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Abstract. It is well known that the tail behavior of a heavy-tailed distri-
bution is controlled by a parameter called the tail index. Such a parameter is
therefore of primary interest in extreme value analysis, particularly to estimate
extreme quantiles. In various applications, the random variable of interest can
be linked to a finite-dimensional random covariate. In such a situation, the tail
index is function of the covariate and is referred to as the conditional tail index.
The goal of this paper is to provide a class of estimators of this quantity. The
pointwise weak consistency and asymptotic normality of these estimators are
established. We illustrate the finite sample performance of our technique on a
simulation study and on a real hurricane data set.

AMS Subject Classifications: 62G05, 62G20, 62G30, 62G32.

Keywords: Heavy-tailed distribution, tail index, random covariate, consis-
tency, asymptotic normality.

1 Introduction

Studying extreme events is relevant in numerous fields of statistical applications.
In hydrology for example, it is of interest to estimate the maximum level reached
by seawater along a coast over a given period, or to study extreme rainfall at a
given location; in actuarial science, a major problem for an insurance firm is to
estimate the probability that a claim so large that it represents a threat to its sol-
vency is filed. A particular branch of extreme value analysis focuses on the study
of heavy-tailed random variables, that is, those random variables whose distri-
bution function F is such that, for all A > 0, (1 — F(\z))/(1 — F(x)) — A~/7
as = goes to infinity, where v > 0 is the so-called tail index. The parameter
drives the asymptotic behavior of F' in its right tail, which makes its estimation



necessary if we are interested in the extremes of the associated random variable.
The estimation of the tail index has therefore been extensively studied in the
literature. Recent overviews on univariate tail index estimation can be found in
Beirlant et al. [2] and de Haan and Ferreira [22].

In practical applications, the variable of interest Y can often be linked to a
covariate X. For instance, the value of rainfall at a given location depends
on its geographical coordinates; in actuarial science, the claim size depends on
the sum insured by the policy. In this situation, the tail index of the random
variable Y given X = z is a function of = to which we shall refer as the condi-
tional tail index. Its estimation has first been considered in the “fixed design”
case, namely when the covariates are nonrandom. Smith [30] and Davison and
Smith [12] considered a regression model while Hall and Tajvidi [23] used a
semi-parametric approach to estimate the conditional tail index. Fully non-
parametric methods have been developed using splines (see Chavez-Demoulin
and Davison [7]), local polynomials (see Davison and Ramesh [11]), a moving
window approach (see Gardes and Girard [15]), a nearest neighbor approach
(see Gardes and Girard [16]), and a conditional quantile-based technique (see
Gardes et al. [18]), among others.

Despite the great interest in practice, the study of the random covariate case has
been initiated only recently. We refer to the works of Wang and Tsai [32], based
on a maximum likelihood approach, Daouia et al. [9] who used a fixed number of
non parametric conditional quantile estimators to estimate the conditional tail
index, later generalized in Daouia et al. [10] to a regression context with condi-
tional response distributions belonging to the general max-domain of attraction,
Gardes and Girard [17] who introduced a local generalized Pickands-type esti-
mator (see Pickands [27]), Goegebeur et al. [20] who studied a nonparametric re-
gression estimator whose strong uniform properties are examined in Goegebeur
et al. [21], Stupfler [31] who introduced a generalization of the popular moment
estimator of Dekkers et al. [13] and Gardes and Stupfler [19] who worked on a
smoothed local Hill estimator (see Hill [24]) related to the work of Resnick and
Starica [28].

The aim of this paper is to introduce an estimator of the conditional tail index
based on the integration of a conditional log-quantile estimator. This type of
estimators is similar to the one of Gardes and Girard [15]; our aim is to prove its
consistency and asymptotic normality when the covariates are random, as well
as to examine its applicability on numerical examples and on real data. Our
paper is organized as follows: we define our conditional tail index estimator in
Section 2, its asymptotic properties are stated in Section 3, a simulation study
is provided in Section 4 and we showcase our estimator on a set of real hurricane
data in Section 5. We offer a couple of concluding remarks in Section 6. All the
auxiliary results and proofs are deferred to the Appendix.



2 Framework

We let (X1,Y1),...,(X,,Y,) be n independent copies of a random pair (X,Y) €
E x Ry, where (£,d) is a metric space. We assume that for any = € &, the
conditional distribution function y — F(y|z) := P(Y < y|X = z) of Y given
X = z belongs to the set RV _1 /() of regularly varying functions (at infinity) of
index —1/7(x) < 0. Recall that a function G € RV,, a € R if G is nonnegative
and for all A > 0, G(\y)/G(y) — A\* as y goes to infinity. This is the adaptation
of the standard extreme-value framework to the case when there is a covariate.
An equivalent assumption (see Bingham et al. [5, Proposition 1.5.15]) is:

(M1) For any = € &, the conditional quantile function « — g(a|z) := F* (1 —
a|x) = lnf{y eR | F(y|$) >1- Oé} S RV,,Y(I)

Our goal is to estimate the conditional tail index v at a point z € £. Re-
mark first that, under (M1), for u € (0,1) small enough and a € (0,u),
log q(a]x)/q(ulx) = v(2z)log(u/a). Hence, for any measurable function W(.|x, u)
on (0,u) such that

/Ou U(a|z,u)log (u/a)da =1, (1)
one has u (al)
glalz) ,
/0 U (|2, u)log o(ul2) do =~ y(z). (2)

We propose to estimate v(x) by replacing in the previous approximation the
conditional quantile function ¢(.]z) by a consistent estimator of this quantity.
To this end, let I{.} denote the indicator function and, for any h > 0, B(z, h) :=
{2/ € £ | d(x,2") < h} denote the closed ball in & with center x and radius h.
The total number of covariates belonging to the ball B(x, k) is given by

Mz, h) = iH{Xi e B(z, h)}.

The conditional distribution function F(.|z) is estimated by:

n

m ;H{n < y}{X; € B(z,hy)},

where h, = h,(n) is a positive sequence converging to 0. The associated esti-
mator of the conditional quantile function ¢(.|z) is then, for a € (0, 1),

Gn(alz, hy) = FS (1= alz, hy) = inf{y € R | Fu(y|z, hy) > 1 — a}.

Replacing q(.|x) by gn(.|z, hs) in (2), our class of estimators of v(z) is given for
a (0,1)-valued measurable function u, converging to 0 at infinity by:

————"da, 3
in (Vs o) 8)

Uy
(X, Uy, hy) = / U(a|x,U,) log
0



in which U, = u,(M (x, h,)) and (.2, u) is an integrable function on (0, u) sat-
isfying (1). The estimator J(x, u,, h,) is thus a weighted integral of an estimator
of the conditional log-quantile function.

