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Abstract

Let Γ be a graph with the doubling property for the volume of balls and P a reversible random walk on Γ. We
introduce H1 Hardy spaces of functions and 1-forms adapted to P and prove various characterizations of these spaces.
We also characterize the dual space of H1 as a BMO-type space adapted to P . As an application, we establish H1

and H1-L1 boundedness of the Riesz transform.
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We use the following notations. A(x) . B(x) means that there exists C independant of x such that A(x) ≤ C B(x)
for all x, while A(x) ≃ B(x) means that A(x) . B(x) and B(x) . A(x). The parameters from which the constant is
independant will be either obvious from context or recalled.
Furthermore, if E,F are Banach spaces, E ⊂ F means that E is continuously included in F . In the same way, E = F
means that the norms are equivalent.

1 Introduction and statement of the results

The study of real variable Hardy spaces in R
n began in the early 1960’s with the paper of Stein and Weiss [26]. At the

time, the spaces were defined by means of Riesz transforms and harmonic functions. Fefferman and Stein provided in
[16] various characterizations (for instance in terms of suitable maximal functions) and developed real variable methods
for the study of Hardy spaces.

In several issues in harmonic analysis, H1(Rn) turns out to be the proper substitute of L1(Rn). For example, the
Riesz transforms, namely the operators Rj = ∂j(−∆)− 1

2 , are Lp(Rn) bounded for all p ∈ (1,+∞), H1(Rn)-bounded,
but not L1(Rn)-bounded (see [22]).

Hardy spaces were defined in the more general context of spaces of homogeneous type by Coifman and Weiss in
[8], by means of an atomic decomposition. An atom is defined as a function supported in a ball, with zero integral
and suitable size condition. However, even in the Euclidean context, the definition of the Hardy space H1 given by
Coifman and Weiss is not always suited to the H1-L1 boundedness of some Calderòn-Zygmund type operators. Indeed,
the cancellation condition satisfied by atoms does not always match with differential operators (consider the case of
− div(A∇) on R

n, for instance).
To overcome this difficulty, Hardy spaces adapted to operators were developed in various frameworks during the last

decade. In 2005, in [14] and [15], Duong and Yan defined Hardy and BMO spaces for an operator L when the kernel
of the semigroup generated by L satisfies a pointwise Gaussian upper bound. It was discovered later that, together
with the doubling condition for the volumes of balls, L2 Davies-Gaffney type estimates for the semigroup generated by
L are enough to develop a quite rich theory of Hardy spaces on Riemannian manifolds (see [3]) and for second order
divergence form elliptic operator in R

n with measurable complex coefficients (see [21]). These ideas were pushed further
in the general context of doubling measure spaces when L is self-adjoint (see [19]).

The present work is devoted to an analogous theory of Hardy spaces in a discrete context, namely in graphs Γ
equipped with a suitable discrete Laplace operator, given by I − P where P is a Markov operator (see [18] and the
references therein). We define and give various characterizations of the Hardy space H1(Γ) adapted to P , under very
weak assumptions on Γ. The first characterization is formulated in terms of quadratic functionals (of Lusin type),
relying on results and methods developed in [4] and [17]. The second one is the molecular (or atomic) decomposition
of H1(Γ). A description of the dual space of H1(Γ) as a BMO-type space is obtained.

We also deal with the Riesz transform on Γ, namely the operator d(I −P )− 1
2 , where d stands for the differential on

Γ (i.e. df(x, y) := f(y) − f(x) for all functions f on Γ and all edges (x, y)). When p ∈ (1,+∞), the Lp-boundedness
of the Riesz transform was dealt with in [4, 24]. Here, we prove an endpoint boundedness result for p = 1: roughly
speaking, the Riesz transform is H1-bounded. In the same spirit as [3], this assertion requires the definition a Hardy
space of “exact 1-forms“ on the edges of Γ. We define and give characterizations of this space by quadratic functionals
and molecular decompositions. Finally, the H1-boundedness of the Riesz transform is established.

Some Hardy spaces associated with I − P were introduced and characterized in [6], together with a description of
their duals and the H1-L1 boundedness of Riesz transform was proved. Even if the authors in [6] also deal with the
case of Hp for p < 1, their assumptions on P are stronger than ours (they assume a pointwise Gaussian upper bound
on the iterates of the kernel of P , which is not required for most of our results) and they do not consider Hardy spaces
of forms. Moreover, the Hardy spaces introduced in the present work are bigger than the ones in [6].

1.1 The discrete setting

Let Γ be an infinite set and µxy = µyx ≥ 0 a symmetric weight on Γ × Γ. The couple (Γ, µ) induces a (weighted
unoriented) graph structure if we define the set of edges by

E = {(x, y) ∈ Γ × Γ, µxy > 0}.

We call then x and y neighbours (or x ∼ y) if (x, y) ∈ E.
We will assume that the graph is connected and locally uniformly finite. A graph is connected if for all x, y ∈ Γ, there
exists a path x = x0, x1, . . . , xN = y such that for all 1 ≤ i ≤ N , xi−1 ∼ xi (the length of such path is then N). A
graph is said to be locally uniformly finite if there exists M0 ∈ N such that for all x ∈ Γ, #{y ∈ Γ, y ∼ x} ≤ M0 (i.e.
the number of neighbours of a vertex is uniformly bounded).
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The graph is endowed with its natural metric d, which is the shortest length of a path joining two points. For all x ∈ Γ
and all r > 0, the ball of center x and radius r is defined as B(x, r) = {y ∈ Γ, d(x, y) < r}. In the opposite way,
the radius of a ball B is the only integer r such that B = B(xB , r) (with xB the center of B). Therefore, for all balls
B = B(x, r) and all λ ≥ 1, we set λB := B(x, λr) and define Cj(B) = 2j+1B\2jB for all j ≥ 2 and C1(B) = 4B.
If E,F ⊂ Γ, d(E,F ) stands for the distance between E and F , namely

d(E,F ) = inf
x∈E, y∈F

d(x, y).

We define the weight m(x) of a vertex x ∈ Γ by m(x) =
∑

x∼y µxy. More generally, the volume of a subset E ⊂ Γ is
defined as m(E) :=

∑

x∈E m(x). We use the notation V (x, r) for the volume of the ball B(x, r), and in the same way,
V (B) represents the volume of a ball B.
We define now the Lp(Γ) spaces. For all 1 ≤ p < +∞, we say that a function f on Γ belongs to Lp(Γ,m) (or Lp(Γ)) if

‖f‖p :=

(

∑

x∈Γ

|f(x)|pm(x)

)
1
p

< +∞,

while L∞(Γ) is the space of functions satisfying

‖f‖∞ := sup
x∈Γ

|f(x)| < +∞.

Let us define for all x, y ∈ Γ the discrete-time reversible Markov kernel p associated with the measure m by p(x, y) =
µxy

m(x)m(y) . The discrete kernel pl(x, y) is then defined recursively for all l ≥ 0 by

{

p0(x, y) = δ(x,y)
m(y)

pl+1(x, y) =
∑

z∈Γ p(x, z)pl(z, y)m(z).
(1)

Remark 1.1. Note that this definition of pl differs from the one of pl in [24], [4] or [12], because of the m(y) factor.
However, pl coincides with Kl in [13]. Remark that in the case of the Cayley graphs of finitely generated discrete groups,
where m(x) = 1 for all x, the definitions coincide.

Notice that for all l ≥ 1, we have

‖pl(x, .)‖L1(Γ) =
∑

y∈Γ

pl(x, y)m(y) =
∑

d(x,y)≤l

pl(x, y)m(y) = 1 ∀x ∈ Γ, (2)

and that the kernel is symmetric:
pl(x, y) = pl(y, x) ∀x, y ∈ Γ. (3)

For all functions f on Γ, we define P as the operator with kernel p, i.e.

