents must choose whether they con-
tribute or not to m local public goods, but these agents interact only with
their “neighbors”, in other words, there are local network relationships be-
tween the agents for each public good. Consideration of the structure of
these relationships raises some interesting questions. Here we focus on two
of the more important ones. How concave must the utility functions be to
guarantee the existence of an equilibrium point? How is the uniqueness of
the equilibrium related to the structure of the network?

To address these questions, we model a bipartite network in which links
connect agents with public goods.! We investigate the voluntary contribution
game in which agents decide how much to contribute to each public good
to which they are connected. The agents receive benefits from their own
and their neighbors’ contributions according to a concave benefit function.?
The cost of the contribution to each agent is a convex function of the total
contribution from the agent.® Within this framework, we show that the

!Bipartite networks have previously been used, for instance, to model economic
exchange when buyers have relationships with sellers (Kranton and Minehart, 2001;
Corominas-Bosch, 2004), in labor market matching problems (Béna, 2006), and in the
tragedy of the commons where there are multiple commons (Ilkilig, 2011).

2The assumption of concave benefits is familiar in network games in which one public
good is provided (Bloch and Zenginobuz, 2007; Bramoullé and Kranton, 2007; Corbo et al.,
2007; Ballester and Calvé-Armengol, 2010; Bramoullé et al., 2014; Rébillé and Richefort,
2014). In general, this means that the value of the public good has a physical restriction.

3The assumption of convex costs suggests the presence of a private good and a bud-



search for an equilibrium may be posed as a non-linear complementarity
problem (Cottle, 1966; Karamardian, 1969, 1972; Kolstad and Mathiesen,
1987).

We herein contribute to two main areas of research. First, we study the
voluntary and simultaneous provision of two or more public goods. Much of
the work in this field has been concerned with neutrality problems (Kemp,
1984; Bergstrom et al., 1986; Cornes and Itaya, 2010), problems of equilib-
rium existence (Bergstrom et al., 1986; Cornes and Itaya, 2010), and efficiency
problems (Cornes and Schweinberger, 1996; Cornes and Itaya, 2010). We ex-
tend the basic model of two or more public goods to a network of agents and
public goods.* In other words, we consider a game involving the provision of
many public goods, in which the agents have multidimensional and hetero-
geneous strategy spaces. Given such a game, we show how the existence of a
unique equilibrium is conditioned by the shapes of the individual preferences
and the architecture of the network.

The second related area of literature is the analysis of network games
with strategic substitutes. This class of games, pioneered among others
by Ballester et al. (2006), encompasses various well known games.® Un-
der complete information® a uniqueness condition that depends on network
structure only is established for three cases: linear best responses and uni-
partite network (Corbo et al., 2007; Ballester and Calv6-Armengol, 2010;
Bramoullé et al., 2014), linear best responses and bipartite network (Ilk-
ili, 2011), and non-linear best responses and unipartite network (Rébillé
and Richefort, 2014). Here we also study a fourth case, of non-linear best
responses and bipartite network, which generalizes the three other cases.
Using techniques borrowed from non-negative matrix theory, we obtain a
uniqueness condition that depends only on the structure of the graph.

In this paper, we are concerned with the existence and uniqueness of a
pure-strategy Nash equilibrium (henceforth, PSNE) in a network game in-
volving the provision of many public goods. In Section 2, we define the
voluntary contribution game. In Section 3, the existence of a PSNE is es-
tablished by requiring the appropriate shape in the individual preferences.

getary constraint (see, e.g., Bergstrom et al., 1986; Bramoullé and Kranton, 2007).

4The basic model of two or more public goods is a special case of our model when the
network is complete and the substitutability between contributions is perfect.

®Network games of public good provision belong to the class of games of strategic
substitutes and positive externalities (see, e.g., Bramoullé and Kranton, 2007; Galeotti
et al., 2010). Network games of Cournot competition and common property resources can
be defined as games of strategic substitutes and negative externalities (see, e.g., Ilkilig,
2011; Bramoullé et al., 2014).

6See Galeotti et al. (2010) for the analysis of network games under incomplete infor-
mation.



In Section 4, we show that the voluntary contribution game admits a unique
PSNE whenever the bipartite network is sufficiently sparse. In Section 5, we
apply our results to networks in which the number of public goods equals
the number of agents. Section 6 concludes. All the proofs are relegated to
the Appendix.

2 A Model

Consider a model where there are m public goods py,...,p, and n agents
ai,...,a,. They are embedded in a network that links agents with public
goods. We represent the network as a bipartite graph.”

An undirected bipartite graph g = (P U A, L) consists of a set of nodes
formed by public goods P = {p1,...,pm} and agents A = {ay,...,a,}, and
a set of links L, each link connecting an agent with a public good. A link
between a; and p; is denoted as ij.® We say that an agent a; is connected to
a public good p; if there is a link between a; and p;. We will assume that an
agent can choose whether or not to contribute to a public good if and only
if he is connected to it. Let r(g) be the number of links in L.

Given a graph g, we will denote N,(p;) to be the set of agents connected
to pj, 1.e.,

Ny (pj) = {a; € A such that ij € L},

and similarly N, (a;) is the set of public goods to which a; is connected, i.e.,
Ny (a;) = {p; € P such that ij € L}.