We conclude this section by pointing out that particular choices of the function
U(.|x, u) actually yield generalizations of some well-known tail index estimators
to the conditional framework. Let k, := U, M (x,h;). The choice ¥(.|z,u) =
u™ ! yields:

Lkz ] g
~ 1)/M(z, hy)|z, hy)
7H(;zc,ugg, z) Zl k: /M(a: BETSEE (4)

which is the straightforward adaptation of the classical Hill estimator (see
Hill [24]). Similarly, letting W(.|z,u) = u~'(log(u/.) — 1) entails, after some
algebra:

7 (@2, ha) % o8 <k ) { % qn(qﬁi&/z/éc%ﬁ;,)f;)hm) }

This estimator can be seen as a generalization of the Zipf estimator (see Kratz
and Resnick [26], Schultze and Steinebach [29]).

3 Asymptotic properties

3.1 DMain results

We start by stating the weak consistency of the estimator (3). To this end, an
additional hypothesis is required.

(A1) The function ¥(.|z,u) satisfies:
limsup/ |V (], u)|da < o0,
ul0 0

and for all u € (0,1) and 8 € (0,u],

uw [P
E/O U(alz, u)da = ©(5/ulx),

where ®(.|z) is a square-integrable nonincreasing probability density func-
tion on (0, 1).

Note that condition (A1) is satisfied by the two functions ¥(.|z,u) = u~! and
U(.|z,u) = ut(log(u/.) — 1) with ®(.]x) = 1 and ®(.|z) = — log(.) respectively.
We also assume in all what follows that ¢(.|z) is continuous and decreasing.
Particular consequences of this condition include that F(gq(a|z)|z) = 1 — «
for any @ € (0,1) and that given X = z, Y has an absolutely continuous



distribution with probability density function f(.|z). For 0 < a3 < as < 1, we
finally introduce the quantity:

q(afz’)
q(elz)

w (a1, az,x,h,) = sup sup |log

a€lar,az] 2’ €B(x,hs)

)

which is the uniform oscillation of the log-quantile function in its second argu-
ment. Such a quantity is also studied in Gardes and Stupfler [19], for instance.
Letting m,(h,) = nP(X € B(zx, h,)) be the average number of covariates which
belong to B(x, h,), the weak consistency of our family of estimators is estab-
lished in the following theorem.

Theorem 1. Assume that conditions (M1) and (A1) are satisfied. Assume
further that my(hy) — 00 as n — 0o and that u, € RV_ 4,y with a(x) € (0,1).
If, for some 6 > 0,

w ([mz(hm)]flf‘s, 1-— [mz(hz)]flf‘s,x, hm) — 0, (5)

then it holds that 7(x, u,, hy) SN v(x) as n — co.

Note that u,(mz(h))m,(h) — oo is the average number of observations used
to compute our estimator of «(x). The conditions in Theorem 1 are thus ana-
logues of the classical hypotheses in the estimation of the tail index. Besides,
condition (5) ensures that the distribution of ¥ given X = 2’ is close enough to
that of Y given X = x when 2/ is in a sufficiently small neighborhood of x.

Our aim is now to establish an asymptotic normality result. First, recall that
under (M1), the conditional quantile function may be written as follows:

Al =),

v

vt > 1, q(t™tz) = c(t|z) exp (/1

where ¢(.|z) is a positive function converging to a positive constant at infinity
and A(.|z) is a measurable function converging to 0 at infinity, see Bingham
et al. [5, Theorem 1.3.1]. We introduce the following classical second-order
condition:

(M2) Condition (M1) holds, ¢(.|z) is a constant function equal to c(z) > 0,
the function A(.|z) has ultimately constant sign at infinity and |A(.|z)| €
RVP(I), with p(z) < 0.

In condition (M2), p(x) is called the conditional second-order parameter of
the distribution. This condition is commonly used when studying tail index
estimators and makes it possible to control the asymptotic bias of the estimator
(2, uy, hy). We also introduce a further assumption on the weighting function
®(.|x), which is similar in spirit to a condition introduced in Beirlant et al. [1].
To write down this condition, we note that if (A1) holds then

B/2
VB € (0,1), 0< Bo(Blz) s/o 19 (alr, 1/2)|do



and the right-hand side converges to 0 as 5 | 0, so that we may extend the
definition of the map ¢ — ¢®(t|z) by saying it is 0 at ¢t = 0.

(A2) Condition (A1) holds, there is k > 0 such that ®27%(.|z) is integrable on
(0,1) and there exists a positive function g(.|z), which is either continuous
on [0, 1] or nonincreasing on (0, 1), such that for any k£ > 1 and i € [1, k),

i@ (i/klx) — (i = 1)@ ((i = 1) /k|2)| < g (i/k|x),
where the function g(.|z) max(log(1/.),1) is integrable on (0, 1).

Note that condition (AZ2) is satisfied for instance by the functions W(.|x,u) =
u™t and U(.|z,u) = u!(log(u/.) — 1) mentioned at the end of Section 2 with
g(.]z) = 1 for the first one and, for the second one, g(.|Jz) = —log(.) + 1. Our
asymptotic normality result is the following;:

Theorem 2. Assume that conditions (M2) and (A2) are satisfied. Assume
further that my(hy) — 00 as n — 0o, that u, € RV_4,) with a(r) € (0,1) and
(zuz(2))V2A(1/ug (2)|x) = M) € R as z — oo. If for some § > 0,

vh/2w ([ma(hae)] 71701 = [ma(he)] ™ 7,2, hy) = 0 (6)

where vy = My (hy)uy(my(hy)), then it holds that

V2 (G (@, 1, he) = (@) =5 N (A@)ABL (P, p(x)), 72 () AV, (D))

as n — 0o, with
1 1
ABw(fb,p(x))z/ ®(alz)a™ PP da and AVm(fb):/ ®*(alz)da.
0 0

Our asymptotic normality result thus holds under generalizations of the common
hypotheses on the model and on u, and h,, provided the conditional distribu-
tions of Y at two neighboring points are sufficiently close.

We conclude this paragraph by noting that these results are similar in spirit
to results obtained in the literature for other conditional tail index or condi-
tional extreme-value index estimators, see e.g. Gardes and Stupfler [19] and
Stupfler [31]. The main disadvantage of formulating the hypotheses in terms
of the uniform oscillation w is that they cannot immediately be translated in
terms of conditions on w, and h,. In our next paragraph, we give alternative,
simple conditions for our main results to hold.

