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Estimating the onditional tail index with anintegrated onditional log-quantile estimator inthe random ovariate aseLaurent Gardes(1) & Gilles Stup�er(2)
(1) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Desartes,67084 Strasbourg Cedex, Frane
(2) Aix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR7316, 13002 Marseille, FraneAbstrat. It is well known that the tail behavior of a heavy-tailed distri-bution is ontrolled by a parameter alled the tail index. Suh a parameter istherefore of primary interest in extreme value analysis, partiularly to estimateextreme quantiles. In various appliations, the random variable of interest anbe linked to a �nite-dimensional random ovariate. In suh a situation, the tailindex is funtion of the ovariate and is referred to as the onditional tail index.The goal of this paper is to provide a lass of estimators of this quantity. Thepointwise weak onsisteny and asymptoti normality of these estimators areestablished. We illustrate the �nite sample performane of our tehnique on asimulation study and on a real hurriane data set.AMS Subjet Classi�ations: 62G05, 62G20, 62G30, 62G32.Keywords: Heavy-tailed distribution, tail index, random ovariate, onsis-teny, asymptoti normality.1 IntrodutionStudying extreme events is relevant in numerous �elds of statistial appliations.In hydrology for example, it is of interest to estimate the maximum level reahedby seawater along a oast over a given period, or to study extreme rainfall at agiven loation; in atuarial siene, a major problem for an insurane �rm is toestimate the probability that a laim so large that it represents a threat to its sol-veny is �led. A partiular branh of extreme value analysis fouses on the studyof heavy-tailed random variables, that is, those random variables whose distri-bution funtion F is suh that, for all λ > 0, (1 − F (λx))/(1 − F (x)) → λ−1/γas x goes to in�nity, where γ > 0 is the so-alled tail index. The parameter γdrives the asymptoti behavior of F in its right tail, whih makes its estimation1



neessary if we are interested in the extremes of the assoiated random variable.The estimation of the tail index has therefore been extensively studied in theliterature. Reent overviews on univariate tail index estimation an be found inBeirlant et al. [2℄ and de Haan and Ferreira [22℄.In pratial appliations, the variable of interest Y an often be linked to aovariate X . For instane, the value of rainfall at a given loation dependson its geographial oordinates; in atuarial siene, the laim size depends onthe sum insured by the poliy. In this situation, the tail index of the randomvariable Y given X = x is a funtion of x to whih we shall refer as the ondi-tional tail index. Its estimation has �rst been onsidered in the ��xed design�ase, namely when the ovariates are nonrandom. Smith [30℄ and Davison andSmith [12℄ onsidered a regression model while Hall and Tajvidi [23℄ used asemi-parametri approah to estimate the onditional tail index. Fully non-parametri methods have been developed using splines (see Chavez-Demoulinand Davison [7℄), loal polynomials (see Davison and Ramesh [11℄), a movingwindow approah (see Gardes and Girard [15℄), a nearest neighbor approah(see Gardes and Girard [16℄), and a onditional quantile-based tehnique (seeGardes et al. [18℄), among others.Despite the great interest in pratie, the study of the random ovariate ase hasbeen initiated only reently. We refer to the works of Wang and Tsai [32℄, basedon a maximum likelihood approah, Daouia et al. [9℄ who used a �xed number ofnon parametri onditional quantile estimators to estimate the onditional tailindex, later generalized in Daouia et al. [10℄ to a regression ontext with ondi-tional response distributions belonging to the general max-domain of attration,Gardes and Girard [17℄ who introdued a loal generalized Pikands-type esti-mator (see Pikands [27℄), Goegebeur et al. [20℄ who studied a nonparametri re-gression estimator whose strong uniform properties are examined in Goegebeuret al. [21℄, Stup�er [31℄ who introdued a generalization of the popular momentestimator of Dekkers et al. [13℄ and Gardes and Stup�er [19℄ who worked on asmoothed loal Hill estimator (see Hill [24℄) related to the work of Resnik andSt ri  [28℄.The aim of this paper is to introdue an estimator of the onditional tail indexbased on the integration of a onditional log-quantile estimator. This type ofestimators is similar to the one of Gardes and Girard [15℄; our aim is to prove itsonsisteny and asymptoti normality when the ovariates are random, as wellas to examine its appliability on numerial examples and on real data. Ourpaper is organized as follows: we de�ne our onditional tail index estimator inSetion 2, its asymptoti properties are stated in Setion 3, a simulation studyis provided in Setion 4 and we showase our estimator on a set of real hurrianedata in Setion 5. We o�er a ouple of onluding remarks in Setion 6. All theauxiliary results and proofs are deferred to the Appendix.2



2 FrameworkWe let (X1, Y1), . . . , (Xn, Yn) be n independent opies of a random pair (X,Y ) ∈
E × R+, where (E , d) is a metri spae. We assume that for any x ∈ E , theonditional distribution funtion y 7→ F (y|x) := P(Y ≤ y|X = x) of Y given
X = x belongs to the setRV−1/γ(x) of regularly varying funtions (at in�nity) ofindex −1/γ(x) < 0. Reall that a funtion G ∈ RVa, a ∈ R if G is nonnegativeand for all λ > 0, G(λy)/G(y) → λa as y goes to in�nity. This is the adaptationof the standard extreme-value framework to the ase when there is a ovariate.An equivalent assumption (see Bingham et al. [5, Proposition 1.5.15℄) is:(M1) For any x ∈ E , the onditional quantile funtion α 7→ q(α|x) := F←(1 −

α|x) = inf{y ∈ R | F (y|x) ≥ 1− α} ∈ RV−γ(x).Our goal is to estimate the onditional tail index γ at a point x ∈ E . Re-mark �rst that, under (M1), for u ∈ (0, 1) small enough and α ∈ (0, u),
log q(α|x)/q(u|x) ≈ γ(x) log(u/α). Hene, for any measurable funtion Ψ(.|x, u)on (0, u) suh that ∫ u

0

Ψ(α|x, u) log (u/α) dα = 1, (1)one has ∫ u

0

Ψ(α|x, u) log q(α|x)
q(u|x)dα ≈ γ(x). (2)We propose to estimate γ(x) by replaing in the previous approximation theonditional quantile funtion q(.|x) by a onsistent estimator of this quantity.To this end, let I{.} denote the indiator funtion and, for any h > 0, B(x, h) :=

{x′ ∈ E | d(x, x′) ≤ h} denote the losed ball in E with enter x and radius h.The total number of ovariates belonging to the ball B(x, h) is given by
M(x, h) =

n∑

i=1

I{Xi ∈ B(x, h)}.The onditional distribution funtion F (.|x) is estimated by:
F̂n(y|x, hx) =

1

M(x, hx)

n∑

i=1

I{Yi ≤ y}I{Xi ∈ B(x, hx)},where hx = hx(n) is a positive sequene onverging to 0. The assoiated esti-mator of the onditional quantile funtion q(.|x) is then, for α ∈ (0, 1),
q̂n(α|x, hx) = F̂←n (1 − α|x, hx) = inf{y ∈ R | F̂n(y|x, hx) ≥ 1− α}.Replaing q(.|x) by q̂n(.|x, hx) in (2), our lass of estimators of γ(x) is given fora (0, 1)-valued measurable funtion ux onverging to 0 at in�nity by:

γ̂(x, ux, hx) =

∫ Ux

0

Ψ(α|x, Ux) log
q̂n(α|x, hx)

q̂n(Ux|x, hx)
dα, (3)3



in whih Ux = ux(M(x, hx)) and Ψ(.|x, u) is an integrable funtion on (0, u) sat-isfying (1). The estimator γ̂(x, ux, hx) is thus a weighted integral of an estimatorof the onditional log-quantile funtion.We onlude this setion by pointing out that partiular hoies of the funtion
Ψ(.|x, u) atually yield generalizations of some well-known tail index estimatorsto the onditional framework. Let kx := UxM(x, hx). The hoie Ψ(.|x, u) =
u−1 yields:

γ̂H(x, ux, hx) =
1

kx

⌊kx⌋∑

i=1

log
q̂n((i− 1)/M(x, hx)|x, hx)

q̂n(kx/M(x, hx)|x, hx)
, (4)whih is the straightforward adaptation of the lassial Hill estimator (seeHill [24℄). Similarly, letting Ψ(.|x, u) = u−1(log(u/.) − 1) entails, after somealgebra:

γ̂Z(x, ux, hx) =
1

kx

⌊kx⌋∑

i=1

log

(
kx
i

){
i log

q̂n((i − 1)/M(x, hx)|x, hx)

q̂n(i/M(x, hx)|x, hx)

}
.This estimator an be seen as a generalization of the Zipf estimator (see Kratzand Resnik [26℄, Shultze and Steinebah [29℄).3 Asymptoti properties3.1 Main resultsWe start by stating the weak onsisteny of the estimator (3). To this end, anadditional hypothesis is required.(A1) The funtion Ψ(.|x, u) satis�es:

lim sup
u↓0

∫ u

0

|Ψ(α|x, u)|dα < ∞,and for all u ∈ (0, 1) and β ∈ (0, u],
u

β

∫ β

0

Ψ(α|x, u)dα = Φ(β/u|x),where Φ(.|x) is a square-integrable noninreasing probability density fun-tion on (0, 1).Note that ondition (A1) is satis�ed by the two funtions Ψ(.|x, u) = u−1 and
Ψ(.|x, u) = u−1(log(u/.)− 1) with Φ(.|x) = 1 and Φ(.|x) = − log(.) respetively.We also assume in all what follows that q(.|x) is ontinuous and dereasing.Partiular onsequenes of this ondition inlude that F (q(α|x)|x) = 1 − αfor any α ∈ (0, 1) and that given X = x, Y has an absolutely ontinuous4



distribution with probability density funtion f(.|x). For 0 < α1 < α2 < 1, we�nally introdue the quantity:
ω (α1, α2, x, hx) = sup

α∈[α1,α2]

sup
x′∈B(x,hx)

∣∣∣∣log
q(α|x′)
q(α|x)

∣∣∣∣ ,whih is the uniform osillation of the log-quantile funtion in its seond argu-ment. Suh a quantity is also studied in Gardes and Stup�er [19℄, for instane.Letting mx(hx) = nP(X ∈ B(x, hx)) be the average number of ovariates whihbelong to B(x, hx), the weak onsisteny of our family of estimators is estab-lished in the following theorem.Theorem 1. Assume that onditions (M1) and (A1) are satis�ed. Assumefurther that mx(hx) → ∞ as n → ∞ and that ux ∈ RV−a(x) with a(x) ∈ (0, 1).If, for some δ > 0,
ω
(
[mx(hx)]

−1−δ, 1− [mx(hx)]
−1−δ, x, hx

)
→ 0, (5)then it holds that γ̂(x, ux, hx)

P−→ γ(x) as n → ∞.Note that ux(mx(h))mx(h) → ∞ is the average number of observations usedto ompute our estimator of γ(x). The onditions in Theorem 1 are thus ana-logues of the lassial hypotheses in the estimation of the tail index. Besides,ondition (5) ensures that the distribution of Y given X = x′ is lose enough tothat of Y given X = x when x′ is in a su�iently small neighborhood of x.Our aim is now to establish an asymptoti normality result. First, reall thatunder (M1), the onditional quantile funtion may be written as follows:
∀t > 1, q(t−1|x) = c(t|x) exp

(∫ t

1

∆(v|x) − γ(x)

v
dv

)
,where c(.|x) is a positive funtion onverging to a positive onstant at in�nityand ∆(.|x) is a measurable funtion onverging to 0 at in�nity, see Binghamet al. [5, Theorem 1.3.1℄. We introdue the following lassial seond-orderondition:(M2) Condition (M1) holds, c(.|x) is a onstant funtion equal to c(x) > 0,the funtion ∆(.|x) has ultimately onstant sign at in�nity and |∆(.|x)| ∈

RVρ(x), with ρ(x) < 0.In ondition (M2), ρ(x) is alled the onditional seond-order parameter ofthe distribution. This ondition is ommonly used when studying tail indexestimators and makes it possible to ontrol the asymptoti bias of the estimator
γ̂(x, ux, hx). We also introdue a further assumption on the weighting funtion
Φ(.|x), whih is similar in spirit to a ondition introdued in Beirlant et al. [1℄.To write down this ondition, we note that if (A1) holds then

∀β ∈ (0, 1), 0 ≤ βΦ(β|x) ≤
∫ β/2

0

|Ψ(α|x, 1/2)|dα5



and the right-hand side onverges to 0 as β ↓ 0, so that we may extend thede�nition of the map t 7→ tΦ(t|x) by saying it is 0 at t = 0.(A2) Condition (A1) holds, there is κ > 0 suh that Φ2+κ(.|x) is integrable on
(0, 1) and there exists a positive funtion g(.|x), whih is either ontinuouson [0, 1] or noninreasing on (0, 1), suh that for any k > 1 and i ∈ [1, k),

|iΦ (i/k|x)− (i − 1)Φ ((i− 1)/k|x)| ≤ g (i/k|x) ,where the funtion g(.|x)max(log(1/.), 1) is integrable on (0, 1).Note that ondition (A2) is satis�ed for instane by the funtions Ψ(.|x, u) =
u−1 and Ψ(.|x, u) = u−1(log(u/.) − 1) mentioned at the end of Setion 2 with
g(.|x) = 1 for the �rst one and, for the seond one, g(.|x) = − log(.) + 1. Ourasymptoti normality result is the following:Theorem 2. Assume that onditions (M2) and (A2) are satis�ed. Assumefurther that mx(hx) → ∞ as n → ∞, that ux ∈ RV−a(x) with a(x) ∈ (0, 1) and
(zux(z))

1/2∆(1/ux(z)|x) → λ(x) ∈ R as z → ∞. If for some δ > 0,
v1/2x ω

(
[mx(hx)]

−1−δ, 1− [mx(hx)]
−1−δ, x, hx

)
→ 0 (6)where vx = mx(hx)ux(mx(hx)), then it holds that

v1/2x (γ̂(x, ux, hx)− γ(x))
d−→ N

(
λ(x)ABx(Φ, ρ(x)), γ

2(x)AVx(Φ)
)as n → ∞, with

ABx(Φ, ρ(x)) =

∫ 1

0

Φ(α|x)α−ρ(x)dα and AVx(Φ) =

∫ 1

0

Φ2(α|x)dα.Our asymptoti normality result thus holds under generalizations of the ommonhypotheses on the model and on ux and hx, provided the onditional distribu-tions of Y at two neighboring points are su�iently lose.We onlude this paragraph by noting that these results are similar in spiritto results obtained in the literature for other onditional tail index or ondi-tional extreme-value index estimators, see e.g. Gardes and Stup�er [19℄ andStup�er [31℄. The main disadvantage of formulating the hypotheses in termsof the uniform osillation ω is that they annot immediately be translated interms of onditions on ux and hx. In our next paragraph, we give alternative,simple onditions for our main results to hold.3.2 Disussion of the hypothesesAs a starting point, we note that if X has a probability density funtion f withrespet to the Lebesgue measure on E = R
d equipped with the Eulidean norm

‖.‖ then su�ient onditions for mx(hx) → ∞ are that hx → 0, nhd
x → ∞,6



f(x) > 0 and f is ontinuous at x. Indeed, in this ase, if V denotes the volumeof the unit ball of Rd, a hange of variables entails:
mx(hx) = n