Pf(x) =
∑

y∈Γ

p(x, y)f(y)m(y) ∀x ∈ Γ. (4)

It is easily checked that P l is the operator with kernel pl.
Since p(x, y) ≥ 0 and (2) holds, one has, for all p ∈ [1,+∞] ,

‖P‖p→p ≤ 1. (5)

Remark 1.2. Let 1 ≤ p < +∞. Since, for all l ≥ 0,
∥

∥P l
∥

∥

p→p
≤ 1, the operators (I−P )β and (I+P )β are Lp-bounded

for all β ≥ 0 (see [11]).

We define a nonnegative Laplacian on Γ by ∆ = I − P . One has then

Remark 1.3. One can check that ‖∆‖1→1 ≤ 2. Moreover, the previous remark states that ∆β is L1(Γ)-bounded. Note
that the L1-boundedness of the operators ∆β is not true in the continuous setting (such as Riemannian manifolds), and
makes some proofs of the present paper easier than in the case of Riemannian manifolds. In particular, we did not need
then to prove similar results of the ones in [2].
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< (I − P )f, f >L2(Γ) =
∑

x,y∈Γ

p(x, y)(f(x) − f(y))f(x)m(x)m(y)

=
1

2

∑

x,y∈Γ

p(x, y)|f(x) − f(y)|2m(x)m(y),
(6)

where we use (2) for the first equality and (3) for the second one. The last calculus proves that the following operator

∇f(x) =





1

2

∑

y∈Γ

p(x, y)|f(y) − f(x)|2m(y)





1
2

,

called “length of the gradient” (and the definition of which is taken from [9]), satisfies

‖∇f‖2
L2(Γ) =< (I − P )f, f >L2(Γ)= ‖∆

1
2 f‖L2(Γ). (7)

1.2 Assumptions on the graph

Definition 1.4. We say that (Γ, µ) satisfies the doubling property if there exists C > 0 such that

V (x, 2r) ≤ CV (x, r) ∀x ∈ Γ, ∀r > 0. (DV)

Proposition 1.5. Let (Γ, µ) satisfying the doubling property. Then there exists d > 0 such that

V (x, λr) . λdV (x, r) ∀x ∈ Γ, r > 0 and λ ≥ 1. (8)

We denote by d0 the infimum of the d satisfying (8).

Definition 1.6. We say that (Γ, µ) (or P ) satisfies (LB) if there exists ǫ = ǫLB > 0 such that

p(x, x)m(x) ≥ ǫ ∀x ∈ Γ. (LB)

Remark 1.7. In particular, the condition (LB) implies that −1 does not belong to the L2-spectrum of P , which implies
in turn the analyticity of P in Lp(Γ), 1 < p < +∞ ([11]).

From now on, all the graphs considered ( unless explicitely stated) satisfy the doubling property and (LB). In this
context, Coulhon, Grigor’yan and Zucca proved in [10] (Theorem 4.1) that the following Davies-Gaffney estimate holds:

Theorem 1.8. Assume that (Γ, µ) satisfies (DV). Then there exist C, c > 0 such that for all subsets E,F ⊂ Γ and all
fonctions f supported in F , one has

‖P l−1f‖L2(E) ≤ C exp

(

−cd(E,F )2

l

)

‖f‖L2(F ) ∀l ∈ N
∗. (GUE)

The estimate (GUE), also called Gaffney estimate, will be sufficient to prove most of the results of this paper.
However, some results proven here can be improved if we assume the following stronger pointwise gaussian estimate:

Definition 1.9. We say that (Γ, µ) satisfies (UE) if there exist C, c > 0 such that

pl−1(x, y) ≤ C
1

V (x,
√
l)

exp

(

−cd(x, y)2

l

)

∀x, y ∈ Γ, ∀l ∈ N
∗. (UE)

Remark 1.10. Under (DV), property (UE) is equivalent to

pl−1(x, x) ≤ C

V (x,
√
l)

∀x ∈ Γ, ∀l ∈ N
∗. (DUE)

The conjonction of (DV) and (UE) (or (DUE)) is also equivalent to some relative Faber-Krahn inequality (see [9]).
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1.3 Definition of Hardy spaces on weighted graphs

We introduce three different definitions for Hardy spaces. The first two ones rely on molecular decomposition.

Definition 1.11. Let M ∈ N
∗. When ǫ ∈ (0,+∞), a function a ∈ L2(Γ) is called a (BZ1,M, ǫ)-molecule if there exist

s ∈ N
∗, a M -tuple (s1, . . . , sM ) ∈ [[s, 2s]]M , a ball B of radius

√
s and a function b ∈ L2(Γ) such that

(i) a = (I − P s1 ) . . . (I − P sM )b,

(ii) ‖b‖L2(Cj(B)) ≤ 2−jǫV (2jB)− 1
2 , ∀j ≥ 1.

A function a ∈ L2(Γ) is called a (BZ1,M,∞)-molecule (or a (BZ1,M)-atom) if there exist s ∈ N
∗, a M -tuple

(s1, . . . , sM ) ∈ [[1,M ]]M a ball B of radius
√
s and a function b ∈ L2(Γ) supported in B such that

(i) a = (I − P s1 ) . . . (I − P sM )b,

(ii) ‖b‖L2 = ‖b‖L2(B) ≤ V (B)− 1
2 .

We say that a (BZ1,M, ǫ)-molecule a is associated with an integer s, a M -tuple (s1, . . . , sM ) and a ball B when we
want to refer to s, (s1, . . . , sM ) and B given by the definition.

The second kind of molecules we consider are defined via the operators I − (I + s∆)−1:

Definition 1.12. Let M ∈ N
∗. When ǫ ∈ (0,+∞), a function a ∈ L2(Γ) is called a (BZ2,M, ǫ)-molecule if there exist

s ∈ N
∗, a ball B of radius

√
s and a function b ∈ L2(Γ) such that

(i) a = [I − (I + s∆)−1]M b,

(ii) ‖b‖L2(Cj(B)) ≤ 2−jǫV (2jB)− 1
2 , ∀j ≥ 1.

A function a ∈ L2(Γ) is called a (BZ2,M,∞)-molecule (or a (BZ2,M)-atom) if there exist s ∈ N
∗, a ball B of radius√

s and a function b ∈ L2(Γ) supported in B such that

(i) a = [I − (I + s∆)−1]M b,

(ii) ‖b‖L2 = ‖b‖L2(B) ≤ V (B)− 1
2 .

We say that a (BZ2,M, ǫ)-molecule a is associated with an integer s and a ball B when we want to refer to s and B
given by the definition.

Remark 1.13. 1. When b is the function occurring in Definition 1.11 or in Definition 1.12, note that ‖b‖L2 .
V (B)− 1

2 .

2. As will be seen in Proposition 2.7 below, when a is a molecule occurring in Definition 1.11 or in Definition 1.12,
one has ‖a‖L1 . 1.

Definition 1.14. Let M ∈ N
∗ and κ ∈ {1, 2}.

Let ǫ ∈ (0,+∞]. We say that f belongs to H1
BZκ,M,ǫ(Γ) if f admits a molecular (BZκ,M, ǫ)-representation, that is

if there exist a sequence (λi)i∈N ∈ ℓ1 and a sequence (ai)i∈N of (BZκ,M, ǫ)-molecules such that

f =

∞
∑

i=0

λiai (9)

where the convergence of the series to f holds pointwise. The space is outfitted with the norm

‖f‖H1
BZκ,M,ǫ

= inf







∞
∑

j=0

|λj |,
∞
∑

j=0

λjaj , is a molecular (BZκ,M, ǫ)-representation of f







.

Proposition 1.15. Let M ∈ N
∗ and κ ∈ {1, 2}. Then the space H1

BZκ,M,ǫ(Γ) is complete. Moreover, H1
BZκ,M,ǫ(Γ) ⊂

L1(Γ).

5



Proof: That H1
BZκ,M,ǫ(Γ) ⊂ L1(Γ) follows at once from assertion 2 in Remark 1.13, which shows that, if f ∈

H1
BZκ,M,ǫ(Γ), the series (9) converges in L1(Γ), and therefore converges to f in L1(Γ). Moreover, the space

H1
BZκ,M,ǫ(Γ) is complete if it has the property

∞
∑

j=0

‖fj‖H1
BZκ,M,ǫ

< +∞ =⇒
∞
∑

j=0

fj converges in H1
BZκ,M,ǫ(Γ).