3.2 Discussion of the hypotheses

As a starting point, we note that if X has a probability density function f with
respect to the Lebesgue measure on £ = R? equipped with the Euclidean norm
||| then sufficient conditions for m.(h,) — oo are that h, — 0, nh¢ — oo,



f(z) > 0 and f is continuous at z. Indeed, in this case, if V denotes the volume
of the unit ball of R%, a change of variables entails:

my(hy) = n/B(zﬁhI)f(s)ds = nhlf(x) <V+/|v”<1 [% - 1} dv) .

Since f is continuous at x, we get m,(h,) = nh2V f(x)(1+0(1)) — oco. Further-
more, we point out that if the functions ~, logc(t|.) and A(t|.) satisfy a Holder
condition, namely:

sup  |y(a') = (@) = O(R]),
2’ €B(x,hy)
sup sup  |loge(t|z’) —loge(tjz)] = O(h?)
t=1€K, 5(hy) 2’ €B(x,h,)
and sup sup  |A(tlz') — A(t]z)] = O(RD),

t=1€K, s(hy) 2’ €B(z,hy)

where 8 > 0 and K, s(h,) is the interval [(m,(hs))" 7%, 1 — (ma(he)) 179,
then (5) is a consequence of the convergence h?logm,(h,) — 0. In the afore-
mentioned context when X has a probability density function, this condition
becomes h?logn — 0 as n — co. Such conditions were already considered in
Stupfler [31].

As an illustration, we now compute the optimal rate of convergence of our
estimator when & = R? and X has a probability density function. Let a(x) €
(0,1) and b(x) € (0,1/d). We take log(h,) = —b(x)log(n) and log(nu,(n)) =
(1 — a(z))log(n). In this context, the rate of convergence of the estimator is
essentially (mg(hg )te(mg(hy))'/? = n-d@)=a(@)/2 " Besides, since A(.|x)
is regularly varying with index p(z) < 0, the conditions for Theorem 2 to hold
are then essentially:

1—a(z) +2a(z)p(x) <0 and 1—a(z)—28b(z) <0.

The problem thus amounts to maximizing the function (a,b) — (1 — db)(1 — a)
under these conditions. The solution is:

o 1 p(z)
(a*(x),b" (x)) = (1 —2p(z)’ dp(x) + B(2p(x) — 1)> 7

which yields the optimal rate of convergence n2r(®)/(dp(@)+8(2p(x)=1)) Note that
setting d = 0, i.e. considering the case when there is no covariate, we recover
the optimal rate of convergence of the Hill estimator, see e.g. de Haan and
Ferreira [22].

4 Simulation study

We examine the behavior of our estimator on several finite-sample situations.
To make it easier to showcase our results, we focus on the case & = [0,1]



equipped with the standard absolute value distance. We set, for 2 € £, y(z) =
(1 + sin(27x)/3) /2. We consider three different models for the conditional dis-
tribution function of Y given X = z, all of which have conditional tail index
~(x). The first one is the Fréchet distribution:

F(ylz) = exp(—y~ /7)),

for all y > 0. For this distribution, p(x) = —1. The second one is the absolute
value of the Student distribution with 1/~(x) degrees of freedom: for this dis-
tribution, p(x) = —2v(x). The third and final one is a Burr distribution, which
has distribution function:

Fylz) =1 — (1 4y P@/1@)1/p)

for all y > 0. For this distribution, p(x) = p is assumed to be constant and we
choose p € {—3/2,—1,—-1/2}.

In this simulation study, our goal is to estimate the conditional extreme-value
index at the three points = 1/4,1/2 and 3/4. The function ¥(.|z, ) is chosen
as Uy(.|u), where 6 € (0,00) and:

0+ 1)2 u?

In this context, condition (AZ2) is satisfied with

(1-a’) and g(ulz) = % (1 —u?)+0).

61

D(a|x) =: Pg(a) 7

We choose § = 0.6833; this value can be seen as a minimizer of (a modified
version of) the AMSE of the estimator, see Gardes et al. [18].

4.1 A global comparison with other methods

We start by comparing our estimator with the following techniques:

The estimator of Goegebeur et al. [20]. This estimator is given by:

T (2w, ha)

~GGS
7 (x7w$7 hm) -
T (2, Wy, ha)

)

where for all t > 0,

1~ 1 - X;
T (2w, hy) = - Z h_K (I > (max (0, log V; — logw,))' T{Y; > w, }.
i=1

xX hm

In the original paper, the estimator is defined and studied only when the thresh-
old sequence w, — oo is nonrandom. Thus, we first compute the quantity



OGS (2, Wy, hy) with wy = q(ug|T), Uz = uy(n) — 0 as n — oo, but we note

that in this case, WGGS (2, ws, hy) is not an estimator since w, is unknown. As
advised in Goegebeur et al. [20], we also compare our results with the estimator
obtained by setting w, = @ (uz|z, h,), which is actually a random threshold
sequence. Finally, we let K (z) = (15/16)(1 — 2?)2I{|x| < 1}, corresponding to
the biweight kernel.

The generalized Pickands-type estimator of Gardes and Girard [17].
For J >2and 0 < 75 < ... <7 <1, this estimator is given by:

F9G(

J
IUCIHI:

(log Gn (Tjug|z, hy) — log gn (us|z, hy) /Zlog 1/75)

Jj=1

where for u € (0,1), gn(u|z, hy) = inf{y € R | F(y|z, hy) > 1 —u} with

)H{nSy} ZK< > :
=1

Following their advice, we set J = 10 and 7; = 1/j%. We take K to be the
biweight kernel.

n

F(yle,hs) =Y K <

=1

We then choose grids of values H for h, and U for u, € (0,1). For a given
n—sample, each estimator is computed for every value of h, € H and u, € U
with

H = {0.05,0.075,...,0.35} and U = {0.025,0.05,...,0.5}.

This procedure is repeated on S = 1000 independent replications of an n—sample
of size n = 300 in each of the cases detailed above. Visual comparisons of the
mean squared errors (MSEs) of each method at x = 0.5 for (ug,h,) € U X H
are provided on Figures 1-5.

All in all, it appears that the MSE of our estimator 4 seems to be fairly stable
with respect to (ug, hy;). In this respect, it appears to perform equally well or
better than the other estimators. A second remark is that the MSE of any of
the four estimators tends to increase as h, increases. This was expected since a
higher h, means taking into account observations whose associated covariates
are further from x, which can increase the bias of the estimate.