∫

B(x,hx)

f(s)ds = nhd
xf(x)

(
V +

∫

‖v‖≤1

[
f(x+ hxv)

f(x)
− 1

]
dv

)
.Sine f is ontinuous at x, we get mx(hx) = nhd

xVf(x)(1+o(1)) → ∞. Further-more, we point out that if the funtions γ, log c(t|.) and ∆(t|.) satisfy a Hölderondition, namely:
sup

x′∈B(x,hx)

|γ(x′)− γ(x)| = O(hβ
x),

sup
t−1∈Kx,δ(hx)

sup
x′∈B(x,hx)

| log c(t|x′)− log c(t|x)| = O(hβ
x)and sup

t−1∈Kx,δ(hx)

sup
x′∈B(x,hx)

|∆(t|x′)−∆(t|x)| = O(hβ
x),where β > 0 and Kx,δ(hx) is the interval [(mx(hx))

−1−δ, 1 − (mx(hx))
−1−δ],then (5) is a onsequene of the onvergene hβ

x logmx(hx) → 0. In the afore-mentioned ontext when X has a probability density funtion, this onditionbeomes hβ
x logn → 0 as n → ∞. Suh onditions were already onsidered inStup�er [31℄.As an illustration, we now ompute the optimal rate of onvergene of ourestimator when E = R

d and X has a probability density funtion. Let a(x) ∈
(0, 1) and b(x) ∈ (0, 1/d). We take log(hx) = −b(x) log(n) and log(nux(n)) =
(1 − a(x)) log(n). In this ontext, the rate of onvergene of the estimator isessentially (mx(hx)ux(mx(hx))

1/2 = n(1−db(x))(1−a(x))/2. Besides, sine ∆(.|x)is regularly varying with index ρ(x) < 0, the onditions for Theorem 2 to holdare then essentially:
1− a(x) + 2a(x)ρ(x) ≤ 0 and 1− a(x) − 2βb(x) ≤ 0.The problem thus amounts to maximizing the funtion (a, b) 7→ (1− db)(1− a)under these onditions. The solution is:
(a∗(x), b∗(x)) =

(
1

1− 2ρ(x)
,

ρ(x)

dρ(x) + β(2ρ(x)− 1)

)
,whih yields the optimal rate of onvergene nβρ(x)/(dρ(x)+β(2ρ(x)−1)). Note thatsetting d = 0, i.e. onsidering the ase when there is no ovariate, we reoverthe optimal rate of onvergene of the Hill estimator, see e.g. de Haan andFerreira [22℄.4 Simulation studyWe examine the behavior of our estimator on several �nite-sample situations.To make it easier to showase our results, we fous on the ase E = [0, 1]7



equipped with the standard absolute value distane. We set, for x ∈ E , γ(x) =
(1 + sin(2πx)/3) /2. We onsider three di�erent models for the onditional dis-tribution funtion of Y given X = x, all of whih have onditional tail index
γ(x). The �rst one is the Fréhet distribution:

F (y|x) = exp(−y−1/γ(x)),for all y > 0. For this distribution, ρ(x) = −1. The seond one is the absolutevalue of the Student distribution with 1/γ(x) degrees of freedom: for this dis-tribution, ρ(x) = −2γ(x). The third and �nal one is a Burr distribution, whihhas distribution funtion:
F (y|x) = 1− (1 + y−ρ(x)/γ(x))1/ρ(x),for all y > 0. For this distribution, ρ(x) = ρ is assumed to be onstant and wehoose ρ ∈ {−3/2,−1,−1/2}.In this simulation study, our goal is to estimate the onditional extreme-valueindex at the three points x = 1/4, 1/2 and 3/4. The funtion Ψ(.|x, u) is hosenas Ψθ(.|u), where θ ∈ (0,∞) and:
Ψθ(α|u) =

(θ + 1)2

θuθ+1

(
uθ

θ + 1
− αθ

)
.In this ontext, ondition (A2) is satis�ed with

Φ(α|x) =: Φθ(α) =
θ + 1

θ
(1− αθ) and g(u|x) = θ + 1

θ

(
(1 − uθ) + θ

)
.We hoose θ = 0.6833; this value an be seen as a minimizer of (a modi�edversion of) the AMSE of the estimator, see Gardes et al. [18℄.4.1 A global omparison with other methodsWe start by omparing our estimator with the following tehniques:The estimator of Goegebeur et al. [20℄. This estimator is given by:

γ̂GGS(x, ωx, hx) =
T

(1)
n (x, ωx, hx)

T
(0)
n (x, ωx, hx)

,where for all t ≥ 0,
T (t)
n (x, ωx, hx) =

1

n

n∑

i=1

1

hx
K

(
x−Xi

hx

)
(max(0, log Yi − logωx))

t
I{Yi > ωx}.In the original paper, the estimator is de�ned and studied only when the thresh-old sequene ωx → ∞ is nonrandom. Thus, we �rst ompute the quantity8



γ̂GGS(x, ωx, hx) with ωx = q(ux|x), ux = ux(n) → 0 as n → ∞, but we notethat in this ase, γ̂GGS(x, ωx, hx) is not an estimator sine ωx is unknown. Asadvised in Goegebeur et al. [20℄, we also ompare our results with the estimatorobtained by setting ωx = q̂n(ux|x, hx), whih is atually a random thresholdsequene. Finally, we let K(x) = (15/16)(1− x2)2I{|x| ≤ 1}, orresponding tothe biweight kernel.The generalized Pikands-type estimator of Gardes and Girard [17℄.For J ≥ 2 and 0 < τJ < . . . < τ1 < 1, this estimator is given by:
γ̂GG(x, ux, hx) =

J∑

j=1

(log q̃n(τjux|x, hx)− log q̃n(ux|x, hx))

/
J∑

j=1

log(1/τj)where for u ∈ (0, 1), q̃n(u|x, hx) = inf{y ∈ R | F̃ (y|x, hx) ≥ 1− u} with
F̃ (y|x, hx) =

n∑

i=1

K

(
x−Xi

hx

)
I{Yi≤y}

/
n∑

i=1

K

(
x−Xi

hx

)
.Following their advie, we set J = 10 and τj = 1/j2. We take K to be thebiweight kernel.We then hoose grids of values H for hx and U for ux ∈ (0, 1). For a given

n−sample, eah estimator is omputed for every value of hx ∈ H and ux ∈ Uwith
H = {0.05, 0.075, . . . , 0.35} and U = {0.025, 0.05, . . . , 0.5}.This proedure is repeated on S = 1000 independent repliations of an n−sampleof size n = 300 in eah of the ases detailed above. Visual omparisons of themean squared errors (MSEs) of eah method at x = 0.5 for (ux, hx) ∈ U × Hare provided on Figures 1�5.All in all, it appears that the MSE of our estimator γ̂ seems to be fairly stablewith respet to (ux, hx). In this respet, it appears to perform equally well orbetter than the other estimators. A seond remark is that the MSE of any ofthe four estimators tends to inrease as hx inreases. This was expeted sine ahigher hx means taking into aount observations whose assoiated ovariatesare further from x, whih an inrease the bias of the estimate.4.2 How to hoose u

x
and h

xOf ourse, in pratial situations, a hoie of ux and hx has to be implemented.With this aim in mind, we introdue the statisti
Ĉ(x, ux, hx) := v1/2x

γ̂(x, ux, hx)− γ̂H(x, ux, hx)

γ̂(x, ux, hx)
,where γ̂H(x, ux, hx) is the adaptation of the Hill estimator given in (4). Wehave the following result: 9



Proposition 1. Assume that the hypotheses of Theorem 2 hold. Then, as
n → ∞:

Ĉ(x, ux, hx)
d−→ N

(∫ 1

0

(Φ(α|x) − 1)α−ρ(x)dα,

∫ 1

0

Φ2(α|x)dα − 1

)
.In other words, the relative error |Ĉ(x, ux, hx)| should not be too large if ux and

hx are suitably hosen. Motivated by Proposition 1, our proedure is thus thefollowing. For every ux ∈ U , we ompute the set
S(x, ux) = {|Ĉ(x, ux, hx)|, hx ∈ H}.Let then s(x, ux) be the median of S(x, ux), and ompute

h∗x(ux) = min{hx ∈ H | |Ĉ(x, ux, hx)| > s(x, ux)}.Next, we ompute the set
T (x) = {|Ĉ(x, ux, h

∗
x(ux))|, ux ∈ U}.Let now t(x) be the median of T (x), and ompute

u∗x = min{ux ∈ U | |Ĉ(x, ux, h
∗
x(ux))| > t(x)}.We �nally hoose ux := u∗x and hx := h∗x(u

∗
x).One again, we repeat this proedure on S = 1000 independent repliations ofan n−sample of size n = 300. Boxplots of the results at eah of the three points

x = 0.25, 0.5 and 0.75 are provided on Figure 6.The results seem globally satisfying in eah ase. We remark that for the Burrdistribution, the �nite sample performane of the method deteriorates as |ρ(x)|dereases. This was expeted sine |ρ(x)| is the seond-order parameter thatontrols the rate of onvergene of the asymptoti bias to 0: the larger is |ρ(x)|,the smaller is the order of the asymptoti bias. Moreover, our simulation studyshows that in pratial situations, our estimator su�ers from a �nite-samplebias whih beomes larger for smaller values of ρ(x). This an be seen as aonsequene of Theorem 2, in whih it appears that the asymptoti bias of theestimator diretly depends on the asymptoti behavior of ∆(.|x) and thus onits seond-order parameter |ρ(x)|. We point out that this is atually a ommonharateristi of many tail index estimators whih is due to the extreme-valueframework.5 Real data exampleIn this setion, we study a real hurriane data set. Our data ome from theAtlanti Hurriane database (HURDAT2), whih is available on the website of10



the U.S.A. National Weather Servie, see http://www.nh.noaa.gov/data/.In partiular, we fous on the period starting from January 1st, 1950 to De-ember 31st, 2013. For a given hurriane ourring during this timeframe, weretain the time and loation at whih the related wind speeds attained theirmaximum. Our variable of interest is then the maximal wind speed and ourovariate is the loation. There are 944 observations in our data set, whih werereorded in the geographial zone E = [98.8◦W, 45◦W]× [8◦N, 53◦N]. The set Eis equipped with the lassial Eulidean distane.When dealing with environmental data, one should keep in mind that there arevarious statistial onerns, suh as independene and stationarity. We shallnot examine these issues in detail here. We merely point out that retaining themaximal wind speeds, whih is standard pratie when onsidering the extremesof univariate random variables, an reasonably be expeted to yield independentobservations. Furthermore, restriting our study to the timeframe 1950�2013,instead of the period 1851�2013 suggested by the original data set, is in ouropinion a step towards ensuring stationarity of the data.Various studies have onsidered wind speed data from an extreme value perspe-tive. Among them, we mention Beirlant et al. [3℄ who studied daily maximalwind speed data for three ities in the U.S.A., Brabson and Palutikof [6℄ whointrodued a Generalized Pareto Distribution (GPD) model for extreme windspeeds in Sotland, Coles and Simiu [8℄ who suggested a GPD model and appliedit to a simulated data set for hurriane wind speeds in Miami, Florida, U.S.A.,and Jagger and Elsner [25℄ who took partiular limate indiators as ovariatesin order to study tropial ylone wind speeds along the U.S.A. oastline. Al-though the extreme value framework seems to be fairly adapted to the study ofextreme wind speeds, there seems to be no general onsensus about what typeof distribution arises. One the one hand, Coles and Simiu [8℄ and Jagger andElsner [25℄ �nd that the distributions of wind speeds they study are short-tailed,namely they are bounded from above; on the other hand, Beirlant et al. [3℄ andBrabson and Palutikof [6℄ �nd evidene to support that the distribution of windspeeds may be heavy-tailed depending on the loation.Moreover, tail index estimators suh as the Hill estimator and their generaliza-tions to the random ovariate framework may be used to detet the presene ofheavy tails, as shown in de Haan and Ferreira [22, Theorem 3.2.4℄, as well aslighter tails or even a short-tailed distribution, sine it is easy to see that ourestimator onverges pointwise to 0 provided the onditional distribution has a�nite right endpoint and satis�es a ontinuity property. A onditional tail indexestimator suh as the one we introdue in this paper an therefore be onsideredas an exploratory tool to analyze a data set from the extreme value perspetive.We thus ompute our estimator, using the seletion rule of ux and hx detailedin Setion 4.2, on a grid of points whih are hosen to be su�iently lose toat least one observation in our data set. A qualitative result, superimposed to11



a map of the North Atlanti region, is given in Figure 7. It an be seen thathurriane wind speeds may indeed be onsidered heavy-tailed in a large part ofthe Gulf of Mexio, while they look lighter-tailed elsewhere, for example in theCaribbean Sea. Using light-tailed distributions, for instane one featuring anexponential deay in its right tail, or short-tailed distributions might thereforebe more appropriate in the latter region.6 Conluding remarksIn this paper, we introdued and studied an estimator whih is a weighted inte-gral of the standard onditional log-quantile estimator. This lass of estimatorsis fairly �exible; furthermore, partiular hoies of the weighting funtion yieldgeneralizations of well-known tail index estimators. The asymptoti propertiesof our estimator were established and its �nite-sample properties were seen tobe satisfying.It was however highlighted that our estimator, as many other tail index esti-mators do, may su�er from a �nite-sample bias whih makes it overestimatethe onditional tail index. This an be a problem in pratie: for example, inatuarial siene, overestimating the tail index of the losses means that theselosses are thought to have a bigger tail than they have in reality, and thus thatthey are expeted to ost more than they atually should. This, in turn, anfore an insurane �rm to build bigger reserves than neessary by inreasing thepremiums of its ustomers, through whih it ould lose a portion of the marketshare. Future researh on this topi therefore inludes developing a bias-reduedversion of our estimator. Moreover, it is often thought that estimating the tailindex is the �rst step before estimating extreme quantiles of a distribution. Itwould thus be nie to develop a onditional extreme quantile estimator basedon our tehnique and investigate its behavior.Referenes[1℄ Beirlant, J., Dierkx, G., Guillou, A., St ri , C. (2002) On exponentialrepresentations of log-spaings of extreme order statistis, Extremes 5(2):157�180.[2℄ Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.L. (2004) Statistis ofextremes � Theory and appliations, Wiley Series in Probability and Statis-tis.[3℄ Beirlant, J., Vynkier, P., Teugels, J.L. (1996) Exess funtions and esti-mation of the extreme value index, Bernoulli 2(4): 293�318.[4℄ Billingsley, P. (1979) Probability and measure, John Wiley and Sons.[5℄ Bingham, N.H., Goldie, C.M., Teugels, J.L. (1987)Regular Variation, Cam-bridge, U.K.: Cambridge University Press.12
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Lemma 1. Pik x ∈ R
d and assume that mx(hx) → ∞ as n → ∞. Then, forany δ > 0:

[mx(hx)]
(1−δ)/2

∣∣∣∣
M(x, hx)

mx(hx)
− 1

∣∣∣∣
P−→ 0 as n → ∞.Proof of Lemma 1. The statement is a straightforward onsequene of Cheby-shev's inequality.We let {Y ∗i , i = 1, . . . ,M(x, hx)} be the response variables whose assoiatedovariates {X∗i , i = 1, . . . ,M(x, hx)} belong to the ball B(x, hx). Lemma 2below is similar in spirit to Lemma 2 in Stup�er [31℄ and Lemma 4 in Gardesand Stup�er [19℄.Lemma 2. For any x suh that P(X ∈ B(x, hx)) 6= 0, given M(x, hx) = p ≥ 1,the random variables Vi = 1−F (Y ∗i |X∗i ), i = 1, . . . , p, are independent standarduniform random variables.Proof of Lemma 2. If (u1, . . . , up) ∈ R

p, then sine the random pairs (Xi, Yi)are independent and identially distributed, we have:
P

(
p⋂

i=1

{Vi ≤ ui},M(x, hx) = p

)
=

(
n

p

) p∏

i=1

̺(ui|x, hx)

n∏

i=p+1

P (Xi /∈ B(x, hx)) ,where ̺(t|x, hx) := P(F (Y |X) ≥ 1 − t,X ∈ B(x, hx)). Furthermore, for all
t ∈ [0, 1],̺

(t|x, hx) =

∫

B(x,hx)

(∫

R

I{F (y|x) ≥ 1− t}f(y|x)dy
)
PX(dx)

= tP(X ∈ B(x, hx)),by a hange of variables in the inner integral. Sine the random variable
M(x, hx) follows a binomial distribution with parameters n and P (X ∈ B(x, hx)),it follows that:

P

(
p⋂

i=1

{Vi ≤ ui}|M(x, hx) = p

)
= u1 . . . up,whih is the result.Lemma 3 shows that the estimator γ̂(x, kx, hx) an be approximated by aweighted Hill estimator (see Hill [24℄).Lemma 3. Let Ui, i ≥ 1 be independent standard uniform random variables.For any x suh that P(X ∈ B(x, hx)) 6= 0, we may write

γ̂(x, ux, hx) = γ̃(x, ux, hx) +R(x, ux, hx)15



where the onditional distribution of γ̃(x, ux, hx) given M(x, hx) = p is that of
γ(x, ux, p) =

⌊pux(p)⌋∑

i=1

(
1

i

∫ i/p

0

Ψ(α|x, ux(p))dα

)
i log

q(Ui,p|x)
q(Ui+1,p|x)

, (7)and |R(x, ux, hx)| ≤ R(x, ux, hx) where the onditional distribution of R(x, ux, hx)given M(x, hx) = p is that of
2ω(U1,p, Up,p, x, hx)

∫ ux(p)

0

|Ψ(α|x, ux(p))|dα.Proof of Lemma 3. For the sake of brevity, let us write Mn := M(x, hx) and
kx(Mn) = Mnux(Mn) and let for p ∈ N

∗,
wi,p(x) :=

∫ i/p

(i−1)/p

Ψ(α|x, ux(p))dα.Sine for all i ∈ {1, . . . ,Mn} and α ∈ [(i−1)/Mn, i/Mn), q̂n(α|x, hx) = Y ∗Mn−i+1,Mn
,we may write:̂

γ(x, ux, hx) =

⌊kx(Mn)⌋∑

i=1

wi,Mn
(x) log

Y ∗Mn−i+1,Mn

Y ∗Mn−⌊kx(Mn)⌋,Mn

.Write γ̂(x, ux, hx) = γ̃(x, ux, hx) +R(x, ux, hx) with γ̃(x, ux, hx) given by:
⌊kx(Mn)⌋∑

i=1

wi,Mn
(x) log

q(1 − F (Y ∗Mn−i+1,Mn
|X∗(i))|x)

q(1− F (Y ∗Mn−⌊kx(Mn)⌋,Mn
|X∗(⌊kx(Mn)⌋+1))|x)

,where, for i = 1, . . . ,Mn, X∗(i) is the ovariate assoiated to Y ∗Mn−i+1,Mn
. Now,given Mn = p, Lemma 2 entails that there exist independent standard uniformvariables U1, . . . , Up suh that the onditional distribution of γ̃(x, ux, hx) given

Mn = p is that of
⌊kx(p)⌋∑

i=1

wi,p(x) log
q(Ui,p|x)

q(U⌊kx(Mn)⌋+1,p|x)
=

⌊kx(p)⌋∑

i=1

wi,p(x)

⌊kx(p)⌋∑

j=i

log
q(Uj,p|x)

q(Uj+1,p|x)
,whih is equal to γ(x, ux, p) by swithing the summation order. Let us now fouson the term R(x, ux, hx) = γ̂(x, ux, hx)− γ̃(x, ux, hx). Let Vi = 1 − F (Y ∗i |X∗i ).Sine q(.|x) is ontinuous and dereasing, one has, for i = 1, . . . ,Mn,

log q(Vi|x)− ω(V1,Mn
, VMn,Mn

, x, hx) ≤ log Y ∗i = log q(Vi|X∗i )
≤ log q(Vi|x) + ω(V1,Mn

, VMn,Mn
, x, hx).It follows from Lemma 1 in Gardes and Stup�er [19℄ that:

∣∣log Y ∗Mn−i+1,Mn
− log q(Vi,Mn

|x)
∣∣ ≤ ω(V1,Mn

, VMn,Mn
, x, hx).16



Hene,
∣∣∣∣∣log

Y ∗Mn−i+1,Mn

Y ∗Mn−⌊kx(Mn)⌋,Mn

− log
q(Vi,Mn

|x)
q(V⌊kx(Mn)⌋+1,Mn

|x)

∣∣∣∣∣ ≤ 2ω(V1,Mn
, VMn,Mn

, x, hx),and thus |R(x, ux, hx)| is bounded from above by
R(x, ux, hx) := 2ω(V1,Mn

, VMn,Mn
, x, hx)

∫ ux(Mn)

0

|Ψ(α|x, ux(Mn))|dα.Applying Lemma 2 ompletes the proof.Our next result is dediated to the study of some partiular Riemann sums.Lemma 4. Let f be an integrable funtion on (0, 1). Assume that f is nonneg-ative and noninreasing. For any nonnegative ontinuous funtion g on [0, 1]and any sequene (mn) onverging to in�nity, we have that:
lim
n→∞

1

mn

⌊mn⌋∑

i=1

f(i/mn)g(i/mn) =

∫ 1

0

f(t)g(t)dt.If moreover f is square-integrable then:
lim
n→∞

√
mn

∣∣∣∣∣∣
1

mn

⌊mn⌋∑

i=1

f(i/mn)−
∫ 1

0

f(t)dt

∣∣∣∣∣∣
= 0.Proof of Lemma 4. De�ne

Sn(f, g) :=
1

mn

⌊mn⌋∑

i=1

f(i/mn)g(i/mn) and S(f, g) :=

∫ 1

0

f(t)g(t)dt.Note �rst that:
|S(f, g)− Sn(f, g)| ≤

⌊mn⌋∑

i=1

∫ i/⌊mn⌋

(i−1)/⌊mn⌋

∣∣∣∣f(t)g(t)− f(i/mn)g(i/mn)
⌊mn⌋
mn

∣∣∣∣ dt.Sine g is nonnegative on [0, 1] and f is noninreasing, it is straightforward thatfor all t ∈ [(i− 1)/⌊mn⌋, i/⌊mn⌋)
∣∣∣∣f(t)g(t)− f(i/mn)g(i/mn)

⌊mn⌋
mn

∣∣∣∣ ≤ f(t) sup
|s−s′|≤1/mn

|g(s)− g(s′)|

+ ‖g‖∞f(t)

(
1− ⌊mn⌋

mn

)