This fact is a straightforward consequence of the fact that ‖a‖L1 . 1 whenever a is a molecule (see Remark 1.13
and Proposition 2.7). See also the argument for the completeness of H1

L in [21], p. 48. �

Remark 1.16. The BZκ molecules are molecules in the sense of Bernicot and Zhao in [5] (and then BZκ are Hardy
spaces in the sense of Bernicot and Zhao). Note that the definition of molecules is slightly different from the one given
in [3], [21] or [19]. The article [5] provides some properties of the spaces H1

BZκ,M,ǫ. In particular, under the assumption
(UE), these Hardy spaces are suited for Lp interpolation (see Remark 1.41 below) .

The third Hardy space is defined via quadratic functionals.

Definition 1.17. Define, for β > 0, the quadratic functionals Lβ on L2(Γ) by

Lβf(x) =





∑

(y,l)∈γ(x)

(l + 1)2β−1

V (x,
√
l+ 1)

|∆βP lf(y)|2m(y)





1
2

where γ(x) =
{

(y, l) ∈ Γ × N, d(x, y)2 ≤ l
}

.

Remark 1.18. One can also use instead of Lβ the Lusin functional L̃β defined by

L̃βf(x) =





∑

(y,k)∈γ̃(x)

1

(k + 1)V (x, k + 1)
|(k2∆)βP k2

f(y)m(y)|2




1
2

where γ̃(x) = {(y, k) ∈ Γ × N, d(x, y) ≤ k}.
The functionals Lβ and L̃β are two different ways to discretize the “countinuous” Lusin functional defined by

Lc
βf(x) =

(

∫ ∞

0

∫

d(y,x)2<s

1

sV (x,
√
s)

|(s∆)βe−s∆f(y)|2dµ(y) ds

)
1
2

=

(

∫ ∞

0

∫

d(y,x)<t

1

tV (x, t)
|(t2∆)βe−t2∆f(y)|2dµ(y) dt

)
1
2

.

Definition 1.19. The space E1
quad,β(Γ) is defined by

E1
quad,β(Γ) :=

{

f ∈ L2(Γ), ‖Lβf‖L1 < +∞
}

.

It is outfitted with the norm
‖f‖H1

quad,β
:= ‖Lβf‖L1 .

Remark 1.20. Notice that ‖f‖H1
quad,β

is a norm because the null space of ∆ is reduced to {0} (because the set Γ is

infinite by assumption). So, if k > β is an integer and f ∈ L2(Γ) is such that ∆βf = 0, then ∆kf = ∆k−β∆βf = 0, so
that f = 0.

Remark 1.21. Replacing Lβ by L̃β in the definition of E1
quad,β yields an equivalent space Ẽ1

quad,β, in the sense that
the sets are equal and the norms are equivalent. The proof of this nontrivial fact can be done by adapting the proof of
Theorem 1.36 below (details are left to the reader).
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1.4 Definition of BMO spaces on weighted graphs

Fix x0 ∈ Γ and let B0 = B(x0, 1) = {x0}. For ǫ > 0 and M ∈ N, for all functions φ ∈ L2(Γ) which can be written as
φ = ∆Mϕ for some function ϕ ∈ L2, define

‖φ‖MM,ǫ

0
:= sup

j≥1

[

2jǫV (2jB0)
1
2 ‖ϕ‖L2(Cj(B0))

]

∈ [0,+∞].

We set then
MM,ǫ

0 :=
{

φ = ∆Mϕ ∈ L2(Γ), ‖φ‖MM,ǫ

0
< +∞

}

.

Definition 1.22. For any M ∈ N, we set,

EM =
⋃

ǫ>0

(MM,ǫ
0 )∗

and
FM =

⋂

ǫ>0

(MM,ǫ
0 )∗.

Proposition 1.23. Let M ∈ N, s ∈ N
∗ and (s1, . . . , sM ) ∈ [[s, 2s]]M . If f ∈ EM , then the functions (I − P s1 ) . . . (I −

P sM )f and (I − (I + s∆)−1)Mf can be defined in the sense of distributions and are included in L2
loc(Γ).

Proof: The proof of this fact is done in Lemma 3.2. �

Definition 1.24. Let M ∈ N. Let f ∈ EM .
We say then that f belongs to BMOBZ1,M (Γ) if

‖f‖BMOBZ1,M
:= sup

s∈N
∗,

(s1,...,sM )∈[[s,2s]]M ,

B of radius
√

s

(

1

V (B)

∑

x∈B

|(I − P s1 ) . . . (I − P sM )f(x)|2m(x)

)
1
2

< +∞. (10)

We say then that f belongs to BMOBZ2,M (Γ) if

‖f‖BMOBZ2,M
:= sup

s∈N
∗,

B of radius
√

s

(

1

V (B)

∑

x∈B

|[I − (I + s∆)−1]Mf(x)|2m(x)

)
1
2

< +∞. (11)

1.5 Definition of Hardy spaces of 1-forms

We define, for all x ∈ Γ, the set Tx = {(x, y) ∈ Γ2, y ∼ x} and

TΓ =
⋃

x∈Γ

Tx = {(x, y) ∈ Γ2, y ∼ x}.

Definition 1.25. If x ∈ Γ, we define, for all Fx defined on Tx the norm

‖Fx‖Tx
=

(

1

2

∑

y∼x

p(x, y)m(y)|Fx(x, y)|2
)

1
2

.

Moreover, a function F : TΓ → R belongs to Lp(TΓ) if

(i) F is antisymmetric, that is F (x, y) = −F (y, x) for all x ∼ y,

(ii) ‖F‖Lp(TΓ) < +∞, with
‖F‖Lp(TΓ) = ‖x 7→ ‖F (x, .)‖Tx

‖Lp(Γ) .

Definition 1.26. Let f : Γ → R and F : TΓ → R be some functions. Define the operators d and d∗ by

df(x, y) := f(x) − f(y) ∀(x, y) ∈ TΓ

and
d∗F (x) :=

∑

y∼x

p(x, y)F (x, y)m(y) ∀x ∈ Γ.

7



Remark 1.27. It is plain to see that d∗d = ∆ and ‖df(x, .)‖Tx
= ∇f(x).

The definition of Hardy spaces of 1-forms is then similar to the case of functions. First, we introduce Hardy spaces
via molecules.

Definition 1.28. Let M ∈ N and ǫ ∈ (0,+∞). A function a ∈ L2(TΓ) is called a (BZ2,M + 1
2 , ǫ)-molecule if there

exist s ∈ N
∗, a ball B of radius

√
s and a function b ∈ L2(Γ) such that

(i) a = sM+ 1
2 d∆M (I − s∆)−M− 1

2 b;

(ii) ‖b‖L2(Cj(B)) ≤ 2−jǫV (2jB)− 1
2 for all j ≥ 1.

Remark 1.29. As in the case of functions, Corollary 2.12 below implies a uniform bound on the L1 norm of molecules,
that is, for all M ∈ N and all ǫ ∈ (0,+∞), there exists C > such that each (BZ2,M, ǫ)-molecule a satisfies

‖a‖L1(TΓ) ≤ C.

Definition 1.30. Let M ∈ N and ǫ ∈ (0,+∞). We say that F belongs to H1
BZ2,M+ 1

2 ,ǫ
(TΓ) if F admits a molecular

(BZ2,M + 1
2 , ǫ)-representation, that is if there exist a sequence (λi)i∈N ∈ ℓ1 and a sequence (ai)i∈N of (BZ2,M + 1

2 , ǫ)-
molecules such that

F =

∞
∑

i=0

λiai

where the sum converges pointwise on TΓ . The space is outfitted with the norm

‖f‖H1

BZ2,M+ 1
2

,ǫ

= inf

{ ∞
∑

i=0

|λi|,
∞
∑

i=0

λiai is a molecular (BZ2,M +
1

2
, ǫ)-representation of f

}

.

Remark 1.31. The space H1
BZ2,M+ 1

2 ,ǫ
(TΓ) is complete. The argument is analogous to the one of Proposition 1.15.