4.2 How to choose u, and h,

Of course, in practical situations, a choice of u, and h, has to be implemented.
With this aim in mind, we introduce the statistic

a({[] ) ) = Ul/sz\(xvuIahi)_:Y\H(Iauzvh’m)

e * a(xvumahi) ,
where (2, u,, h;) is the adaptation of the Hill estimator given in (4). We
have the following result:



Proposition 1. Assume that the hypotheses of Theorem 2 hold. Then, as
n — oo:

Cla, g, hy) —25 N (/01(@(04:1:) — Da"®)aq, /01 32(alz)da — 1> .

In other words, the relative error |C(z, ug, hy)| should not be too large if u, and
h. are suitably chosen. Motivated by Proposition 1, our procedure is thus the
following. For every u, € U, we compute the set

S(z,ug) = {|C(z, ug, ha)|, ha € H}.

Let then s(x,u,) be the median of S(x,u, ), and compute
h:(up) = min{hy € H | |C(2, g, ha)| > s(z,uz)}.

Next, we compute the set

T () = {|C(, e, b (ua))], ua € U},
Let now t(x) be the median of 7 (z), and compute

uy = min{u, €U | 1C(x, ug, hi(ug))| > t(x)}.

We finally choose u, := u’ and h, := h%(ul).

Once again, we repeat this procedure on S = 1000 independent replications of
an n—sample of size n = 300. Boxplots of the results at each of the three points
x = 0.25,0.5 and 0.75 are provided on Figure 6.

The results seem globally satisfying in each case. We remark that for the Burr
distribution, the finite sample performance of the method deteriorates as |p(z)]
decreases. This was expected since |p(x)| is the second-order parameter that
controls the rate of convergence of the asymptotic bias to 0: the larger is |p(z)|,
the smaller is the order of the asymptotic bias. Moreover, our simulation study
shows that in practical situations, our estimator suffers from a finite-sample
bias which becomes larger for smaller values of p(z). This can be seen as a
consequence of Theorem 2, in which it appears that the asymptotic bias of the
estimator directly depends on the asymptotic behavior of A(.|z) and thus on
its second-order parameter |p(z)|. We point out that this is actually a common
characteristic of many tail index estimators which is due to the extreme-value
framework.

5 Real data example

In this section, we study a real hurricane data set. Our data come from the
Atlantic Hurricane database (HURDAT?2), which is available on the website of
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the U.S.A. National Weather Service, see http://www.nhc.noaa.gov/data/.
In particular, we focus on the period starting from January 1st, 1950 to De-
cember 31st, 2013. For a given hurricane occurring during this timeframe, we
retain the time and location at which the related wind speeds attained their
maximum. Our variable of interest is then the maximal wind speed and our
covariate is the location. There are 944 observations in our data set, which were
recorded in the geographical zone £ = [98.8°W, 45°W] x [8°N, 53°N]. The set £
is equipped with the classical Euclidean distance.

When dealing with environmental data, one should keep in mind that there are
various statistical concerns, such as independence and stationarity. We shall
not examine these issues in detail here. We merely point out that retaining the
maximal wind speeds, which is standard practice when considering the extremes
of univariate random variables, can reasonably be expected to yield independent
observations. Furthermore, restricting our study to the timeframe 1950-2013,
instead of the period 1851-2013 suggested by the original data set, is in our
opinion a step towards ensuring stationarity of the data.

Various studies have considered wind speed data from an extreme value perspec-
tive. Among them, we mention Beirlant et al. [3] who studied daily maximal
wind speed data for three cities in the U.S.A., Brabson and Palutikof [6] who
introduced a Generalized Pareto Distribution (GPD) model for extreme wind
speeds in Scotland, Coles and Simiu [8] who suggested a GPD model and applied
it to a simulated data set for hurricane wind speeds in Miami, Florida, U.S.A .,
and Jagger and Elsner [25] who took particular climate indicators as covariates
in order to study tropical cyclone wind speeds along the U.S.A. coastline. Al-
though the extreme value framework seems to be fairly adapted to the study of
extreme wind speeds, there seems to be no general consensus about what type
of distribution arises. One the one hand, Coles and Simiu [8] and Jagger and
Elsner [25] find that the distributions of wind speeds they study are short-tailed,
namely they are bounded from above; on the other hand, Beirlant et al. [3] and
Brabson and Palutikof [6] find evidence to support that the distribution of wind
speeds may be heavy-tailed depending on the location.

Moreover, tail index estimators such as the Hill estimator and their generaliza-
tions to the random covariate framework may be used to detect the presence of
heavy tails, as shown in de Haan and Ferreira [22, Theorem 3.2.4], as well as
lighter tails or even a short-tailed distribution, since it is easy to see that our
estimator converges pointwise to 0 provided the conditional distribution has a
finite right endpoint and satisfies a continuity property. A conditional tail index
estimator such as the one we introduce in this paper can therefore be considered
as an exploratory tool to analyze a data set from the extreme value perspective.

We thus compute our estimator, using the selection rule of u, and h, detailed

in Section 4.2, on a grid of points which are chosen to be sufficiently close to
at least one observation in our data set. A qualitative result, superimposed to
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a map of the North Atlantic region, is given in Figure 7. It can be seen that
hurricane wind speeds may indeed be considered heavy-tailed in a large part of
the Gulf of Mexico, while they look lighter-tailed elsewhere, for example in the
Caribbean Sea. Using light-tailed distributions, for instance one featuring an
exponential decay in its right tail, or short-tailed distributions might therefore
be more appropriate in the latter region.

6 Concluding remarks

In this paper, we introduced and studied an estimator which is a weighted inte-
gral of the standard conditional log-quantile estimator. This class of estimators
is fairly flexible; furthermore, particular choices of the weighting function yield
generalizations of well-known tail index estimators. The asymptotic properties
of our estimator were established and its finite-sample properties were seen to
be satisfying.

It was however highlighted that our estimator, as many other tail index esti-
mators do, may suffer from a finite-sample bias which makes it overestimate
the conditional tail index. This can be a problem in practice: for example, in
actuarial science, overestimating the tail index of the losses means that these
losses are thought to have a bigger tail than they have in reality, and thus that
they are expected to cost more than they actually should. This, in turn, can
force an insurance firm to build bigger reserves than necessary by increasing the
premiums of its customers, through which it could lose a portion of the market
share. Future research on this topic therefore includes developing a bias-reduced
version of our estimator. Moreover, it is often thought that estimating the tail
index is the first step before estimating extreme quantiles of a distribution. It
would thus be nice to develop a conditional extreme quantile estimator based
on our technique and investigate its behavior.
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Appendix

6.1 Auxiliary results and their proofs

The first result is a classical equivalent of M (x,h,): see also Lemma 1 in
Stupfler [31].
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Lemma 1. Pick x € R? and assume that m,(h,) — oo as n — oo. Then, for
any 6 > 0:

M(x, hy)

[mm(hm)](175)/2 mm(hm)

P
—1‘—>0 as n — 00.