+ ‖g‖∞ (f(t)− f(i/mn))17



where ‖g‖∞ is the �nite supremum of g on [0, 1]. Using the fat that, sine
f is noninreasing, one has for i = 2, . . . , ⌊mn⌋ that f(t) − f(i/mn) ≤ f((i −
1)/mn)− f(i/mn), the previous inequality leads to

|S(f, g)− Sn(f, g)| ≤
∫ 1

0

f(t)dt sup
|s−s′|≤1/n

|g(s)− g(s′)|

+ ‖g‖∞
∫ 1

0

f(t)dt

(
1− ⌊mn⌋

mn

)

+ ‖g‖∞
(∫ 1/⌊mn⌋

0

f(t)dt− f(1)

⌊mn⌋

)
→ 0 (8)by the uniform ontinuity of g on [0, 1]. This proves the �rst statement of theresult. To prove the seond one, take g = 1 in (8) to get:

(mn)
1/2|S(f, 1)− Sn(f, 1)| ≤ (mn)

1/2

(
1− ⌊mn⌋

mn

)∫ 1

0

f(t)dt

+ (mn)
1/2

∫ 1/⌊mn⌋

0

f(t)dt.Sine 1−⌊mn⌋/mn < 1/mn, the �rst term of the right-hand side onverges to 0.By the Cauhy-Shwarz inequality,
(mn)

1/2

∫ 1/⌊mn⌋

0

f(t)dt ≤
(

mn

⌊mn⌋

)1/2
(∫ 1/⌊mn⌋

0

f2(t)dt

)1/2

→ 0,sine f2 is integrable on (0, 1). The proof is omplete.Lemma 5 examines the asymptoti properties (as p → ∞) of the quantity
γ(x, ux, p) introdued in Lemma 3, equation (7):

γ(x, ux, p) =

⌊pux(p)⌋∑

i=1

(
1

i

∫ i/p

0

Ψ(α|x, ux(p))dα

)
i log

q(Ui,p|x)
q(Ui+1,p|x)

,where U1, . . . , Up are independent standard uniform random variables. Reallfrom Theorem 2 the notations
ABx(Φ, ρ(x)) =

∫ 1

0

Φ(α|x)α−ρ(x)dα and AVx(Φ) =

∫ 1

0

Φ2(α|x)dα.Lemma 5. Assume that ux ∈ RV−a(x) with a(x) ∈ (0, 1).i) If (M1) and (A1) hold, then γ(x, ux, p)
P−→ γ(x).ii) If (M2) and (A2) hold and (zux(z))

1/2∆(1/ux(z)|x) → λ(x) ∈ R as zgoes to in�nity then:
(pux(p))

1/2(γ(x, ux, p)− γ(x))
d−→ N

(
λ(x)ABx(Φ, ρ(x)), γ

2(x)AVx(Φ)
)
.18



Proof of Lemma 5. Pik p ≥ 2 and let for i ∈ {1, . . . , ⌊pux(p)⌋}:
wi,p(x) =

1

i

∫ i/p

0

Ψ(α|x, ux(p))dα.

i) To show the onsisteny statement, we set Ei(p) = i log(Ui+1,p/Ui,p) and weuse model (M1) to rewrite γ(x, ux, p)− γ(x) as:
γ(x, ux, p)− γ(x) = S1,p(x) + S2,p(x) + S3,p(x) + S4,p(x), (9)with

S1,p(x) = γ(x)

⌊pux(p)⌋∑

i=1

wi,p(x)(Ei(p)− 1),

S2,p(x) = γ(x)



⌊pux(p)⌋∑

i=1

wi,p(x)


 − γ(x),

S3,p(x) =

⌊pux(p)⌋∑

i=1

wi,p(x)

(
i log

c(U−1i,p |x)
c(U−1i+1,p|x)

)and S4,p(x) =

⌊pux(p)⌋∑

i=1

wi,p(x)

(
i

∫ U−1
i,p

U−1
i+1,p

∆(v|x)
v

dv

)
.It is thus enough to show that for any j ∈ {1, 2, 3, 4}, Sj,p(x)

P−→ 0 as p → ∞.We start by ontrolling the sum S1,p(x): sine the random variables − logUiare independent standard exponential random variables, Rényi's representation(see de Haan and Ferreira [22℄) entails that the Ei(p) are independent standardexponential random variables as well. Thus S1,p(x) is entered and
Var(S1,p(x)) = γ2(x)

⌊pux(p)⌋∑

i=1

w2
i,p(x). (10)Condition (A1) yields:

wi,p(x) =
1

i

∫ i/p

0

Ψ(α|x, ux(p))dα =
1

pux(p)
Φ (i/(pux(p))|x) . (11)Thus, for any a ≥ 1 suh that Φa(.|x) is integrable on (0, 1):

⌊pux(p)⌋∑

i=1

wa
i,p(x) = (pux(p))

1−a


 1

pux(p)

⌊pux(p)⌋∑

i=1

Φa (i/(pux(p))|x)




= (pux(p))
1−a

∫ 1

0

Φa(α|x)dα(1 + o(1)), (12)19



using Lemma 4 with f = Φa(.|x) and g = 1. Apply (10) together with (12) for
a = 2 to get as p → ∞:

S1,p(x)
P−→ 0. (13)The nonrandom term S2,p(x) is ontrolled by using (12) with a = 1:

S2,p(x) = γ(x)



⌊pux(p)⌋∑

i=1

wi,p(x)−
∫ 1

0

Φ(α|x)dα


→ 0, (14)as p → ∞. The sum S3,p(x) is ontrolled by rewriting it as:

S3,p(x) =

⌊pux(p)⌋∑

j=1

(∫ j/p

(j−1)/p

Ψ(α|x, ux(p))dα

)
log

c(U−1j,p |x)
c(U−1⌊pux(p)⌋+1,p|x)

.From this, we dedue that:
|S3,p(x)| ≤

∫ ux(p)

0

|Ψ(α|x, ux(p))|dα sup
s,t≥U−1

⌊pux(p)⌋+1,p

∣∣∣∣log
c(s|x)
c(t|x)

∣∣∣∣ ,whih we use together with ondition (A1), the onvergene of c(.|x) to a pos-itive onstant and the onvergene [ux(p)]
−1U⌊pux(p)⌋+1,p

P−→ 1 as p → ∞ toget:
S3,p(x)

P−→ 0. (15)Finally, to ontrol S4,p(x) we write:
|S4,p(x)| ≤

(
1 +

S1,p(x) + S2,p(x)

γ(x)

)
sup

v≥U−1
⌊pux(p)⌋+1,p

|∆(v|x)|. (16)Use (16) together with (13), (14), the onvergene [ux(p)]
−1U⌊pux(p)⌋+1,p

P−→ 1as p → ∞ and the onvergene of |∆(.|x)| to zero to obtain:
S4,p(x)

P−→ 0. (17)Combining (13), (14), (15) and (17) ompletes the proof of the onsisteny state-ment.
ii) To prove the asymptoti normality statement, we note that sine (M2) holds,we may apply Theorem 2.1 in Beirlant et al. [1℄ to obtain that the random vetor
{i log(q(Ui,p|x)/q(Ui+1,p|x)), i ∈ Hp,x} where Hp,x := {1, . . . , ⌊pux(p)⌋} has thesame distribution as:
{[

γ(x) + ∆p,x

(
i

⌊pux(p)⌋+ 1

)−ρ(x)]
Ei(p) + νi,p(x) + oP(∆p,x), i ∈ Hp,x

}
,20



with ∆p,x := ∆(p/⌊pux(p)⌋|x) and where the νi,p(x) satisfy
⌊pux(p)⌋∑

j=i

|νj,p(x)|
j

= oP

(
|∆p,x|max

(
log

⌊pux(p)⌋+ 1

i
, 1

))
, (18)uniformly in i ∈ Hp,x. Using the de�nitions of S1,p(x) and S2,p(x) introduedabove, we may therefore write:

(pux(p))
1/2

(
γ(x, ux, p)− γ(x)−∆p,x

∫ 1

0

Φ(α|x)α−ρ(x)dα
)

d
= (pux(p))

1/2(S1,p(x) + S2,p(x) + S′1,p(x) + S′2,p(x) + S′3,p(x)) + oP(1)with
S′1,p(x) = ∆p,x

⌊pux(p)⌋∑

i=1

wi,p(x)

(
i

⌊pux(p)⌋+ 1

)−ρ(x)
(Ei(p)− 1),

S′2,p(x) = ∆p,x



⌊pux(p)⌋∑

i=1

wi,p(x)

(
i

⌊pux(p)⌋+ 1

)−ρ(x)
−
∫ 1

0

Φ(α|x)α−ρ(x)dα


 ,

S′3,p(x) =

⌊pux(p)⌋∑

i=1

wi,p(x)νi,p(x).We start by examining the onvergene of (pux(p))
1/2S1,p(x). De�ne Ti,p(x) =

wi,p(x)(Ei(p)−1) and remark that the Ti,p(x), i ∈ Hp,x are independent enteredrandom variables suh that
S1,p(x) = γ(x)

⌊pux(p)⌋∑

i=1

Ti,p(x).By (12) with a = 2:
Var(S1,p(x)) = γ2(x)

⌊pux(p)⌋∑

i=1

w2
i,p(x) = [pux(p)]

−1γ2(x)

∫ 1

0

Φ2(α|x)dα(1+o(1)),and, by (12) with a = 2 + κ:
⌊pux(p)⌋∑

i=1

E(|Ti,p(x)|2+κ) = γ2+κ(x)

⌊pux(p)⌋∑

i=1

w2+κ
i,p (x)E(|Ei(p)− 1|2+κ)

= O
(
[pux(p)]

−1−κ
)
.As a onsequene:

1

[Var(S1,p(x))]1+κ/2

⌊pux(p)⌋∑

i=1

E(|Ti,p(x)|2+κ) = O([pux(p)]
−κ/2) → 0,21



as p → ∞. Lyapunov's entral limit theorem (see Billingsley [4℄) thus entails
(pux(p))

1/2S1,p(x)
d−→ N

(
0, γ2(x)

∫ 1

0

Φ2(α|x)dα
)
. (19)To ontrol (pux(p))

1/2S2,p(x), use the seond statement of Lemma 4 with f =
Φ(.|x) to obtain:

(pux(p))
1/2S2,p(x)

P−→ 0. (20)To ontrol (pux(p))
1/2S′1,p(x) we note that sine

(pux(p))
1/2∆p,x = (pux(p))

1/2∆(1/ux(p)|x)(1 + o(1)) → λ(x),we have |S′1,p(x)| = OP(|S′′1,p(x)|), with
S′′1,p(x) = (pux(p))

−1/2

⌊pux(p)⌋∑

i=1

wi,p(x)

(
i

pux(p)

)−ρ(x)
(Ei(p)− 1).The variane of the entered sum S′′1,p(x) is suh that:

pux(p)Var(S
′′
1,p(x)) =

⌊pux(p)⌋∑

i=1

w2
i,p(x)

(
i

pux(p)

)−2ρ(x)

= (pux(p))
−1

∫ 1

0

Φ(α|x)α−2ρ(x)dα(1 + o(1)),where (11) and Lemma 4 were used, with f = Φ(.|x) and g : t 7→ t−2ρ(x). As aonsequene:
(pux(p))

1/2S′1,p(x)
P−→ 0. (21)The term (pux(p))

1/2S′2,p(x) is ontrolled in the following way: we note that
|S′2,p(x)| = O(|S′′2,p(x)|) with
S′′2,p(x) = (pux(p))

−1/2

∣∣∣∣∣∣

⌊pux(p)⌋∑

i=1

wi,p(x)

(
i

⌊pux(p)⌋+ 1

)−ρ(x)
−
∫ 1

0

Φ(α|x)α−ρ(x)dα

∣∣∣∣∣∣and we use one again (11) and Lemma 4 with f = Φ(.|x) and g : t 7→ t−ρ(x) toget that (pux(p))
1/2S′′2,p(x) → 0. Thus:

(pux(p))
1/2S′2,p(x) → 0. (22)Finally, we use (11) to bound |S′3,p(x)| by:

(pux(p))
−1

⌊pux(p)⌋∑

i=1

∣∣∣∣iΦ
(

i

pux(p)
|x
)
− (i− 1)Φ

(
i− 1

pux(p)
|x
)∣∣∣∣
⌊pux(p)⌋∑

j=i

|νj,p(x)|
j

.22



Using onditions (A2) and (18), we thus get:
|S′3,p(x)| = oP


|∆p,x|(pux(p))

−1

⌊pux(p)⌋∑

i=1

g (i/(pux(p))|x)max

(
log

pux(p)

i
, 1

)


= oP(|∆p,x|),by Lemma 4 with f = max(log(1/.), 1) and g = g(.|x) if g(·|x) is ontinuous on
[0, 1], or f = max(log(1/.), 1)g(.|x) and g = 1 if g(·|x) is noninreasing on (0, 1).Consequently:

(pux(p))
1/2S′3,p(x)

P−→ 0 as p → ∞. (23)Combining (19), (20), (21), (22) and (23) ompletes the proof.The ultimate result is a general �de-onditioning� result whih is the ornerstoneto prove Theorems 1 and 2.Lemma 6. Let (N = Nn) be a nonnegative sequene of integer-valued ran-dom variables and (Z̃n), (Rn) be two sequenes of real-valued random variables.Assume that there exists a sequene of random variables (Z(p)) suh that forany p ∈ N \ {0}, the distribution of Z̃n given N = p is that of Z(p). Assumealso that there exist a nonrandom positive sequene (pn) of integers tending toin�nity and a nonrandom positive sequene (εn) onverging to 0 suh that if
In = [pn(1 − εn), pn(1 + εn)], we have that P(N /∈ In) → 0 as n → ∞. Let
Zn := Z̃n +Rn.i) If Z(p) onverges in probability to 0 as p → ∞ and if for all t > 0,

lim
n→∞

sup
p∈In

P(|Rn| > t|N = p) = 0,then (Zn) onverges in probability to 0.ii) If there exists a positive funtion v(.) for whih v(pn) → ∞ and (v(pn)Z(pn))onverges in distribution to some absolutely ontinuous distribution H as
n → ∞ and suh that

sup
p,p′∈In

∣∣∣∣
v(p)

v(p′)
− 1

∣∣∣∣→ 0 and lim
n→∞

sup
p∈In

P(v(p)|Rn| > t|N = p) = 0,for all t > 0 then (v(pn)Zn) onverges in distribution to H.Proof of Lemma 6. i) To prove the onsisteny statement, pik t > 0 andwrite:
P (|Zn| > t) =

∞∑

j=0

P (|Zn| > t|N = j)P(N = j)

≤ sup
p∈In

P (|Zn| > t|N = p) + o(1)

≤ sup
p∈In

P

(
|Z̃n| > t/2|N = p

)
+ sup

p∈In

P (|Rn| > t/2|N = p) + o(1)23



as n → ∞. The result follows by noting that:
lim
n→∞

sup
p∈In

P(|Rn| > t/2|N = p) = 0,and
lim
n→∞

sup
p∈In

P(|Z̃n| > t/2|N = p) = lim
n→∞

sup
p∈In

P(|Z(p)| > t/2) = 0.

ii) Use �rst the ondition on v(.) to obtain v(N) = v(pn)(1 + oP(1)). It istherefore enough to prove that (v(N)Zn) onverges in distribution to H . Wehave for any t ∈ R and any ε > 0:
|P(v(N)Zn ≤ t)−H(t)| ≤

∞∑

j=0

|P(v(j)Zn ≤ t|N = j)−H(t)|P(N = j)