Then, 3,.ca [Ng(ai)] = 2,,cpNg(pj)| = [L] = r(g). For all a;, we note
ri(9) = |Ny(a;)| and for all p;, 77(g) = |N,(p;)|. We will assume, without
loss of generality, that each agent is connected to at least one public good
and vice versa, i.e., r;(g) and 77 (g) are in N* for all a; and for all p;.”

We now define the column vector that shows the contributions flowing at
cach link in L. Given a graph g, let x, be the column vector of contribu-

"Some of the basic notation introduced in this section is borrowed from Corominas-
Bosch (2004) and Ilkilig (2011).

8To avoid confusion, and because the network is undirected, we will respect the follow-
ing rule in the notation of a link: the first small letter in italics always refers to an agent
and the second refers to a public good.

9In general, a public good is provided by at least two agents. Up to Section 5, we will
implicitly adopt this definition. However, because our results hold even if some public
goods are provided by a single agent, we only need to impose that r7(g) > 1 for all p; € P.
See Section 5 for a discussion.
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Figure 1: Networks with two public goods.

tions.’® Hence, x, is the link by link profile of contributions and has size 7(g).
In the vector x4, the links are sorted in lexicographic order: the contribution
x;; is listed above the contribution xj; when 7 < k or when ¢ = £k and j < [.
For the graphs ¢g; and g, given in Figure 1,

T11 T11

. T12 . T21
Xg, = and x4, =

T21 X2

€22 €32

For a given graph g, the utility function of agent a; is U;(x,). We will as-
sume that the utility functions are additively separable into concave benefit
and convex cost functions, all defined on R, and all continuously differen-

tiable. For a given x, € R:(g ),

Ui (Xg) = Z bij (xij —+ Z )\;kaj) — C; ( Z xij) .
a;) a;)

P €Ng( ap€Ng(p;j)\{a:i} P ENg(

The first term is the (concave) benefit b;; received from a public good p;
and summed over the public goods to which a; is connected. The parameter

};j > 0 reflects the intensity of the positive externality received by agent
a; from agent a;’s contribution to public good p;.'* The second term is the
(convex) cost ¢; incurred by a;. The utility function, although separable in

terms of costs and benefits, is not separable with respect to each public good.

10 Al]l vectors considered in this paper are column vectors and are denoted by lowercase
bold letters. We reserve the use of uppercase bold letters for matrices.

"Hence, AL ; denotes the degree of substitutability between contribution z;; and contri-
bution x;, from the point of view of agent a; (i.e., in general, /\};j #+ )\fj).



In particular, the marginal utility from x;; does depend on the contributions
by a; to public goods other than p;. For example in graph ¢, the contribution
by agent a; to public good p; depends on his contribution to the other public
good po.

Consider the following voluntary contribution game. Given a graph g,
each agent a; maximizes his utility function with respect to z;; constrained
to be non-negative for all p; € Ny(a;). The set of players is therefore the
set of agents A = {a4,...,a,}, and the strategy space of agent a; is (x,); €
R’_ﬁ(g). For a contribution profile x, € R:L(g), each agent a; earns payoffs
U;(x,) € R. We analyze the existence and the uniqueness of the PSNE when
the individual decisions are simultaneous.

3 Equilibrium Existence

In network games with strategic substitutes, the question of existence of a
PSNE has received little attention. This is because individual preferences
are generally specified such that best response functions are piece-wise lin-
ear, regardless of whether the agents’ strategy space is uni- (Bramoullé and
Kranton, 2007; Ballester and Calv6-Armengol, 2010; Bramoullé et al., 2014)
or multidimensional (Ilkili¢, 2011). In this section, the existence of a PSNE
in a network game of strategic substitutes (i.e., the voluntary contribution
game) is established when the strategy spaces of the agents are multidi-
mensional and heterogeneous, and the set of best response functions define
non-linear mappings.

Let p;; be the Karush-Kuhn-Tucker’s multiplier associated with the con-
straint x;; > 0. For all links 75 € L, the first order conditions are given

by
b;j <$z‘j + Z >\§€j$k]) — C; ( Z Iij) + Hij = 0
ar€Ng(p;)\{ai} pjENg(as)
with
pijry; =0, pg > 0.
We then deduce that all PSNEs admitted by the voluntary contribution game
are solutions to a non-linear complementarity problem.!?:!3

2Tnequalities between vectors implie inequalities between components. The superscript
T denotes the transpose of a vector or a matrix.

3The complementarities in the network are between the contributions, which are either
strategic substitutes or complements. For example in the complete graph ¢; (Fig.1), x11
and xo1 are strategic substitutes. They both participate in the provision of p;. The
contribution from one agent decreases the marginal benefit from p;. This in turn decreases



Property 1. Given a graph g, a profile x, € Ri(g) is a PSNFE of the voluntary
contribution game if and only if x, satisfies

X, >0, b (Dyx,) — ¢ (Mgx,) <0, x,"[b'(Dyxy) — ¢ (Myx,)] =0,
where for all links ij, (b'(Dgx,))ij = bi;(Tij + Xapen, ;)\ fai} MeThs) and
(c'(Myxy))ij = CQ(ijeNg(ai) Tij).-

For any graph g, the columns and the rows in D, and M, are the links

in g. In both matrices, the links are classified in the same order as in x,:
the rows (resp. the columns) are sorted such that the link ij is listed above
(resp. to the left of) the link &l when i < k or when ¢ = k and j < [. Then,
Dy = [dij i)r(g)xr(g) 15 such that

1, forij,kl € L s.t. 15 = kl;

dije = Ny, forij,kl € Lst. i kand j=1;
0, forij,kle Lst. j#IL.