In order to define the Hardy spaces of forms associated with operators, we introduce the L2 adapted Hardy spaces
H2(TΓ) defined as the closure in L2(TΓ) of

E2(TΓ) := {F ∈ L2(TΓ), ∃f ∈ L2(Γ) : F = df}.

Notice that d∆−1d∗ = IdE2(TΓ). The functional d∆−1d∗ can be extended to a bounded operator on H2(TΓ) and

d∆−1d∗ = IdH2(TΓ). (12)

Proposition 1.32. For all p ∈ [1,+∞], the operator d∗ is bounded from Lp(TΓ) to Lp(Γ).
The operator d∆− 1

2 is an isometry from L2(Γ) to L2(TΓ) (or H2(TΓ)), and the operator ∆− 1
2 d∗ is an isometry from

H2(TΓ) to L2(Γ).

Proof: First, the Lp-boundedness of d∗ is provided by

‖d∗F‖p
Lp(Γ) =

∑

x∈Γ

∣

∣

∣

∣

∣

∣

∑

y∈Γ

p(x, y)m(y)F (x, y)

∣

∣

∣

∣

∣

∣

p

m(x)

.
∑

N∗x∈Γ

‖F (x, .)‖p
Tx
m(x) = ‖F‖p

Lp(TΓ).

The L2-boundedness of d∆− 1
2 is obtained by the calculus

‖d∆− 1
2 f‖2

L2(TΓ) =
1

2

∑

x∼y

p(x, y)|∆− 1
2 f(x) − ∆− 1

2 f(y)|2m(x)m(y)

= ‖∇∆− 1
2 f‖2

L2(Γ) = ‖∆
1
2 ∆− 1

2 f‖2
L2(Γ)

= ‖f‖2
L2(Γ).

The L2-boundedness of ∆− 1
2 d∗ is then a consequence of (12). Indeed, if F ∈ H2(Γ),

‖∆− 1
2 d∗F‖L2(Γ) = ‖d∆− 1

2 ∆− 1
2 d∗F‖L2(TΓ)

= ‖F‖L2(TΓ).

�
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Definition 1.33. The space E1
quad,β(TΓ) is defined by

E1
quad,β(TΓ) :=

{

F ∈ H2(TΓ), ‖Lβ[∆− 1
2 d∗F ]‖L1 < +∞

}

equipped with the norm
‖F‖H1

quad,β
:= ‖Lβ[∆− 1

2 d∗F ]‖L1 .

Note that, if ‖F‖H1
quad,β

= 0, one has ∆−1/2d∗F = 0, so that d∆−1/2∆−1/2d∗F = 0, which implies that F = 0 since

F ∈ H2(TΓ). Moreover, check that for all F ∈ H2(TΓ), ‖F‖H1
quad,β

= ‖∆− 1
2 d∗F‖H1

quad,β

1.6 Main results

In the following results, Γ is assumed to satisfy (DV) and (LB).

Theorem 1.34. Let M ∈ N
∗. Then BMOBZ1,M (Γ) = BMOBZ2,M (Γ).

Theorem 1.35. Let M ∈ N
∗ and κ ∈ {1, 2}. Let ǫ ∈ (0,+∞].

Then the dual space of H1
BZκ,ǫ(Γ) is BMOBZ1,M (Γ) = BMOBZ2,M (Γ). In particular, the spaces H1

BZκ,M,ǫ(Γ)
depend neither on ǫ nor on κ.

Moreover, BMOBZκ(Γ), initially defined as a subspace of EM , is actually included in FM .

Theorem 1.36. Let β > 0 and κ ∈ {1, 2}. The completion H1
quad,β(Γ) of E1

quad,β(Γ) in L1(Γ) exists. Moreover,

if M ∈ (d0

4 ,+∞) ∩ N
∗ and ǫ ∈ (0,+∞], then the spaces H1

BZ1,M,ǫ(Γ), H1
BZ2,M,ǫ(Γ) and H1

quad,β(Γ) coincide. More
precisely, we have

E1
quad,β(Γ) = H1

BZκ,M,ǫ(Γ) ∩ L2(Γ).

Once the equality H1
BZ1,M,ǫ(Γ) = H1

BZ2,M,ǫ(Γ) = H1
quad,β(Γ) is established, this space will be denoted by H1(Γ).

Corollary 1.37. Let M1,M2 >
d0

4 . Then we have the equality

BMOBZ1,M1 (Γ) = BMOBZ2,M2 (Γ).

Theorem 1.38. Let β > 0. The completion H1
quad,β(TΓ) of E1

quad,β(TΓ) in L1(TΓ) exists.

Moreover, if M ∈ (d0

4 − 1
2 ,+∞) ∩ N and ǫ ∈ (0,+∞), then the spaces H1

BZ2,M+ 1
2 ,ǫ

(TΓ) and H1
quad,β(TΓ) coincide.

More precisely, we have
E1

quad,β(TΓ) = H1
BZ2,M+ 1

2 ,ǫ(TΓ) ∩ L2(TΓ).

Again, the space H1
BZ2,M+ 1

2 ,ǫ
(TΓ) = H1

quad,β(TΓ) will be denoted by H1(TΓ).

Theorem 1.39. For this theorem only, assume furthermore that (Γ, µ) satisfies (UE). Then M can be choosen arbi-
trarily in N

∗ in Theorem 1.36 and Corollary 1.37, M can be choosen arbitrarily in N in Theorem 1.38.

Theorem 1.40. The Riesz transform d∆− 1
2 is bounded from H1(Γ) to H1(TΓ). As a consequence the Riesz transform

∇∆− 1
2 is bounded from H1(Γ) to L1(Γ).

Proof: By definition,

‖d∆− 1
2 f‖H1(TΓ) ≃ ‖d∆− 1

2 f‖H1
quad,1

(TΓ) = ‖∆− 1
2 d∗d∆− 1

2 f‖H1
quad,1

(Γ) = ‖f‖H1
quad,1

(Γ) ≃ ‖f‖H1(Γ).

Therefore, d∆− 1
2 is H1-bounded. Moreover, ‖∇∆− 1

2 f‖L1(Γ) = ‖d∆− 1
2 f‖L1(TΓ) . ‖d∆− 1

2 f‖H1(TΓ). Indeed, the

uniform L1-bound of (BZ2,M + 1
2 , ǫ)-molecules (see Corollary 2.12) yields

H1(TΓ) = H1
BZ2,M+ 1

2 ,ǫ(TΓ) →֒ L1(TΓ)

for any M > d0

4 − 1
2 . �

Remark 1.41.

(a) It is easily checked that under (UE), the Hardy space H1(Γ) = H1
BZ2,1,∞(Γ) satisfies the assumption of Theorem

5.3 in [5]. As a consequence, the interpolation between H1(Γ) and L2(Γ) provides the spaces Lp(Γ), 1 < p < 2.
Together with Theorem 1.40, we can recover the main result of [24], that is: under (UE), the Riesz transform ∇∆− 1

2

is Lp-bounded for all p ∈ (1, 2].
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(b) An interesting byproduct of Theorem 1.36 is the equality, for any ǫ ∈ (0,+∞] and any M > d0

4 , between the spaces

H1
BZκ,M,ǫ(Γ) ∩ L2(Γ) and E1

BZκ,M,ǫ(Γ) defined by

E
1
BZκ,M,ǫ(Γ) :=

{

f ∈ L
2(Γ),

∞
∑

j=0

λjaj is a molecular (BZκ, M, ǫ)-representation of f and the series converges in L
2(Γ)

}

and outfitted with the norm

‖f‖E1
BZκ,M,ǫ

= inf

{

∑

i∈N

|λi|,

∞
∑

j=0

λjaj is a molecular (BZκ, M, ǫ)-representation of f and the series converges in L
2(Γ)

}

.

We have similar byproducts of Theorems 1.38 and 1.39. Precise statements and proofs are done in Corollary 4.13.