≤ sup
p∈In

|P(v(p)Zn ≤ t|N = p)−H(t)|+ ε/4,for n large enough. Sine H is ontinuous, one an �nd κ > 0 suh that H(t+
κ) − H(t − κ) ≤ ε/8. Observe that supp∈In |P(v(p)Zn ≤ t|N = p)−H(t)| ≤
T1,n + T2,n where:

T1,n = sup
p∈In

∣∣∣P(v(p)Z̃n ≤ t− v(p)Rn, v(p)|Rn| ≤ κ|N = p)−H(t)
∣∣∣ ,

T2,n = sup
p∈In

P(v(p)Z̃n ≤ t− v(p)Rn, v(p)|Rn| > κ|N = p).By assumption, for n large enough, T2,n ≤ ε/4 and
T1,n ≤ sup

p∈In

∣∣∣P(v(p)Z̃n ≤ t+ κ|N = p)−H(t+ κ)
∣∣∣+ (H(t+ κ)−H(t))

+ sup
p∈In

∣∣∣P(v(p)Z̃n ≤ t− κ|N = p)−H(t− κ)
∣∣∣+ (H(t)−H(t− κ))

≤ sup
p∈In

∣∣P(v(p)Z(p) ≤ t+ κ)−H(t+ κ)
∣∣

+ sup
p∈In

∣∣P(v(p)Z(p) ≤ t− κ)−H(t− κ)
∣∣+ ε/4

≤ ε/2,sine (v(p)Z(p)) onverges in distribution to H . Hene
sup
p∈In

|P(v(p)Zn ≤ t|N = p)−H(t)| ≤ 3ε/4,whih onludes the proof.
24



6.2 Proofs of the main resultsProof of Theorem 1. The main idea is to apply Lemma 6, withN = M(x, hx),
pn = ⌊mx(hx)⌋, εn = p

−1/4
n , Zn = γ̂(x, ux, hx)− γ(x), Z̃n = γ̃(x, ux, hx)− γ(x),

Rn = γ̂(x, ux, hx)− γ̃(x, ux, hx) and Z(p) = γ(x, ux, p)−γ(x) with the notationof Lemmas 3 and 5. We observe that Lemma 1 entails P(N /∈ In) → 0 as
n → ∞. Moreover, from ondition (A1), we have that

C := lim sup
u↓0

∫ u

0

|Ψ(α|x, u)|dα < ∞.Apply then Lemma 3 to get for any t > 0:
sup
p∈In

P(|Rn| > t|N = p) ≤ sup
p∈In

P (ω(U1,p, Up,p, x, hx) > t/4C) , (24)where U1, . . . , Up are independent standard uniform random variables. For nlarge enough, ondition (5) thus yields:
P(ω(U1,p, Up,p, x, hx) > t/4C) ≤ P(U1,p < [mx(hx)]

−1−δ)

+ P(Up,p > 1− [mx(hx)]
−1−δ).Sine for n large enough:

sup
p∈In

[
P(U1,p < [mx(hx)]

−1−δ) + P(Up,p > 1− [mx(hx)]
−1−δ)

]

= 2 sup
p∈In

[
1− [1− [mx(hx)]

−1−δ]p
]

≤ 2
(
1− [1− [mx(hx)]

−1−δ]2mx(hx)
)
→ 0 (25)as n → ∞, we obtain P(|Rn| > t|N = p) → 0 for any t > 0, uniformly in

p ∈ In. Finally, the onvergene in probability of (Z(pn)) to 0 is a onsequeneof Lemma 5. Applying Lemma 6 ompletes the proof.Proof of Theorem 2. Our aim is to apply Lemma 6, with N = M(x, hx),
pn = ⌊mx(hx)⌋, εn = p

−1/4
n , Zn = γ̂(x, ux, hx)− γ(x), Z̃n = γ̃(x, ux, hx)− γ(x),

Rn = γ̂(x, ux, hx)− γ̃(x, ux, hx), Z(p) = γ(x, ux, p)− γ(x) with the notation ofLemmas 3 and 5, and v(p) = (pux(p))
1/2. We �rst observe that Lemma 1 yields

P(N /∈ In) → 0 as n → ∞. Next, Lemma 3 and ondition (6) yield for any t > 0and n large enough:
sup
p∈In

P(v(p)|Rn| > t|N = p)

≤ sup
p∈In

P(v(mx(hx))ω(U1,p, Up,p, x, hx) > t/8C)

≤ sup
p∈In

[
P(U1,p < [mx(hx)]

−1−δ) + P(Up,p > 1− [mx(hx)]
−1−δ)

]
.It is then a onsequene of (25) that the right-hand side above onverges to 0as n → ∞. Finally, by Lemma 5, the sequene (v(pn)Z(pn)) onverges in distri-bution to the Gaussian distribution with mean λ(x)ABx(Φ, ρ(x)) and variane

γ2(x)AVx(Φ). Applying Lemma 6 ompletes the proof.25



Proof of Proposition 1. We follow the lines of the proof of Theorem 2 anduse the Cramér-Wold devie to get:
v1/2x

(
γ̂H(x, ux, hx)− γ(x)
γ̂(x, ux, hx)− γ(x)

)
d−→ N (µx(Φ, ρ(x)),Σx(Φ)),with

µx(Φ, ρ(x)) :=

(
(1− ρ(x))−1∫ 1

0 Φ(α|x)α−ρ(x)dα

) and Σx(Φ) :=

(
1 1

1
∫ 1

0 Φ2(α|x)dα

)
.The result is then a onsequene of the delta-method.

26
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Figure 1: Comparison of the MSE as a funtion of ux and hx for the Burrdistribution with ρ = −3/2 at x = 0.5. Top left: our estimator γ̂, top right:estimator γ̂GG of Gardes and Girard [17℄, bottom left: estimator γ̂GGS of Goege-beur et al. [20℄ with ωx = q(ux|x), bottom right: estimator γ̂GGS of Goegebeuret al. [20℄ with ωx = q̂(ux|x, hx). 27
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Figure 2: Comparison of the MSE as a funtion of ux and hx for the Burr distri-bution with ρ = −1 at x = 0.5. Top left: our estimator γ̂, top right: estimator
γ̂GG of Gardes and Girard [17℄, bottom left: estimator γ̂GGS of Goegebeur etal. [20℄ with ωx = q(ux|x), bottom right: estimator γ̂GGS of Goegebeur et al. [20℄with ωx = q̂(ux|x, hx). 28
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Figure 3: Comparison of the MSE as a funtion of ux and hx for the Burrdistribution with ρ = −1/2 at x = 0.5. Top left: our estimator γ̂, top right:estimator γ̂GG of Gardes and Girard [17℄, bottom left: estimator γ̂GGS of Goege-beur et al. [20℄ with ωx = q(ux|x), bottom right: estimator γ̂GGS of Goegebeuret al. [20℄ with ωx = q̂(ux|x, hx). 29
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Figure 4: Comparison of the MSE as a funtion of ux and hx for the Fréhetdistribution at x = 0.5. Top left: our estimator γ̂, top right: estimator γ̂GG ofGardes and Girard [17℄, bottom left: estimator γ̂GGS of Goegebeur et al. [20℄with ωx = q(ux|x), bottom right: estimator γ̂GGS of Goegebeur et al. [20℄ with
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Figure 5: Comparison of the MSE as a funtion of ux and hx for the Studentdistribution at x = 0.5. Top left: our estimator γ̂, top right: estimator γ̂GG ofGardes and Girard [17℄, bottom left: estimator γ̂GGS of Goegebeur et al. [20℄with ωx = q(ux|x), bottom right: estimator γ̂GGS of Goegebeur et al. [20℄ with
ωx = q̂(ux|x, hx). 31
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