We call Dy the matriz of peer influences. For example, let us take Dy, and

D,,.
10 A 0 ! AL 00
o1 0 AL X1 00
Do=1x o 1 o and Dy =100 g 1 g
0 A, 0 1 0 0 X, 1

Therefore, D, will generally be asymmetric, while M, is symmetric by con-
struction. More precisely, My = [mj uilr(g)xr(g) s such that

1, forij,kl € L s.t. 1 =k;
m;; =
TN 0, forijkl € Lst. i # k.

We call M, the matriz of personal influences. For example, let us take M,
and M,,.

1100 1000
1100 0110
Mo =109 011 and Mg, =1 o 1 | ¢
001 1 000 1

the incentive of the other agent to participate in the provision of p;. Moreover, xs; and
Too are also strategic substitutes. They both come from as. The contribution to one public
good increases the marginal cost incurred by as. This in turn decreases the incentive of
as to participate in the other public good. So z1; and xo1, as well as x2; and x99, are
strategic substitutes. This makes x11 and w9y complements.

7



The structure of any graph g is characterized by both M, and D,. We will
make use of these matrices in the next section, for the uniqueness problem.
Now, for the existence of a solution to the voluntary contribution game, we
have the following hypothesis.

Assumption 1 (Technical assumptions).
(A1.1) For all links 45 and for all agents a;, bj;(0) — c;(0) > 0.
(A1.2) For all links 45 and for all agents a;, b};(c0) — ¢j(c0) < 0.
(A1.3) For all links ij and for all agents a;, b;; and ¢; are twice continu-
ously differentiable, with b;; strictly concave and ¢; convex.

Consideration of Property 1 makes these technical assumptions very intu-
itive. If A1.1 is not satisfied, then agent a; will not provide any contribution
to public good p;, and link ¢j can be ignored. If A1.2 is not satisfied, then
agent a;’s optimization problem with respect to his contribution to public
good p; has no solution. A1.3 reflects the convexity of preferences. In other
words, Al.1, A1.2 and A1.3 guarantee that each best response defines a con-
tinuous function from a compact and convex set to itself. Then, we can rely
on Brouwer fixed-point theorem to establish the following result.

Theorem 1 (Existence Theorem). Given a graph g, the voluntary contribu-
tion game admits a PSNE whenever Assumption 1 is satisfied.

This result generalizes Bergstrom et al. (1986)’s existence result to a
network of agents and public goods. It also extends Rébillé and Richefort
(2014)’s existence result to the multidimensional case. Furthermore, when
the benefit and cost functions are quadratic (as, e.g., in Ilkili¢, 2011), it can
be shown that the technical assumptions are always fulfilled.

Corollary 1. Let the benefit function of link 15 and the cost function of agent
a; be such that

0i o

bij (z) = ayjx — ng and ¢ () = 57

for x € Ry, where a;j,m,8; > 0."* Given a graph g, the voluntary contribu-
tion game always admits a PSNE.

11n that case, a profile x, € Rl(g) is a PSNE of the voluntary contribution game if and

only if x, satisfies

x>0, oy— (nDyg+Cy;My)x, <0, ng [ag — (nDg + CyMy) x4] = 0,



4 Equilibrium Uniqueness

We now establish a sufficient condition for a unique PSNE to the voluntary
contribution game. This question has been studied in detail for the case of
a single public good. Several conditions have been established, whether the
best replies are linear (see, e.g., Bloch and Zenginobuz, 2007; Ballester and
Calv6-Armengol, 2010; Bramoullé et al., 2014) or non-linear (see, e.g., Rébillé
and Richefort, 2014). However, the more realistic case of several public goods
has received much less attention. When there are two or more public goods
and the best replies are non-linear, we shall establish the uniqueness of the
equilibria using diagonally dominant matrices.

Definition 1 (Hadamard). A real matrix A = [a;j]x, is said to be row
diagonally dominant (rdd) if

|aii| > Z|aij|7 1=1,...,n,
J#i

and strictly row diagonally dominant (srdd) if a strict inequality holds for all
i.

Square matrices with dominant diagonals play a key role in mathematical
economics. This is essentially due to the fact that all the principal minors
of a srdd matrix with positive diagonal entries are positive (Berman and
Plemmons, 1994, Theorem (2.3) p.134). All diagonally dominant matrices
therefore fall within the scope of the well known Hawkins-Simon condition
that guarantees the existence of a solution in the input-output system. They
also serve as a basis for establishing the stability of a competitive market
(see, e.g., McKenzie, 1960).1

With this definition in mind, we impose conditions on the structure of the
network only, under which the voluntary contribution game admits at most
one PSNE. In contrast with classic results on the uniqueness of solutions

where oy = [aij]1xr(g) and Cy = [cij ki]r(g)xr(g) is such that

5;, forij,kl € L s.t. ij = ki,
Cij.kl =
! 0, forij,kle L st. ij # ki

In g, the links (i.e., the rows) are sorted as in x4. In C,, the links (i.e., the rows and the
columns) are sorted as in M, and Dy. Ilkili¢ (2011) studied a particular version of this
problem, where o;; = o for all ij € L, n = 23, §; =~ for all a; € A and )\};j = 1/2 for all
ijkj € L, k#i.