As a consequence, the completion of E1
BZκ,M,ǫ(Γ) in L1(Γ) exists and is equal to H1

BZκ,M,ǫ. On Riemannian
manifolds or in more general contexts, the proof of this fact is much more complicated and is the main result of [2].
Let us emphasize that the proofs of our main results does not go through the E1

BZκ,M,ǫ spaces.

(c) We may replace (i) in the definition of (BZ2,M, ǫ)-molecules by

(i’) a = (I − (I + s1∆)−1) . . . ((I − (I + sM ∆)−1)b, where (s1, . . . , sM ) ∈ [s, 2s]M

or

(i”) a = (I − (I + r2∆)−1)M b, where r is the radius of the ball B (or the smallest integer greater than
√
s)

and still get the same space H1
BZ2,M,ǫ(Γ).

(d) However, when M ≥ 3, it is unclear whether replacing item (i) of the definition of (BZ1,M, ǫ)-molecules by

(i’) a = (I − P s)M

yields the same space H1
BZ1,M,ǫ(Γ).

Section 2 is devoted to the proof of auxiliary results that will be useful for the next sections. The proof of Theorem
1.34 is treated in paragraph 3.2 and the proof of Theorem 1.35 is done in paragraph 3.3. In the last section, we establish
Theorems 1.36, 1.38 and 1.39.

1.7 Comparison with other papers

• Comparison with [3]: In [3], the authors proved analogous results (that is the H1 boundedness of the Riesz
transform under very weak assumptions and the various characterizations of H1 ) on Riemannian manifolds.
Some differences between the two papers can be noted. First, BMO spaces are not considered there. They also
choose to define some Hardy spaces via tent spaces (while we prefer to use Lusin functionals). Contrary to us,
they introduced the spaces Hp, for all p ∈ [1,+∞] , and proved that these spaces form an interpolation scale for
the complex method.

• Comparison with [19]: This article develops Hardy and BMO spaces adapted to a symmetric operator L in a
general context of doubling measure spaces when the semigroup generated by L satisfies L2 Gaffney estimates.
However, on graphs, it is unclear whether these L2 Gaffney estimates for the semigroup generated by the Laplacian
hold or not. Yet, Coulhon, Grigor’yan and Zucca proved in [10] that we have L2 Gaffney type estimates for the
discrete iterates of Markov operators and we only rely on these estimates in the present paper.

• Comparison with [6]: First of all, as in [19], there are no results about Hardy spaces on 1-forms and the authors
do not prove the H1 boundedness of the Riesz transforms. Then, as said in the introduction, they assume in
all their paper a pointwise gaussian bound of the Markov kernel while it is not required for most of our results.
Moreover, the results of the present paper stated under (UE) are stronger that those stated in [6]. Indeed, in the
results stated in [6], the constant M need to be greater than d0

2 while, in the present paper, we used the pointwise
gaussian bound in order to get rid of the dependance of M on the “dimension” d0.

Besides, the definitions of their Hardy spaces and ours a priori differ. Let us begin with the Hardy spaces defined
via molecules. For convenience, we introduce a new definition of molecules.

Definition 1.42. Let M ∈ N
∗ and ǫ ∈ (0,+∞). A function a ∈ L2(Γ) is called a (HM,M, ǫ)-molecule if there

exist a ball B of radius r ∈ N
∗ and a function b ∈ L2(Γ) such that

(i) a = [r2∆]M b,
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(ii) ‖[r2∆]kb‖L2(Cj(B)) ≤ 2−jǫV (2jB)− 1
2 , ∀j ∈ N

∗, ∀k ∈ [[0,M ]].

The space H1
HM,M,ǫ(Γ) is then defined in the same way as H1

BZκ,M,ǫ(Γ).

Using methods developed in [19] and in the present paper, it can be proved that, if M > d0

4 (or if M ∈ N
∗ if

we assume the extra condition (UE)), there is equality between the spaces H1
HM,M,ǫ(Γ) and H1

quad,1(Γ) = H1(Γ).
The proofs are similar to those of the present paper. The molecules introduced by Bui and Duong - we call them
(BD,M, ǫ)-molecules - are the (HM,M, ǫ)-molecules where we replaced r2 by r in (i) and (ii). It is easily checked
that a (BD,M, ǫ)-molecule is a (HM,M, ǫ)-molecule and hence, under assumption (UE), our Hardy spaces are
bigger than theirs.

Since they proved (as we do here) that Hardy spaces defined with molecules and with quadratic functionals
coincide, the Hardy spaces via quadratic functionals in [6] are also different from ours. Indeed, our Hardy spaces
are of parabolic type (heat kernel) while those of [6] are modelled on the Poisson semigroup. Furthermore, they
only consider one Lusin functional, while we consider a family of Lusin functionals (indexed by β > 0), and the
independance of Hardy spaces H1

quad,β(Γ) with respect to β is a key point of the proof of the boundedness of Riesz
transforms.

Acknowledgements: the author is grateful to E. Russ for comments and suggestions that improved the paper.
He would also like to thank P. Auscher and A. Morris for interesting discussions.

2 Preliminary results

2.1 L
2-convergence

Proposition 2.1. Let β > 0. Let P satisfying (LB). One has the following convergence: for all f ∈ L2(Γ),

N
∑

k=0

ak(I − P )βP kf
N→+∞−−−−−→ f in L2(Γ)

where
∑

akz
k is the Taylor series of the function (1 − z)−β.

Remark 2.2. This result extends Lemma 1.13 in [4]. It provides a discrete version of the identity

f = cβ

∫ ∞

0

(t∆)βe−t∆fdt.

Corollary 2.3. Let (Γ, µ) a weighted graph. One has the following convergence: for all f ∈ L2(Γ),

N
∑

k=0

ak(I − P 2)βP 2kf
N→+∞−−−−−→ f in L2(Γ)

Proof: (Proposition 2.1)

First, notice that Corollary 2.3 is an immediate consequence of Proposition 2.1 since P 2 is a Markov operator
satisfying (LB) (see [10]).

Let f ∈ L2(Γ). Let us check the behavior of

∥

∥

∥

∥

∥

[

N
∑

k=0

ak(I − P )βP k − I

]

f

∥

∥

∥

∥

∥

L2

(13)

when N → +∞. Since ‖P‖2→2 = 1 and P satisfies (LB), there exists a > −1 such that

P =

∫ 1

a

λdE(λ).

Thus

∥

∥

∥

∥

∥

[

N
∑

k=0

ak(I − P )βP k − I

]

f

∥

∥

∥

∥

∥

2

L2

=

∫ 1

a

[

N
∑

k=0

ak(1 − λ)βλk − 1

]2

dEff (λ). (14)
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However,
N
∑

k=0

ak(1 − λ)βλk N→∞−−−−→
{

1 for all λ ∈ [a, 1)
0 if λ = 1

and since the sum is nonnegative and increasing in N , then

∣

∣

∣

∣

∣

N
∑

k=0

ak(1 − λ)βλk − 1

∣

∣

∣

∣

∣

≤ 1 ∀λ ∈ [a, 1].

We use this result in (14) to get the uniform bound

∥

∥

∥

∥

∥

[

N
∑

k=0

ak(I − P )βP k − I

]

f

∥

∥

∥

∥

∥

2

L2

≤
∫ 1

a

dEff (λ) = ‖f‖2
L2. (15)

Let us focus on (13) when we furthermore assume that f ∈ R(∆), that is f = ∆g for some g ∈ L2(Γ). The identity
(14) reads as

∥

∥

∥

∥

∥

[

N
∑

k=0

ak(I − P )βP k − I

]

f

∥

∥

∥

∥

∥

2

L2

=

∫ 1

a

[

N
∑

k=0

ak(1 − λ)β+1λk − (1 − λ)

]2

dEgg(λ).

Yet,
∑N

k=0 ak(1 − λ)β+1λk − (1 − λ) converges uniformly to 0 for all λ ∈ [a, 1].

Consequently, for all ǫ > 0, there exists N0 such that, for all N > N0,

∥

∥

∥

∥

∥

[

N
∑

k=0

ak(I − P )βP k − I

]

f

∥

∥

∥

∥

∥

2

L2

≤ ǫ

∫ 1

a

dEgg(λ) = ǫ‖g‖2
L2.