Proof of Lemma 1. The statement is a straightforward consequence of Cheby-
shev’s inequality. [ |

We let {Y;*,i = 1,...,M(x,h;)} be the response variables whose associated
covariates {X*,i = 1,...,M(z, h;)} belong to the ball B(z,h,). Lemma 2
below is similar in spirit to Lemma 2 in Stupfler [31] and Lemma 4 in Gardes
and Stupfler [19].

Lemma 2. For any x such that P(X € B(xz,hy)) # 0, given M(x,h,) =p > 1,
the random variables V; = 1 — F(Y;*|X}), i = 1,...,p, are independent standard
uniform random variables.

Proof of Lemma 2. If (uq,...,u,) € RP, then since the random pairs (X;,Y;)
are independent and identically distributed, we have:

P <ﬂ{vl < ul}vM(xth) _p> = <Z> HQ(UZ|IahI) H ]P)(Xl ¢ B(xvhm))v
i=1 i=1 i=p+1

where o(t|z, hy) == P(F(Y|X) > 1—t,X € B(z,hg)). Furthermore, for all
t €10,1],

ety = | " ([ 5r k) > 1~ s wloday ) Bxa)

= tP(X € B(z,hy)),

by a change of variables in the inner integral. Since the random variable
M (z, h,) follows a binomial distribution with parameters n and P (X € B(x, hy)),
it follows that:

p
P (m{VZ < wu;}|M(z, hy) :p> =Up...Up,
i=1

which is the result. [ |

Lemma 3 shows that the estimator 7(x,k;,h,) can be approximated by a
weighted Hill estimator (see Hill [24]).

Lemma 3. Let U;, i > 1 be independent standard uniform random variables.
For any = such that P(X € B(x, hy)) # 0, we may write

’/y\(x7u:€7 hw) = :\y/(xuuw7hw) + R(!'E,Uw,hw)
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where the conditional distribution of ¥(x,uy,h,) given M(x, h,) = p is that of

[pu=(p)] i/p 1
Yo, ump) =Y G[;wmm%@mgu%fgﬂl, ™)

i=1 v Ui+1,p|l’)

and |R(z,uz, he)| < R(z,us, hay) where the conditional distribution of R(x, uy, hy)
given M (x, h,) = p is that of

Ug (ZD)
%Wm@wLMV1 1T (0l us (p)) | do
0

Proof of Lemma 3. For the sake of brevity, let us write M,, := M (x, h,) and
ki (M) = Myu,(M,,) and let for p € N*|

i/p

wiple) = [ Wlalou(p)do.
(i—=1)/p

Sinceforalli € {1,..., M, } and o € [(i—1)/My,i/My), Gn(alz, he) = Y3p 41 0,

we may write:

L )] *

ky
Y _
77\(‘@7 uwu w Z Ww; Mn log LM
Y oo (M) ) M

Write J(x, ug, hy) = Y(@, ug, hy) + R(z, Usy, hy) with Y(x, uy, hy) given by:

g Z Jw 2)log q(1 = F(Y3g, —iv1a, 1 X)) 1)
i, My, * * ’
0= F 51, )00, X e (0240 17)
where, for i =1,..., M,, X(*) is the covariate associated to Yy, ;.4 5, . Now,
given M,, = p, Lemma 2 entails that there exist independent standard uniform
variables Uy, ..., U, such that the conditional distribution of ¥(x, uy, hy) given

M, = p is that of

Lk (p)]
w; () log

[k (p)] L%z (p)]

Z wip(x Z log J>P|‘T)
i=1

Q(Ui,p|x) _
QU k, (M) +1,p1T)

Ujt, p|33)

Il
-

%

which is equal to ¥(x, u,, p) by switching the summation order. Let us now focus
on the term R(z,uyz, hy) = 5(2, Uy, he) — (2, Uy, hy). Let V; =1 — F(Y*| X}F).
Since ¢(.|z) is continuous and decreasing, one has, for i = 1,..., M,

log q(Vi|z) — w(Vim,, Vs, ., 2 he) <0 logY™ =logq(Vi| XT)
< logq(Vilz) + w(Vi,m, Vi, T, D).

It follows from Lemma 1 in Gardes and Stupfler [19] that:

log Yy —iv1.m, —loga(Vi, |513)| <wVi,, Vr, v, @5 he ).
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Hence,

log Yar, —iv1,0,, ] q(Vi,m, | )
Mo — ko (Mn) |, M, A(Vik, (M) 41,0, |7)

< 2w(V1)Mn’ VMmMn s Ly hm),

and thus |R(z, uy, h,)| is bounded from above by

_ um(Mn)
R(:Eu Uy, h;v) = 2w(Vl,Mn7 VMnyMn , Ly h:E) / |\I](O‘|‘T7 Uy (M"))|da
0

Applying Lemma 2 completes the proof. [ |

Our next result is dedicated to the study of some particular Riemann sums.

Lemma 4. Let f be an integrable function on (0,1). Assume that f is nonneg-
ative and nonincreasing. For any nonnegative continuous function g on [0,1]
and any sequence (my,) converging to infinity, we have that:

Lan . . 1
> f(l/?”'”bn)g(z/mn)=/O f(t)g(t)dt.

. 1
lim —
n— oo mn .
=1

If moreover f is square-integrable then:
I.an

lim /m, min Z f(i/mn)—/o f(t)dt| = 0.

n—roo

Proof of Lemma 4. Define

[mn | 1
Sulhg)i= = 3 flifmagtifm,) and S(1.9):= [ O
=1
Note first that:
i/[mn ] |

n

f)g(t) = f(i/mn)g(i/mn) dt.