15In this literature, the usual definition of a diagonal dominant matrix is slightly more
general than that adopted herein (see McKenzie, 1960, p. 47).



to the non-linear complementarity problem, we impose no conditions on the
mapping (here, the vector-valued function of marginal utilities).' We reason
by contradiction and obtain the following result.

Theorem 2 (Uniqueness Theorem). Let Assumption 1 be satisfied. Given a
graph g, the voluntary contribution game admits a unique PSNE whenever

and 4
> g <1
ar€Ng(pj)\{ai}

forallij € L.

For the proof, we show that the non-linear complementarity problem
associated with the voluntary contribution game (see Property 1) admits at
most one solution whenever M, is rdd and Dy is srdd. Due to its Boolean
nature, the matrix of personal influences M, is rdd if and only if each agent
is connected to at most two public goods, i.e.,

ri(g) <2, i=1,...,n.

This does not mean, however, that there should be a maximum of two public
goods in the graph; this depends on the number of connections per agent.
For example, in the four graphs given in Figure 2, there are three public
goods but the structure of graphs g3 and g4 comply with the first assumption
of Theorem 2 (i.e., My, and M,, are rdd). By contrast, graphs g5 and gs
do not, because each of these graphs contains at least one agent with three
connections.

Furthermore, we can always add a new public good to a graph respecting
the condition 7;(g) < 2. If there exist two agents with only one connection,
the addition of a new public good can be achieved simply by creating a new
connection from these agents to the new public good. Otherwise, the addition
of a new public good requires the introduction of new agents in the graph.
Graphs g3 and gy given in Figure 3 illustrate these two situations.

16For instance, in contrast with Karamardian (1969), we do not assume that the vector-
valued function of marginal utilities is (strictly) monotonic. Moreover, unlike Kolstad and
Mathiesen (1987), we do not exclude the possibility that at PSNE, an agent may be just
at the margin of choosing whether to contribute to a given public good. See Facchinei
and Pang (2003) for a survey of sufficient conditions on the mapping for the uniqueness
of solutions to the non-linear complementarity problem.

10
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Figure 2: Networks with three public goods. Graphs g3 and g4 support the
first condition of Theorem 2, while g5 and gg do not.

The matrix of peer influences D, is srdd if and only if each agent does
not benefit too much from his peers, i.e.,

> <1
ar€Ng(pj)\{ai}
for all ij € L. Geometrically, these conditions on M, and D, imply that the
voluntary contribution game admits a unique PSNE whenever the bipartite
network is sufficiently sparse. If one agent is connected to three (or more)
public goods!” or if peer influences are too high, then the voluntary contri-
bution game might admit multiple PSNEs. When there are only two public
goods and peer influences are identical for a given public good, we have the
following stronger results.

Corollary 2. Let Assumption 1 be satisfied, and let )\};j = \; forallij, kj €
L, k #1.

(i) Given a graph g where P = {py,ps}, the voluntary contribution game

1"This happens particularly when the number of public goods exceeds the number of
agents. See Section 5 for a discussion.

11
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Figure 3: Adding public goods whilst respecting the first
condition of Theorem 2.

admits a unique PSNE whenever

1

— . j=1.,2
rifg)—1 7

A <

(ii) Given a complete graph g where P = {p1,p2}, the voluntary contribu-
tion game admits a unique PSNE whenever

For instance, graph go falls within the scope of part (i) of Corollary 2,
while part (ii) applies to graph g;.

5 Application: the case n =m

We now apply our results to networks in which the number of agents n
equals the number of public goods m. We begin by specifying the nature of
the public goods we consider in this section.

12



Definition 2. A public good p; is a collective good if at least two agents
participate in its provision, i.e., 77(g) > 2. A public good p; is an individual
good if only one agent participates in its provision, i.e., 77(g) = 1.

The structure of a graph ¢ = (P U A, L) indicates which public goods
are collectively produced, and which are produced individually. Let C' and
I denote the sets of collective and individual goods, respectively. Then, the
set of public goods is the union of the sets of collective and individual goods,
P =CUI. Let ¢ denote the number of collective goods. Then ¢ = |C| and
0<c<m.

The first condition of Theorem 2 entails that, in a graph admitting a
unique PSNE, no agent should have three or more connections, i.e., r;(g) < 2
for all a; € A. Then necessarily, the number of public goods has an upper
bound given by twice the number of agents, m < 2n. In particular, m = 2n
if and only if each agent is connected to two individual goods, i.e., m = |I| or
¢ = 0. In the same vein, the number of collective goods has an upper bound
given by the number of agents, ¢ < n. Indeed, for each collective good
p; € C, we have 17(g) > 2, so r(g9) = 3, r/(9) > 2c. Moreover, the number
of links cannot exceed twice the number of agents, i.e., 7(g) = >, 7i(g) < 2n,
because each agent has at most two connections. Hence ¢ < n, or in other
words, the number of collective goods in a graph admitting a unique PSNE
cannot exceed the number of agents.

We now focus on the case in which the number of collective goods equals
the number of agents, ¢ = n. So r7(g) = r;(g) = 2 for all p; and for all a;. A
straightforward way of building a bipartite graph with ¢ = n is to consider
the circular bipartite graph C,,, or the circular (unipartite) graph C, over the
set of agents.