This implies
N
∑

k=0

ak(I − P )βP kf
N→∞−−−−→ f in L2 and for all f ∈ R(∆). (16)

Since L2 = R(∆), the combination of (15) and (16) provides the desired conclusion. Indeed, (16) provides the
L2-convergence on the dense space R(∆) and the uniform boundedness (16) allows us to extend the convergence
to L2(Γ). �

2.2 Davies-Gaffney estimates

Definition 2.4. We say that a family of operators (As)s∈N satisfies Davies-Gaffney estimates if there exist three
constants C, c, η > 0 such that for all subsets E,F ⊂ Γ and all functions f supported in F , there holds

‖Asf‖L2(E) ≤ C exp

(

−c
[

d(E,F )2

s

]η)

‖f‖L2. (17)

Hofmann and Martell proved in [20, Lemma 2.3] the following result about Davies-Gaffney estimates:

Proposition 2.5. If As and Bt satisfy Davies-Gaffney estimates, then there exist C, c, η > 0 such that for all subsets
E,F ⊂ Γ and all functions f supported in F , there holds

‖AsBtf‖L2(E) ≤ C exp

(

−c
[

d(E,F )2

s+ t

]η)

‖f‖L2 (18)

In particular, (AsBs)s∈N satisfies Davies-Gaffney estimates.
More precisely, if ηA and ηB are the constants involved in (17) respectively for As and Bt , then the constant η that

occurs in (18) can be choosen equal to min{ηA, ηB}.

Proposition 2.6. Let M ∈ N. The following families of operators satisfy the Davies-Gaffney estimates

12



(i)
M
∏

i=1





1

tis

ti
s
∑

k=0

P k



, where for all i ∈ [[1,M ]], tis ∈ [[1, 2s]],

(ii)

M
∏

i=1

(I − P ti
s), where for all i ∈ [[1,M ]], tis ∈ [[s, 2s]],

(iii) (s∆)MP s,

(iv) (I + s∆)−M ,

(v) (I − (I + s∆)−1)M = (s∆)M (I + s∆)−M .

In (i), (ii) and (iii), the parameter η is equal to 1 and in (iv) and (v), η is equal to 1
2 .

Proof: (i) and (ii) are direct consequences of (GUE) and Proposition 2.5. Assertion (iii) is the consequence of (GUE)
and (LB) and a proof can be found in [13].

We turn now to the proof of (iv) and (v). According to Proposition 2.5, it remains to show the Davies-Gaffney
estimates for (I + s∆)−1, and since s∆(I + s∆)−1 = I − (I + s∆)−1, it is enough to deal with (I + s∆)−1. The
L2-functional calculus provides the identity

(I + s∆)−1f =
1

1 + s

(

I − s

1 + s
P

)−1

f

=

+∞
∑

k=0

1

1 + s

(

s

1 + s

)k

P kf,

(19)

where the convergence holds in L2(Γ).

Let f be a function supported in F . Then, one has with the Gaffney-Davies estimates (GUE):

‖(I + s∆)−1f‖L2(E) .

+∞
∑

k=0

1

1 + s

(

s

1 + s

)k

‖P kf‖L2(E)

.

+∞
∑

k=0

1

1 + s

(

s

1 + s

)k

exp

(

−cd(E,F )2

1 + k

)

‖f‖L2(F )

. ‖f‖L2(F )

[

s
∑

k=0

1

1 + s
exp

(

−cd(E,F )2

1 + k
− c′ k

1 + s

)

+
+∞
∑

k=s

1 + s

(1 + k)2
exp

(

−cd(E,F )2

1 + k
− c′ k

1 + s

)

]

.

Yet, the function ψ : k ∈ R
+ 7→ cd(E,F )2

1+k + c′ k
1+s is bounded from below and

ψ(k) &
d(E,F )√

1 + s
.

Hence, the use of Lemma B.1 proved in the appendix yields

‖(I + s∆)−1f‖L2(E) . ‖f‖L2(F ) exp

(

−cd(E,F )√
1 + s

)

[

s
∑

k=0

1

1 + s
+

+∞
∑

k=s

1 + s

(1 + k)2

]

. ‖f‖L2(F ) exp

(

−cd(E,F )√
1 + s

)

.

�

Proposition 2.7. Let κ ∈ {1, 2}. Let a be a (BZκ,M, ǫ)-molecule. Then

‖a‖L1 . 1 and ‖a‖L2(Cj(B)) .
2−jǫ

V (2jB)
1
2

∀j ∈ N
∗.

13



Proof: We will only prove the case where κ = 1. The case κ = 2 is proven similarly and will therefore be skipped.

Since
‖a‖L1 ≤

∑

j≥1

V (2j+1B)
1
2 ‖a‖L2(Cj(B)),

we only need to check the second fact. Let s ∈ N, (s1, . . . , sM ) ∈ [[s, 2s]]M and a ball B associated with the
molecule a.

Define C̃j(B) =

j+1
⋃

k=j−1

Ck(B) and observe that d(Cj(B),Γ\C̃j(B)) & 2j√
s. Then Proposition 2.6 provides

‖a‖L2(Cj(B)) ≤ ‖(I − P s1) . . . (I − P sM )[b1lC̃j(B)]‖L2(Cj(B)) + ‖(I − P s1) . . . (I − P sM )[b1lΓ\C̃j(B)]‖L2(Cj(B))

. ‖b‖L2(C̃j(B)) + e−c4j ‖b‖L2

.
2−jǫ

V (2jB)
1
2

+
e−c4j

V (B)
1
2

.
2−jǫ

V (2jB)
1
2

.

�

2.3 Gaffney estimates for the gradient

Proposition 2.8. Let (Γ, µ) satisfying (LB) (note that (DV) is not assumed here). Let c > 0 such that

8ce8c

ǫLB
≤ 1. (20)

There exists C > 0 such that for all subsets F ⊂ Γ and all f supported in F , one has

∥

∥

∥

∥

P kfec d2(.,F )
k+1

∥

∥

∥

∥

L2

≤ C‖f‖L2.

The proof of Proposition 2.8 is based on the following result of Coulhon, Grigor’yan and Zucca:

Lemma 2.9. Let (Γ, µ) satisfying (LB). Let (k, x) 7→ gk(x) be a positive function on N × Γ. Then, for all finitely
supported functions f ∈ L2(Γ) and for all k ∈ N,

∥

∥

√
gk+1P

k+1f
∥

∥

2

L2 −
∥

∥

√
gkP

kf
∥

∥

2

L2 ≤
∑

x∈Γ

|P kf(x)|2
(

gk+1(x) − gk(x) +
|∇gk+1(x)|2
4ǫLBgk+1(x)

)

m(x)

Proof: This fact is actually established in the proof of [10, Theorem 2.2, pp. 566-567]. �

Proof: (Proposition 2.8).

First, let us prove the result for f supported in a finite set F ⊂ Γ. Let f (finitely supported and) supported in F .
We wish to use Lemma 2.9 with

gk(x) = e2c
d2(x,F )

k+1 .

Check that, with Taylor-Lagrange inequality

gk+1(x) − gk(x) ≤ max
t∈[k,k+1]

{

−2cd2(x, F )

(t+ 1)2
e2c

d2(x,F )
t+1

}

= −2c

(

d(x, F )

k + 2

)2

gk+1(x).

In the same way, one has

∇gk+1(x) ≤ 4c[d(x, F ) + 1]

k + 2
e2c

[d(x,F )+1]2

k+2 .

14



Since f is supported in F , then P kf is supported in {x ∈ Γ, d(x, F ) ≤ k}. As a consequence, we can assume in
the previous calculus that d(x, F ) ≤ k and thus

[d(x, F ) + 1]2

k + 2
≤ d2(x, F )

k + 2
+ 2.

Then
|∇gk+1(x)|2
4ǫLBgk+1(x)

≤
(

[d(x, F ) + 1]

k + 2

)2
4c2e8c

ǫLB
gk+1(x).