I.an
1S(f,9) — Su(fr9)] < /
; (i—=1)/[mn]

Since g is nonnegative on [0, 1] and f is nonincreasing, it is straightforward that
forallt € [(i —1)/|mn],i/[mn])

f@)g(t) — f(i/mn)g(i/mn) LZ:J < f(t)‘ Jsgi/ lg(s) — g(s")]
+ st (1 2220)
+ lglloe (F(t) = £(i/mn))
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where ||g|loc is the finite supremum of ¢ on [0,1]. Using the fact that, since
/ is nonincreasing, one has for i = 2,..., |my,] that f(t) — f(i/my,) < f((i —
1)/my) — f(i/my), the previous inequality leads to

1
1S(f,9) — Sulfog)| < Afﬁwt sup  1g(s) — o(s")

|s—s'|<1/n

+ ol [ st (1 e
Yima) F)
- MM<A f@ﬁ—ww>%0 ®

by the uniform continuity of ¢ on [0, 1]. This proves the first statement of the
result. To prove the second one, take g = 1 in (8) to get:

mmwwun—&mn|g<mm”0—%?)éf@a
dt

1/[mn]
+ mmWA 0

Since 1—|my,]/my, < 1/m,,, the first term of the right-hand side converges to 0.
By the Cauchy-Schwarz inequality,

/lman] 1/2 /Llman] 1/2
(mn)m/o1 f(t)dt < (LZ:J> (/01 f2(t)dt> -0,

since f2 is integrable on (0,1). The proof is complete. [ |

Lemma 5 examines the asymptotic properties (as p — o0) of the quantity
(x,uy, p) introduced in Lemma 3, equation (7):

[pu=(p)] i/p .
(s p) — 2:(1/ wwa%@wﬁu%ﬁ@@@—
0

i=1 v qUit1plr)’

where Uy, ..., U, are independent standard uniform random variables. Recall
from Theorem 2 the notations

1 1
AB, (P, p(x)) = / ®(alz)a @ da and AV, (P) = / ®? (a|x)da.
0 0
Lemma 5. Assume that u, € RV_y(,) with a(x) € (0,1).

i) If (M1) and (A1) hold, then F(x, uy, p) SN ~v(x).

i) If (M2) and (A2) hold and (zu.(2))"/2A(1/us(2)|x) — Mx) € R as 2
goes to infinity then:

(P (p) 2 (T (@, 10, p) = () ~5 N (M@)AB (@, p(2)), 72 (2) AV (D)) .
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Proof of Lemma 5. Pick p > 2 and let for i € {1,..., [pus(p)] }:

i/p
w; p(z) = l/o U (|2, u, (p))da.

7

i) To show the consistency statement, we set F;(p) = ilog(Usy1,/Uip) and we
use model (M1) to rewrite J(x, ug, p) — y(x) as:

¥(@, ug,p) — v(x) = S1,p(2) + S2,p(%) + S3,p(7) + Sup(z), 9)
with
Lpum(p
Sip(x) = w; () (Ei(p
=1
L;D’U‘z(p
Sap(@) = @) | Y. wiple
=1
[pus (p)] |$)
Ssp(z) = wj p(x) ilogi
g i=1 ! (Uz—i-ll p| )
[pua(p)] Ut
i,p A
and Sy, (z) = wip(x) i / @) 4
i=1 Ui, Y

It is thus enough to show that for any j € {1,2,3,4}, S; ,(2) Ly 0asp — .
We start by controlling the sum S; ,(z): since the random variables —logU;
are independent standard exponential random variables, Rényi’s representation
(see de Haan and Ferreira [22]) entails that the F;(p) are independent standard
exponential random variables as well. Thus S ,(x) is centered and

I.pum (p)]
Var(S1 p(z) wfp x (10)
i=1
Condition (A1) yields:
1 i/p 1 .
wip@) = 7 [ Vol (p)do = i/ pup)e). (11

Thus, for any a > 1 such that ®(.|z) is integrable on (0, 1):

[puz(p)] - 1 [puz(p)] '
2 wi (z) = (pus(p)) o) ; @ (i /(pus(p))|z)
— (u) [ @ (afda(1 + o), (12
0
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using Lemma 4 with f = ®%(.|x) and ¢ = 1. Apply (10) together with (12) for
a =2 to get as p — oo
S1p(x) = 0. (13)

The nonrandom term Ss ,(x) is controlled by using (12) with a = 1:
[pux(p)] 1
Sap(x) = y(x) Z w; () —/ O(a|r)da | =0, (14)
i=1 0
as p — oo. The sum S3 ,(x) is controlled by rewriting it as:

Lpuz(P)J j/p C(Uj_pllx)
S3.p(1) = /‘ Uz, ua(p))da | log ——
(

i=1)/p Uy, () 141.017)

j=1
From this, we deduce that:

c(slx)
c(t|x)

)

Uy (;D)
%AMSA W(alr,us(p))da sup ]m

—1
$E2U | (0) | 41,0

which we use together with condition (A1), the convergence of ¢(.|z) to a pos-

itive constant and the convergence [uw(p)]_lULpuI(p)Hl)p 21 as p — oo to
get:
S3p(a) — 0. (15)

Finally, to control Ss ,(x) we write:

1+ Sl,p(x) + 52,1)(55)

i, < L

) sip |A@l). (16)
v>U

—1
=" lpuz(p)|+1,p

Use (16) together with (13), (14), the convergence [us(p)] ™ U pu, (p)+1.p R
as p — oo and the convergence of |A(.|z)| to zero to obtain:

Syp(r) = 0. (17)

Combining (13), (14), (15) and (17) completes the proof of the consistency state-
ment.

i1) To prove the asymptotic normality statement, we note that since (M2) holds,
we may apply Theorem 2.1 in Beirlant et al. [1] to obtain that the random vector

{ilog(q(U; plx)/q(Uis1 p|x)), i € Hp o} where Hp, , :={1,..., |puy(p)|} has the
same distribution as:

{ Y(x) + Apw <m> o

Ei(p) + Vi,p(z) + OIP’(A;D,m)v (&S Hp,E}v
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with A, := A(p/|[pus(p)]|z) and where the v; ,(z) satisfy

[pua(p)]

Z 7|V],p.(;v)| = op (|AWC| max (log [pus(p)] +1 (p)J + ,1)) , (18)
. J 7

j=t

uniformly in ¢ € Hp, . Using the definitions of S ,(x) and Ss ,(x) introduced
above, we may therefore write:

1

() (T 00s9) = 2(2) = Ay [ Blale)ada )
0

L (pua(p) 2 (S1p(@) + S2p(x) + 51, () + Sh,(x) + 55 ,(x)) + 0p(1)
with
[puz (p)] i —p(x)
Sl,p(x) = AP@ s wi,p(x) (Lpuz(p)J ¥+ 1) (EZ(p) - 1)7
[puz(p)] . —p(x) 1
bo(x) = wi (@) [ — - alz)a " da
S2,p( ) AP@( ; %P( )(Lpuz(p)J _|_1> /0 (I)( | ) d )7
[puz(p)]
Sé,p(x) = Z Wi p(2)Vi,p().

i=1

We start by examining the convergence of (pu.(p))/2S1 ,(z). Define T; ,(z) =
w; p(x)(Ei(p)—1) and remark that the T; ,,(x), ¢ € Hp , are independent centered
random variables such that

[puz (p)]
S1p(x) = v(2) T p(x)
=1
By (12) with a = 2:
[pua (p)] 1
Var(Syp(x) =+%(z) Y wi,(2) = [pum(p)]_lvz(l’)/o ®*(alz)da(1+o(1)),
i=1
and, by (12) with a = 2+ k:
[pua(p)] [puz (p)]
E(|Tip(2) ") = +*() w b (2)E(|E; (p) — 117T7)
=1 i=1
= O ([pu(p)]~'7").