Fori=1,...,n—1, agent a; is connected to public goods p; and p;;; and
agent a, is connected to public goods p, and p;. The collective good p; is
therefore provided by agents a; and a;_; for j = 2,..., ¢, and p; is provided
by agents a; and a,. Hence, any circular bipartite graph can be identified
with a circular graph where nodes are identified with agents and links with
public goods. For example, g3 is similar to the ¢ = n = 4 circular bipartite
graph C4 4, which is identified with graph C, (Fig.4).

Circular bipartite graphs provide a simple procedure for building ¢ = n
bipartite graphs. Let Cp, 5y - -, Crgxon, be K circular bipartite graphs with
Copmp = (P U Ag, Li). Then, we may build a ¢; + ...+ cx =n1 + ...+ ng
bipartite graph Cy, ny + ... + Crpnye = (P U A, L) by disjoint union forming
with P = UE P, A = UK A, and L = UK | L,. For instance, two of the
possible representations of the ¢ = n = 6 bipartite graph are given by Cg
and C4,4 + C272 (Flg 5)

13
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Figure 5: Two representations of the ¢ = n = 6 bipartite graph.

The converse also holds, i.e., any ¢ = n bipartite graph is a disjoint union
of circular bipartite graphs. That is, for any ¢ = n bipartite graph g, there
are circular bipartite graphs C,, n,,...,C with S5 ng = n and ny > 2

Y VYNEKNK
for all k such that g =C,,, »,, +...+C, This result can be formalized as
follows.

KK *

Proposition 1. Let g = (PU A, L) be a graph. Then, g is a ¢ = n bipartite
graph if and only if there exists circular bipartite graphs Cp, iy, Copong
such that

9=Cnimi + ..+ Crponge-

Moreover, the decomposition is unique.

Nevertheless, for a given ¢ = n, there exist different possible decompo-
sitions into circular bipartite graphs. For instance, a 6 = 6 bipartite graph
can be obtained through Cg6, C44 + Ca2, C33 4+ C33 or Cog + Cao + Cao. This
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question is intimately related to the partition of an integer.'®

Any integer n can be partitioned into sums of integers. Let p(n) be the
number of (unordered) partitions of n. Formally,

pn)={(n1,...,ng):n=n1+...+ng,n; >...>ng >1n, € N},

for n > 1. Similarly, the number of (unordered) decompositions of a circular
¢ = n bipartite graph is given by py(n), the number of (unordered) partitions
of n with classes of size at least 2,

pa(n)={(n1,....,ng):n=n1+...+ng,ny > ... >ng >2,n, € N},

for n > 2. The connection is made through ps(n) = p(n) — p(n — 1), that is
p(n) = p(n—1)+p2(n). Indeed, a partition of n either includes a class of size
1 or it does not. If the partition includes a class of size 1, then the partition
without this class of size 1 is a partition of n — 1. Otherwise, there is no class
of size 1 in the partition, so each class is of size at least 2. Alternatively, we
have

pn) = (p(n)—pn-1)) + ... + @2)—p1)) + p1)
= P2 (n) + ...+ P2 (2) + 1

Any partition of n may contain [ < n—2 classes of size 1, thus n—I[ remains to
be shared into classes of size at least 2, and hence py(n—1) possible partitions.
Otherwise, the partition contains at least n — 1 classes of size 1, in which
case it coincides with the trivial partition into n classes of size 1. Table 1
illustrates this result when ¢ =n < 6.

Finally, let us provide an approximation of py(n). Hardy and Ramanujan
(1917, Eq. (5.22) p. 130) establish the following asymptotic formula for p(n),

p(n) =exp {’/T\/?(l + en)}

where lim,, ¢, = 0, that is,
2n
1 ~ —.
np(n)~ m/ 3

We may wonder if one can obtain a similar one for py(n). The answer is
affirmative, in fact py(n) admits the same asymptotic formula.

18See, e.g., Chapter 5 in Béna (2006) for an introduction to this problem.
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Table 1: Decompositions of ¢ = n < 6 bipartite graphs,
and the 11 partitions of 6.

n  Decompositions of ¢ =n Partitions of 6
bipartite graphs

6 Ce 6 6
C474+CQ’2 442
Cs33+Cs3 3+ 3

Coo+Coa+Cap 2424+ 2

i) Cs s 1+5
Cs3+Cap I1+3+2

4 Cia 1+1+4
Coo+Cap 1+1+2+2

3 63,3 1+1+1+3

2 Capo 1+14+1+14+2

1 — I1+1+1+1+1+1

Proposition 2 (Asymptotic Enumeration). For an integer n > 2, let pa(n)
denote the number of unordered partitions of n with classes of size at least 2.

Then,
2
Inpy (n) ~ m/?n.

Therefore, the number of decompositions of a ¢ = n bipartite graph into
circular bipartite graphs approaches exp {m/%"} as the number of public
goods (and the number of agents) approaches infinity.

Hence, Inpy(n) ~ Inp(n).

6 Conclusion

We have analyzed a network game of public good provision in which there
are many public goods. Under conditions on individual preferences that are
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as weak as possible, we show that there exists a unique PSNE whenever the
bipartite network is sufficiently sparse. A simple procedure to build networks
respecting the uniqueness condition is finally established for graphs in which
the number of agents equals the number of public goods.