First case: d(x, F ) ≥ 1, then

|∇gk+1(x)|2
4ǫLBgk+1(x)

≤
(

d(x, F )

k + 2

)2
16c2e8c

ǫLB
gk+1(x)

and by (20),

gk+1(x) − gk(x) +
|∇gk+1(x)|2
4ǫLBgk+1(x)

≤ 0.

Second case, d(x, F ) = 0, then

gk+1(x) − gk(x) +
|∇gk+1(x)|2
4ǫLBgk+1(x)

≤ 1

(k + 2)2

16c2e8c

ǫ2
LB

≤ 2c

(k + 2)2

In all cases, one has then P kf(x) = 0 or

gk+1(x) − gk(x) +
|∇gk+1(x)|2
4ǫLBgk+1(x)

≤ 2c

(k + 2)2
.

Lemma 2.9 yields
∥

∥

∥

∥

P k+1fec
d2(.,F )

k+2

∥

∥

∥

∥

2

L2

−
∥

∥

∥

∥

P kfec
d2(.,F )

k+1

∥

∥

∥

∥

2

L2

≤ 2c

(k + 2)2
‖P kf‖2

L2,

and hence, by induction,

∥

∥

∥

∥

P kfec
d2(.,F )

k+1

∥

∥

∥

∥

2

L2

≤ ‖f‖2
L2 +

k−1
∑

l=0

2c

(l + 2)2
‖P lf‖2

L2 . ‖f‖2
L2.

Consider now a general f ∈ L2(Γ). Without loss of generality, we can assume that f is nonnegative. Let (Γi)i∈N

an increasing sequence of finite subsets of Γ such that
⋃∞

i=0 Γi = Γ. Let fi = f1lΓi
. One has then for any x ∈ Γ

and k ∈ N,
fi ↑ f and P kfi ↑ P kf.

By the monotone convergence theorem, we obtain,

∥

∥

∥

∥

P kfie
c d2(.,F )

k+1

∥

∥

∥

∥

2

L2

↑
∥

∥

∥

∥

P kfec d2(.,F )
k+1

∥

∥

∥

∥

2

L2

so that
∥

∥

∥

∥

P kfec
d2(.,F )

k+1

∥

∥

∥

∥

2

L2

= lim
i→∞

∥

∥

∥

∥

P kfie
c

d2(.,F )
k+1

∥

∥

∥

∥

2

L2

. sup
i∈N

‖fi‖2
L2

= ‖f‖2
L2.

�

Proposition 2.10. Let (Γ, µ) satisfying (LB) (note that (DV) is not assumed here). Let c > 0 as in Proposition 2.8.
There exists C > 0 such that for all subsets F ⊂ Γ and all functions f supported in F , one has

∥

∥

∥

∥

∇P kfe
c
2

d2(.,F )
k+1

∥

∥

∥

∥

L2

≤ C
‖f‖L2√
k + 1

.
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Proof: The proof of this proposition is very similar to the one of Lemma 7 in [24]. We define

I = Ik(f) :=

∥

∥

∥

∥

∇P kfe
c
2

d2(.,F )
k+1

∥

∥

∥

∥

2

L2

.

One has then

I =
∑

x,y∈Γ

p(x, y)|P k(x) − P k(y)|2ec
d2(x,F )

k+1 m(x)m(y)

=
∑

x,y∈Γ

p(x, y)[P kf(x) − P kf(y)]P kf(x)ec
d2(x,F )

k+1 m(x)m(y)

−
∑

x,y∈Γ

p(x, y)[P kf(x) − P kf(y)]P kf(y)ec
d2(x,F )

k+1 m(x)m(y)

= 2
∑

x,y∈Γ

p(x, y)[P kf(x) − P kf(y)]P kf(x)ec
d2(x,F )

k+1 m(x)m(y)

+
∑

x,y∈Γ

p(x, y)[P kf(x) − P kf(y)]P kf(x)

[

ec d2(y,F )
k+1 − ec d2(x,F )

k+1

]

m(x)m(y)

:= 2I1 + I2.

We first estimate I1. One has

I1 =
∑

x∈Γ

P kf(x)ec
d2(x,F )

k+1 m(x)
∑

y∈Γ

p(x, y)[P kf(x) − P kf(y)]m(y)

=
∑

x∈Γ

(I − P )P kf(x)P kf(x)ec
d2(x,F )

k+1 m(x).

Consequently, with the analyticity of P and Proposition 2.8, we get

I1 ≤ ‖(I − P )P kf‖L2

∥

∥

∥

∥

P kfec
d2(.,F )

k+1

∥

∥

∥

∥

L2

.
1

k + 1
‖f‖2

L2.

(21)

We now turn to the estimate of I2. One has, since d(x, y) ≤ 1 (otherwise p(x, y) = 0),

∣

∣

∣

∣

ec
d2(y,F )

k+1 − ec
d2(x,F )

k+1

∣

∣

∣

∣

≤ 2
[d(x, F ) + 1]

k + 1
ec

d2(x,F )
k+1

.
1√
k + 1

e
3c
2

d2(x,F )
k+1 .

Since f is supported in F , P kf is supported in {x ∈ Γ, d(x, F ) ≤ k}. Consequently, we can assume that
d(x, F ) ≤ k + 1 so that

[d(x, F ) + 1]2

k + 1
≤ d2(x, F )

k + 1
+ 2.

Therefore, the term I2 can be estimated by

|I2| . 1√
k + 1

∑

x,y∈Γ

|P kf(x) − P kf(y)||P kf(x)|e 3c
2

d2(x,F )
k+1 m(x)m(y)

.
1√
k + 1





∑

x,y∈Γ

|P kf(x) − P kf(y)|2ec
d2(x,F )

k+1 m(x)m(y)





1
2




∑

x,y∈Γ

|P kf(x)|2e2c
d2(x,F )

k+1 m(x)m(y)





1
2

=
1√
k + 1

√
I

∥

∥

∥

∥

P kfec
d2(.,F )

k+1

∥

∥

∥

∥

L2

.

√

I

k + 1
‖f‖L2,

(22)
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where we used again Proposition 2.8 for the last line.

The estimates (21) and (22) yield

I .
1

k + 1
‖f‖2

L2 +

√

I

k + 1
‖f‖L2,

that is

I .
1

k + 1
‖f‖2

L2,

which is the desired conclusion. �

Corollary 2.11. Let (Γ, µ) satisfying (LB) (note that (DV) is not assumed here). Let M ∈ N. The following families
of operators satisfy the Davies-Gaffney estimates

(i) sM+ 1
2 ∇∆MP s,

(ii) sM+ 1
2 ∇∆M (I + s∆)−M− 1

2 .

Proof: According to Propositions 2.5 and 2.6, it is enough to check that
√
s∇P s and

√
s∇(I + s∆)− 1

2 satisfy Davies-
Gaffney estimates.

Indeed, Proposition 2.10 yields, if E,F ⊂ Γ, f supported in F and c > 0 satisfy (20)

‖√
s∇P sf‖L2(E)e

c
2

d(E,F )
s+1 ≤ √

s

∥

∥

∥

∥

∇P sfe
c
2

d2(.,F )
k+1

∥

∥

∥

∥

L2

.

√
s√

s+ 1
≤ 1.

It suffices now to check that
√
s∇(I + s∆)− 1

2 satisfies Davies-Gaffney estimates. First notice that

‖√
s∇(I + s∆)− 1

2 f‖L2 = ‖(s∆)
1
2 (I + s∆)− 1

2 f‖L2

=
∥

∥

∥(I − (I + s∆)−1)
1
2 f
∥

∥

∥

L2

≤ ‖f‖L2.

Then the family of operators
√
s∇(I + s∆)− 1

2 is L2-uniformly bounded. Hence, we can suppose without loss of
generality that d(E,F )2 ≥ 1 + s. Write,

(I + s∆)− 1
2 f =

1√
1 + s

(

I − s

1 + s
P

)− 1
2

f

=
1√

1 + s

∞
∑

k=0

ak

(

s

1 + s

)k

P kf

where
∑

akz
k is the Taylor serie of the function (1 − z)− 1

2 and the convergence holds in L2(Γ). Note that
ak ≃

√
k + 1 (see for example [17], Lemma B.1) and

‖√
s∇(I + s∆)− 1

2 f‖L2(E) .