As a consequence:

[puax(p)]

7 Y E(Ta@F) = Olfpus(p)] /) =0,

1
[Var(S1,p())]
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as p — oo. Lyapunov’s central limit theorem (see Billingsley [4]) thus entails

1
(b ()25 &) ~5 A (o,v“‘(x) / @2(a|x>da> | (19)

To control (pu,(p))'/2Ss ,(z), use the second statement of Lemma 4 with f =
®(.|x) to obtain:
(pua(p)) /S, () = 0. (20)

To control (pu, (p))1/2511p(;v) we note that since
(pus ()2 Apo = (Pua(p)? A1 /ua(p)le) (1 + o(1)) = Ax),

we have |S] ,(z)| = Op(]SY ,(x)]), with

[pus(p)] i —p(x)
S = () Y wi,pu)( ) (Eip) 1),

— puz(p)
The variance of the centered sum S7 () is such that:
[puz(p)] i —2p(z)
puap)VerSt,0) = >ty (50

= (pu(p)” / B(afa)a~ @ da(1 + o(1)),

where (11) and Lemma 4 were used, with f = ®(.|z) and g : t — t~2(®). As a
consequence:

(pua(p)V/25] () = 0. (21)

The term (pu,(p))'/?S5 ,(x) is controlled in the following way: we note that
155 p(2)| = O(] 52, (x)]) with
/ Lpu(p)] i —p(x) 1 ()
S// — . —1/2 i < ) _/ P —r(x) g
2,p(x) (pu (p)) Z w 1P(‘r) \_pum( )J 1 0 (OA|I)OZ Q

=1 p

and we use once again (11) and Lemma 4 with f = ®(.|z) and g : t — t?(*) to
get that (puz(p))l/QSQ’)p(x) — 0. Thus:

(pus(p))'/2 55 p(x) = 0. (22)

Finally, we use (11) to bound |53 ,(z)| by:

(prs ()™ Lpui‘m ‘iq) <puj(p) |x) —E-Le (pi;(zlo) |I>

i=1 j=i

Lpuz (p)]
"5 aale)]
J
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Using conditions (A2) and (18), we thus get:

[pu=(p)] pua(p)
S5, = 0r {8pal(ua) ™Y 006/ (rus (o)) max (1027 1)

i=1

= OIP’(|AP,1|)=

by Lemma 4 with f = max(log(1/
[0,1], or f = max(log(1/.), 1)g(.[x)
Consequently:

.),1) and g = g(.|z) if g(-]2) is continuous on
a =

1)a =g

nd g = 1 if g(-|z) is nonincreasing on (0, 1).
(pue(p))'/285 () =0 as p = oo, (23)

Combining (19), (20), (21), (22) and (23) completes the proof. [ |

The ultimate result is a general “de-conditioning” result which is the cornerstone
to prove Theorems 1 and 2.

Lemma 6. Let (N = N,) be a nonnegative sequence of integer-valued ran-

dom variables and (Z,), (R,) be two sequences of real-valued random variables.
Assume that there ewists a sequence of random variables (Z(p)) such that for
any p € N\ {0}, the distribution of Z, given N = p is that of Z(p). Assume
also that there exist a nonrandom positive sequence (py,) of integers tending to
infinity and a nonrandom positive sequence (g,,) converging to 0 such that if
I, = [pn(1 — ), pn(1 + &,)], we have that P(N ¢ I,) — 0 as n — oo. Let
Zp:=Zn+ R,.

i) If Z(p) converges in probability to 0 as p — oo and if for all t > 0,
lim sup P(|R,| > t|N =p) =0,

n—oo peln

then (Z,) converges in probability to 0.

i1) If there exists a positive function v(.) for which v(p,) — oo and (v(pn)Z(pn))
converges in distribution to some absolutely continuous distribution H as
n — oo and such that

v(p)

v(p')

for all t > 0 then (v(pn)Z,) converges in distribution to H.

sup -1

— 0 and lim sup P(v(p)|R,| > t|N =p) =0,
p.p'€ln

oo pel,

Proof of Lemma 6. ¢) To prove the consistency statement, pick ¢ > 0 and
write:

P(Zal >t) = Y P(1Zu| > tIN = j)P(N = j)
=0
< sup P(|Zal > N = p) +o(1)
pEln
< sup P (1Zy] > /2N =p) + sup P(|Ra| > t/2IN = p) +o(1)
pEln pel,
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as n — 0o. The result follows by noting that:

lim sup P(|R,| > t/2|N =p) =0,
p€ly,

n— 00
and

lim sup P(|Z,| > t/2|N = p) = lim sup P(|Z(p)| > t/2) = 0.
n—00 per. n—00 per.
i1) Use first the condition on v(.) to obtain v(N) = v(py)(1l + op(1)). It is

therefore enough to prove that (v(N)Z,) converges in distribution to H. We
have for any ¢ € R and any € > 0:

P(u(N)Zp <t) = H(t)| < Y |P(0(j)Zn <tIN = j) — H(t)| P(N = j)
=0
< sup [P(v(p)Z, <tIN =p) — H(t)| + /4,

pEln

for n large enough. Since H is continuous, one can find £ > 0 such that H (¢ +
k) — H(t — r) < /8. Observe that sup,c; [P(v(p)Z, <N =p) - H(t)| <
T1,n + 15, where:

T, = Squ P(U(p)gn <t —v(p)Rn,v(p)|Ry| < KIN =p) — H(t)|,
peln

Ton = sup P(v(p)Zn <t —v(p)Rn,v(p)|Rn| > K|N = p).
pely

By assumption, for n large enough, 75 ,, < ¢/4 and

Tin < sup ]P(U(p)zn§t+f$|N=p)—H(t+l€)‘+(H(t+f$)—H(t))
+ Séllp ]P’(v(p)ZnSt—n|N=p)—H(t—l€)‘+(H(t)—H(t—f<a))