These results have been derived for the (general) case of network games
with non-linear best replies and multidimensional strategy spaces. To our
knowledge, all previous results on equilibrium existence for network games
of the provision of one public good are special cases of our existence result.
We believe, however, that the main contribution of the paper is Theorem 2,
because this result is the first to provide a sufficient condition, that depends
on network structure only, for the uniqueness of equilibria in network games
of the provision of many local public goods. Interestingly, it applies to all
games that can be studied through the same complementarity problem as
that described by Property 1. This is the case, for instance, for network
games of strategic substitutes and negative externalities such as the game
of Cournot competition or the water extraction game (see, e.g., Okuguchi,
1983; Kolstad and Mathiesen, 1987; Ilkilig, 2011).

Our analysis paves way for further research. Firstly, the question should
be explored of whether a sharper condition for uniqueness can be obtained.
In particular, does the P-matrix condition established when there is only one
public good hold when there are two or more public goods? Answering this
question might require the use of other algebraic techniques such as, e.g.,
determinantal inequalities for the product and sum of matrices. Secondly,
given that we know when the equilibrium exists and is unique, it may be
possible to study the structure of the equilibrium. When the best replies are
linear, numerous authors on network games have expressed the equilibrium in
terms of the Katz-Bonacich centrality vector (see, e.g., Ballester et al., 2006;
Ballester and Calvé-Armengol, 2010). When the best replies are non-linear,
the relationship between the equilibrium and the Katz-Bonacich centrality
vector is less obvious, but this question nevertheless remains an important
challenge. Then, it may be interesting to implement our model in an exper-
iment, in order to test whether the behaviors conform well with theoretical
predictions.

Appendix

Proof of Theorem 1. Since b;; — ¢; is strictly concave, b;;(0) — ¢;(0) > 0 and
bi;(M) — ci(M) < 0 for some M > 0, there exists a unique xj; such that
bi;(x3;) — ci(z};) = 0. Moreover, xj; is link 7j’s maximum.

Let S—i,j = ZakENg(pj)\{ai} )\i;jajkj Z 0 and Ci,—j = ZpleNg(ai)\{pj} il Z 0.
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Agent a;’s utility is given by
Ui(xg) = D by (2 + S-iy) — ci (@ + Ciy)
p;€Ng(ai)
By assumption, b;; is strictly concave and ¢; is convex, so b}; — ¢} is strictly
decreasing and continuous. Given S_; ; and Cj _;, the best response for each
link i € L is
-1

b (-+85) = (-+Ciyp)] (0),
i (S-ij, Ci—j) = if b5 (0+ S_i;) — ¢ (0+ Ci—j) > 05

0, otherwise.
Since b;(. + 5 ;) < bj;(.) and ¢j(. + C; ;) > ¢i(.), we have

by (+5-) — ¢ (+Ciy) <0 () — i (),

SO

bij (S—i 4, Ci—j) < ¢35 (0,0) = x7;.
It follows that the autarkic contribution is always greater than the equilib-
rium contribution in a bipartite network.

We now check that the best response is continuous w.r.t. S_;; and C; _;.
Let S—i,ja Ci’_j Z 0.

1% case: bj;(0+S_;;) — c;(04 C; ;) < 0. Then, ¢;;(S_;;,Ci—;) = 0. Since
b;; and ¢} are continuous, there exists some neighborhood V' of S_; j and W of
Cj,—j such that b};(S) —¢j(C) < 0for S € V and C € W. Thus, ¢;;(5,C) =0
for S € V and C' € W, so ¢;; is continuous at S_; ; and C; _;.

2nd case: bgj(O + S—i,j) - C;(O + Ci,—j) Z 0. By deﬁnition, (Iij, S—i,j; Oi,—j)
with z;; = ¢;;(S_; j, Ci—;) is a solution to the equation

zij (x,8,C) =bj; (x + S) = (x + C) = 0.
Now, we observe that

ox

by strict-concavity, so in accordance with the implicit function theorem, there
exists some differentiable function ¢ such that

C(Sfi,ja Ci,fj> = Ty

(i S—ij, Cimj) = b (w45 + S—ij) — ¢ (zij + Ci ) <0
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on some open neighborhood V' of (S_; ;, C; _;), satisfying
2 (C(S,C), 5,C) = bj; (((5,0) + 5) = ; (¢(5,C) + C) = 0.
Thus, ¢i;(S-ij,Ci—j) = zij = ((S—i;,Ci—j) on V 3 (S_;;,Ci ), so ¢y is

continuous at S_; ; and C; _;.

Consider the mapping

o: ]I {O,x;‘j} = JI {O,xfj}

ijeL ijEL

Xg = <¢z’j ( Z )\Zjﬂﬁkp Z le))
ar€Ng(pj)\{ai} P€Ng(ai)\{p;} ij

¢ is continuous w.r.t. X, since ¢ij, Xg > X4 eN,(p;)\{ai} AiTr; and xg —
Y peN, (a)\{p;} Lit are continuous for all ¢j. According to Brouwer fixed-point
theorem, ® admits a fixed-point x, which is a PSNE of the voluntary con-
tribution game, by construction. ]

The following lemma plays an important role in establishing our unique-
ness result.

Lemma 1. Let g be a graph. For all x),x7 in Ri(g) with x; # x., there
exists a link ij such that

(el — ) [8% (x;) - O (x7)

whenever My is rdd and Dy, is srdd.

<0

For its proof, we need to recall the class of P-matrices.

Definition 3 (Fiedler and Ptak, 1962). An n x n real matrix A is said to be
a P-matriz if there exists k such that x;(Ax), > 0 for all nonzero x in R™.

A srdd matrix with positive diagonal entries is a P-matrix (see Berman
and Plemmons, 1994, Theorem (2.3) p. 134, M35 implies Aj).

Proof of Lemma 1. Let x; and x;, be two arbitrary vectors in ]Rﬁr(g). For each
link 27, let
oU;

Lij

(z—:x; +(1—¢) xg) :
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Since R, "9 s convex, ex; + (1 —e)x € ]R ) for all 0 < & < 1. We have

Vi (1) — 145 (0) = o (Xglz) - S:ZZ (Xg) ’

al‘ij

%{j (e) =V —

al’i]’

(xg) (Xgly - Xz) )

where x, = 5){; + (1 — 5)x§ € R'jr(g) and VgTUiZ-(XQ) is the gradient of gTU; at

x4. Then, Vggg; (x,4) is a row vector of size r(g), in which the columns (i.e.,

the links) are sorted as in (the transpose of) x,. Applying the mean-value
theorem on 1;;, we have

by (1) — s (0) = 0, (55) = vgﬁ(%ﬂ%—ﬁ)

0z

for some 0 < &; < 1, where X[V = &;x! 4 (1 —&;;)x2 € R Thus, for each

link 77, o o
o, (5) = 5y () = (0 R0 (5= x0)),

where Jy(X,) is the r(g) xr(g) “ Jacobian ” matrix!® of the marginal utilities,
where the rows and the columns (i.e., the links) are sorted as in M, and D,.

Then, Jy/(X,) is such that each row i j is given by the gradient V5 6U1 “(x x[i7l).20

9This is not the “true” Jacobian matrix, since the Jacobian matrix Jx(x) of a differ-
entiable mapping F': D — R", where D is a closed rectangular region of R"”, is evaluated
at a given x € D.

20For example, let us take Jy (X, ) (cf. graph g; at Fig.1).

8U - aU _

5‘x111 <X‘£J111]) &Ell (Euxl +(1- 611)x§1)

883[;]112 (_512]) Vgglg (8_12X;1 + (1 —212) le)
Ju(%g,) = =

% ()_([9211}) Va—agi (Earx}, + (1 —&21)x2))

oUy (—[22 o, /-

G (=57) )\ VEE (o, + (1 )
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Now, given g% (x[g” ) where ij € L, we observe that

b// ( (4] + Z ng,ﬁ;]]) — ! ( Z Ezﬂ) 7
ar€Ng(pj)\{ai} p;ENg(as)

for kl € L s.t. kl = 17;
02U, ()_([ij]) _ c ( %: T, ) , forkle Lst. k=iandl#j;

8xk18$ij Pi€Ng(a:)

b// ( [i4] + Z LJA:JJ]) :
ar€Ng(pj)\{ai}
for kl € L'st. k# 1 and [ = j;
0, for kl e L'st. k# i and [ # j.
Hence,

Jur (ig) =B (ig) Dg —C (ig) Mg — —Ju (ig) =C (ig) Mg —B (ig) Dg

where B (X,) = [ij x]r(g)xr(g) 1S such that?!

b, ( gl 4 > A%Lj) , forij, kl € Ls.t. ij =kl
bij kel = ar€Ng(pj)\{ai}

0, for ij, kl € L s.t. ij # ki;

and C(X,) = [Cijrilr(g)xr(g) 15 such that

c! ( > f%ﬂ) , forij kl € Lst. ij =kl
Cijkl =

P;ENg(a;)

0, for ij, kl € L s.t. ij # kl.

By assumption, D, is srdd. Then, so is —B(X,)D, since —B(X,) is a diago-
nal matrix with positive diagonal entries (by strict-concavity of the benefit
functions). In addition, M, is rdd. Then, so is C(X,)M, since C(X,) is a
diagonal matrix with nonnegative diagonal entries (by convexity of the cost
functions). Thus, —Jy/(X,) is a P-matrix, since it is a srdd matrix with pos-
itive diagonal entries (Berman and Plemmons, 1994). By definition, there

#Tn both B(X,) and C(X,), the rows and the columns (i.e., the links) are sorted as in
M, and D,.
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exists a link 75 such that

(:c}j - xfj) (—JUr (Xy) (X; - X;))ij >0 <<

(lej - %2]) (JU/ (Xy) (X; — xﬁ))” <0,

thus, ’
oU; oU;
(e}, — 22) [ 0 (o) - o (x;)] <0,

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let us assume that there are two PSNE, x; # xg. In
accordance with Property 1, for each link 77,

T [bgj (mf} + Z ;]xgj) —d ( Z xf‘])] =0, a=1,2,
ar€Ng(pj)\{a;} PjENg(ai)

and

bi; (a:f; + > ijgj) - ( > x%) <0, a=12
N\ ai}

ap€Ng(p; p;€Ng(a;)

Since x,,x; > 0, for each link 4j, it holds

2 7 2 2
bi; (%‘ + > ijkzj) —¢ ( > %’)
ar€Ng(pj)\{ai} p;ENg(ai)

2 1 7 1 1
y [b;j (%‘ + > ijkj> — ¢ ( > %’)
ar€Ng(pj)\{ai} p;€Ng(ai)

It follows that, for each link 77,

!