Séllp |]P’(v(p)7(p) <t+k)—H({t+ m)|

+ Séllp |P(v(p)Z(p) <t —r)— H(t— k)| +c/4

€/2,

IN

IN

since (v(p)Z(p)) converges in distribution to H. Hence

sup [P(v(p)Zn <tN =p) — H(t)| < 3¢/4,

pEln

which concludes the proof. [ |
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6.2 Proofs of the main results

Proof of Theorem 1. The main idea is to apply Lemma 6, with N = M (z, h,,),
Pn = me(hm)J; €n = Pn / ) Zn = ’Y(Ea Uy, h’m) - ’Y(I% Z’n = ’Y(‘Ivuma hI) - FY(‘I)a
R, =7(z,uy, hy) —Y(x, ug, hy) and Z(p) = J(x, ug, p) — v(r) with the notation
of Lemmas 3 and 5. We observe that Lemma 1 entails P(N ¢ I,,) — 0 as
n — oo. Moreover, from condition (A1), we have that

C:= limsup/ |V (a|z,u)|do < oo
ul0 0

Apply then Lemma 3 to get for any ¢ > 0:

sup P(|Ry| > t|N = p) < sup P(w(Usp, Up,p, 2, ha) > £/4C),  (24)
pEln p€ln
where Uy,...,U, are independent standard uniform random variables. For n

large enough, condition (5) thus yields:
P(w(Utp, Upp, @, he) > t/AC) < P(Ury < [mg(ha)] ™' 7°)

+ PUpp > 1 —[ma(ha)) ™ 70).

Since for n large enough:

sup [P(U1 < [ (b)) ™ 7%) + B(U > 1= ma ()] )]

pely,
— zsglp [1—[1 = [ma(hy)] 0]
L L) e ) (25)

as n — oo, we obtain P(|R,| > t|N = p) — 0 for any ¢ > 0, uniformly in
p € I,,. Finally, the convergence in probability of (Z(p,)) to 0 is a consequence
of Lemma 5. Applying Lemma 6 completes the proof. [ ]
Proof of Theorem 2. Our aim is to apply Lemma 6, with N = M(z, h,),
Pn = me(hm)J; En = Pn / ) Zn :_’Y(Ia Uy, h’m) - ’Y(I% Z’n = ’Y(‘Ivuma hI) - FY(‘I)a
R, = (z,ug, he) — 5(2, Uz, ha), Z(p) = (2, Uz, p) — v(x) with the notation of
Lemmas 3 and 5, and v(p) = (pu.(p))'/2. We first observe that Lemma 1 yields
P(N ¢ I,,) — 0 as n — co. Next, Lemma 3 and condition (6) yield for any ¢ > 0
and n large enough:

sup P(v(p)|Ry| > t|N = p)

p€l,

< sup P(v(mg(hy))w(Ui p, Up p, @, hy) > t/8C)
p€ly,

< Slllp []P)(Ul,p < [mw(hw)]_l_é) +PUpp > 1~ [mw(hw)]_l_é)] .
pEly

It is then a consequence of (25) that the right-hand side above converges to 0
as n — oo. Finally, by Lemma 5, the sequence (v(pn)Z(pn)) converges in distri-
bution to the Gaussian distribution with mean \(z)AB,(®, p(z)) and variance

v%(2) AV, (®). Applying Lemma 6 completes the proof. ]
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Proof of Proposition 1. We follow the lines of the proof of Theorem 2 and
use the Cramér-Wold device to get:

gz (M@ he) =y (@) d )
’ < (@, ug, he) — () >—>N<uw<<1>7p< ) e ()),

with
(1= p(x)~" 1 1
2 (P, = - d >, (P):= .
Ho(®:p(2)) ( fol ®(alr)a @) da a (@) 1 fol 2 (a)z)da
The result is then a consequence of the delta-method. [ |
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Our method Gardes and Girard
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Figure 1: Comparison of the MSE as a function of u, and h, for the Burr
distribution with p = —3/2 at = 0.5. Top left: our estimator 7, top right:
estimator 79 of Gardes and Girard [17], bottom left: estimator Y9 of Goege-
beur et al. [20] with w, = q(u.|r), bottom right: estimator Y55 of Goegebeur

et al. [20] with wy = q(ug|z, hy).
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Our method Gardes and Girard
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Figure 2: Comparison of the MSE as a function of u, and h, for the Burr distri-
bution with p = —1 at & = 0.5. Top left: our estimator 7, top right: estimator
746 of Gardes and Girard [17], bottom left: estimator 75 of Goegebeur et
al. [20] with w, = q(u.|z), bottom right: estimator Y95 of Goegebeur et al. [20]
with w, = q(ug|z, hy).
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Our method Gardes and Girard
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Figure 3: Comparison of the MSE as a function of u, and h, for the Burr
distribution with p = —1/2 at = 0.5. Top left: our estimator 7, top right:
estimator 79 of Gardes and Girard [17], bottom left: estimator Y9 of Goege-
beur et al. [20] with w, = q(u.|r), bottom right: estimator Y55 of Goegebeur
et al. [20] with wy = q(ug|z, hy).
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Our method Gardes and Girard
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Figure 4: Comparison of the MSE as a function of u, and h, for the Fréchet
distribution at = = 0.5. Top left: our estimator 7, top right: estimator 7% of
Gardes and Girard [17], bottom left: estimator 7SG of Goegebeur et al. [20]
with w, = q(u.|r), bottom right: estimator 755 of Goegebeur et al. [20] with
Wy = q(ug|x, hy).
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Our method Gardes and Girard
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Figure 5: Comparison of the MSE as a function of u, and h, for the Student
distribution at z = 0.5. Top left: our estimator 7, top right: estimator 7% of
Gardes and Girard [17], bottom left: estimator 7SG of Goegebeur et al. [20]
with w, = q(u.|r), bottom right: estimator 755 of Goegebeur et al. [20] with
Wy = q(ug|x, hy).
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Boxplot of the estimates Boxplot of the estimates
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Figure 6: Boxplots of the tail index estimator 7 for a Burr distribution with
p = —3/2 (top left), p = —1 (top right), p = —1/2 (middle left), the Fréchet
distribution (middle right) and the Student distribution (bottom left). The red
cross is the true value of v(x).
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Figure 7: Local estimates of v(x) in the North Atlantic Region. The black dots
are the observed locations.
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