I’Zj

and

1 / 2 i 2 / 2

i by | @+ > STl Il D D
L arE€Ng(p;j)\{ai} PjENg(a;) |

2 / 1 7 1 / 1

+oa b (et D BTy Al 2w
L ar€Ng(pj)\{ai} PjENg(a;) ]

1 / 1 7 1 / 1

— x| by | i + > e IR S
L arE€ENg(pj)\{ai} PjENg(a;) ]

2 / 2 7 2 /

L ar€Ng(pj)\{ai} PjENg(a;) |
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thus,

(A): (%1]- - l“?j) {b;j ("”?j + > ijij) —q ( >

ap€Ng(pj)\{ai} PjENg(ai)

—bi; (xllj + > ij,lw) +c ( > :L‘le) <0.
Nai} i

ar€Ng(p; pi€Ng(ai)

Since r;(g) < 2 for all a; € A, M, is rdd. Moreover, D, is srdd as
D aneN, (p)\{a;} A};j < 1 for all ij € L. Then, according to Lemma 1, there
exists a link 45 such that

oU; oU;
(e}, — a2) [ 00 () - g ()| <0 =

oU; oU;
1 2 i (2 i (1
(ah =) | (2) = g (s3)] >0
or equivalently,
(ﬁj - l'?j) [béj (x?j + > ijij) - ( > 5’%)
ar€Ng(p;)\{a:} pjENg(as)
(e T ) ea( £ oa)|se
ar€Ng(p;j)\{a:} p;ENg(as)
contradicting . So, x; — x_ = 0 and uniqueness is established. O

Proof of Proposition 1. We now prove this by induction on N the number of
agents. We can immediately check that a 2 = 2 or a 3 = 3 bipartite graph is
a circular bipartite graph Cy 5 or Cs 3.

Assume for N > 3, that any ¢ = n bipartite graph with ¢ < N can be
decomposed into circular bipartite graphs. Let g be a ¢ = n = N +1 bipartite
graph. Let (a;,,pj,) € Ax P with i;j; € L. There exists p;, € P with j, # j;
such that i1j2 € L (since 7;,(g9) = 2) and then, there exists some a;, € A
with 45 # 4; such that isjs € L (since r?2(g) = 2).

If iyj; € L, then g admits a 2 = 2 bipartite subgraph and ¢, the restriction
of g to A\{a;,, a;, } and P\{pj,,pj, }, remains a ¢ = n = N —1 bipartite graph,
so by induction hypothesis ¢’ allows a decomposition into circular bipartite
graphs Cp,, n, +. . . +Cpy ny- Thus, gis the disjoint union of C,,, , +. . . 4+Crye np
and Ca».
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Otherwise, isj; ¢ L. So there exists p;, € P with j3 # ji,j2 such
that isj3 € L. Then, there exists some a;;, € A with i3 # 1,1y (since
ri,(9),7i,(9) < 2) such that izj; € L. Again, if i3j; € L, g admits a 3 = 3
circular bipartite subgraph and ¢”, the restriction of g to A\{a;,, a;,, a;, } and
P\{p;,,pj»,Pjs}, remains a ¢ = n = N — 2 bipartite graph. Thus, g is the
disjoint union of Cp, n, + ... + Chpny and Cas.

Otherwise, i3j; ¢ L, and so on. The process is finite because we may
extract at most N + 1 public goods. In this case, the final link is in417;1.
Hence, the ¢ = n = N + 1 bipartite graph is precisely Cni1 n41. O

Proof of Proposition 2. We may follow the same lines as in Hardy and Ra-
manujan (1918, Section 3, p. 88).

The number of unrestricted partitions of n is given by the coefficient of
2™ in the expansion of the function,

1 = n
I@) =G gaomass.. - Lt arme

for |x| < 1. Let g be defined by

g(z) = (17352)(179163)(1714)...
= (1—2)f(z)
= 1+ (p(n) —pn—1))a"
= 1+332,p2(n)z"

= Y., apT".

Now, since the sequence (a,), > 0 where a,, = pa(n) for n > 2 and ag = 1,
a; = 0, and since In g(z) ~ %2(1 —x)7!, it follows by Theorem C in Hardy

and Ramanujan (1917) that
2n
1 ~ T =
np(n) ~ /=,

where p(n) = 1+ >0 5 pa(k) = D0, ak.
We can make the same reasoning for ps(n) as for p(n). Let h be defined
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h(z) = ) g (v)

(1-

= (1—2)(1+3X3,p2(n)a")

= (L+a+332pe(n)a™) — (x+ X5, pa (n) 2™)
= 1+ (p2(n) —p2(n—1)) 2"
= Xolo b,

where by = 1, by = by = 0 and b, = pa(n) — pa(n — 1) for n > 3. Now,
(bp)n > 0. Indeed any partition (ny,ng,...,ng) of n with ny >mny > ... >
ng into classes of size at least 2 can be incremented into (ny+1,n9, ..., nk),
a partition of n+ 1 into classes at least 2. This mapping is one-to-one. Thus,

p2(n) — pa(n — 1) > 0. We have

2

(1—x)lnh(x):(1—93)111(1—17)4—(1—;1;)1119(3;)_>%

when # — 1, since (1 — z)In(1 —2) — 0 when z — 1. Thus, Inh(z) ~;
”—2(1 — x)~'. And then, by the second part of Theorem C in Hardy and

6
Ramanujan (1917), it comes

Inps (n) ~ ) 2
where pa(n) = pa(2) + Sy (pa(k) — pa(k — 1)) = Si_g by 0
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