√
s√

1 + s

∞
∑

k=0

1√
1 + k

(

s

1 + s

)k

‖∇P kf‖L2(E)

. ‖f‖L2

∞
∑

k=0

1

1 + k

(

s

1 + s

)k

e−c
d(E,F )2

1+k

. ‖f‖L2

1

d(E,F )2

∞
∑

k=0

(

s

1 + s

)k

e−c d(E,F )2

1+k

. ‖f‖L2

1

d(E,F )2

[

s
∑

k=0

e
−c

[

d(E,F )2

1+k
+ k

1+s

]

+

∞
∑

k=s+1

(

1 + s

1 + k

)2

e
−c

[

d(E,F )2

1+k
+ k

1+s

]

]
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where we used (i) for the second estimate and Lemma B.1 for the last one.

Arguing as in the proof of Proposition 2.6, we find

‖√
s∇(I + s∆)− 1

2 ‖L2(E) . ‖f‖L2

1 + s

d(E,F )2
e

−c
d(E,F )√

1+s

. ‖f‖L2,

since we assumed that d(E,F )2 ≥ 1 + s. �

Corollary 2.12. Let M ∈ N. Then if a = sM+ 1
2 d∆M (I + s∆)−M− 1

2 b is a (BZ2,M + 1
2 , ǫ)-molecule associated with

the ball B, then

‖a‖L1(TΓ) . 1 and ‖a‖L2(TCj (B)) .
2−jǫ

V (2jB)
1
2

∀j ∈ N
∗.

Proof: First, notice that

‖a‖L1(TΓ) ≤
∑

j≥1

V (2j+1B)
1
2 ‖x 7→ ‖a(x, .)‖Tx

‖L2(Cj(B)).

Then it remains to check the last claim, that is

‖a‖L2(TCj (B)) := ‖x 7→ ‖a(x, .)‖Tx
‖Cj(B) .

2−jǫ

V (2jB)
1
2

.

Since a = sM+ 1
2 d∆M (I + s∆)−M− 1

2 b, then

x 7→ ‖a(x, .)‖Tx
= sM+ 1

2 ∇∆M (I + s∆)−M− 1
2 b(x).

We conclude as in Proposition 2.7, using the Davies-Gaffney estimates provided by Corollary 2.11. �

2.4 Off diagonal decay for Littlewood-Paley functionals

Lemma 2.13. Let M > 0 and α ∈ [0, 1]. Define A = {(Ad,u
l )l∈N∗ , d ∈ R+, u ∈ N}, where, for all l ≥ 1,

Ad,u
l = lα

exp
(

− d
l+u

)

(l + u)1+M
.

Then there exists C = CM,α such that

(

∑

l∈N∗

1

l
a2

l

)
1
2

≤ C
∑

l∈N∗

1

l
al ∀(al)l ∈ A.

Proof: The proof is similar to Proposition C.2 in [17]. �

Lemma 2.14. Let M ∈ N
∗ and β > 0. Then there exists CM,β such that for all sets E,F ⊂ Γ, all f supported in F ,

all s ∈ N and all M -tuples (s1, . . . , sM ) ∈ [[s, 2s]]M , one has

‖Lβ(I − P s1 ) . . . (I − P sM )f‖L2(E) ≤ CM,β

(

1 +
d(E,F )2

s

)−M

‖f‖L2.

Proof: The proof follows the ideas of [17] Lemma 3.3 (or [4] Lemma 3.2 if β = 1). First, since Lβ and (I −P s1) . . . (I −
P sM ) are L2-bounded (uniformly in s) and without loss of generality, we can assume that s ≤ d(E,F )2.

Denote by η the only integer such that η+1 ≥ β+M > η ≥ 0. Notice that M−η ≤ 1−β < 1 and thus M−η ≤ 0.

We use the following fact, which is an immediate consequence of Proposition 2.1

∆β+Mf = (I − P )β+Mf =
∑

k≥0

akP
k(I − P )η+1f ∀f ∈ L2(Γ)

18



where
∑

akz
k is the Taylor serie of the function (1−z)β+M−η−1 Notice that if β+M is an integer, then ak = δ0(k).

By the use of the generalized Minkowski inequality, we get

∥

∥Lβ(I − P s)Mf
∥

∥

L2(E)

≤
∑

k≥0

ak





∑

l≥1

l2β−1
∑

x∈E

m(x)

V (x,
√
l)

∑

y∈B(x,
√

l)

m(y)|∆1+η−M (I − P s1 ) . . . (I − P sM )P k+l−1f(y)|2




1
2

. sM sup
t∈[[0,2Ms]]

∑

k≥0

ak





∑

l≥1

l2β−1
∑

x∈E

m(x)

V (x,
√
l)

∑

y∈B(x,
√

l)

m(y)|∆1+ηP k+l+t−1f(y)|2




1
2

. sM sup
t∈[[0,2Ms]]

∑

k≥0

ak





∑

l≥1

l2β−1
∑

y∈Dl(E)

m(y)|∆1+ηP k+l+t−1f(y)|2
∑

x∈B(y,
√

l)

m(x)

V (x,
√
l)





1
2

. sM sup
t∈[[0,2Ms]]

∑

k≥0

ak





∑

l≥1

l2β−1‖∆1+ηP k+l+t−1f‖2
L2(Dl(E))





1
2

:= sM sup
t∈[[0,Ms]]

Λ(t)

where Dl(E) = {y ∈ Γ, dist(y,E) <
√
l}, and where we notice that

∑

x∈B(y,
√

l)

m(x)

V (x,
√
l)

. 1 with the doubling

property.

1- Estimate when l < d(E,F)2

4

The important point here is to notice that dist(F,Dl(E)) ≥ 1
2d(E,F ) & d(E,F ). Then, using Davies-Gaffney

estimates (Proposition 2.6, (iii) ) , we may obtain

‖∆1+ηP k+l+t−1f‖L2(Dl(E)) .
exp

(

−cd(E,F )2

l+k+t

)

(l + k + t)(1+η)
‖f‖L2

≤ lM−η
exp

(

−cd(E,F )2

l+k+t

)

(l + k + t)1+M
‖f‖L2

(23)

since M − η ≤ 0.

2- Estimate when l ≥ d(E,F)2

4

We use the analyticity of P to obtain,

‖∆1+ηP k+l+t−1f‖L2(Dl(E)) ≤ ‖(I − P )1+ηP k+l+t−1f‖L2(Γ)

.
1

(k + l + t)1+η
‖f‖L2

. lM−η 1

(k + l + t)1+M
‖f‖L2

. lM−η
exp

(

−cd(E,F )2

l+k+t

)

(l + k + t)1+M
‖f‖L2

(24)

where the third line is due to M − η ≤ 0 and the last one holds because l + k & d(E,F )2.

3- Conclusion
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The first two steps imply the following estimate on Λ(t):

Λ(t) . ‖f‖L2(F )

∑

k≥0

ak







∑

l≥1

1

l

∣

∣

∣

∣

∣

∣

l(β+M−η)
exp

(

−cd(E,F )2

l+k+t

)

(k + l+ t)1+M

∣

∣

∣

∣

∣

∣

2






1
2

. ‖f‖L2(F )

∑

k≥0

ak

∑

l≥1

1

l
l(β+M−η)

exp
(

−cd(E,F )2

l+k+t

)

(k + l + t)1+M

where we used Lemma 2.13 for the last line (indeed, β +M − η ∈ (0, 1]). Check that Thus since

m−1
∑

k=0

ak(m− k)β+M−η−1 . 1.

Indeed, when β+M−η = 1, the result is obvious. Otherwise, it is a consequence of the fact that ak ≃ kη−M−β

(see Lemma B.1 in [17]). Hence, one has

Λ(t) . ‖f‖L2(F )

∑

m≥1

exp
(

−cd(E,F )2

m+t

)

(m+ t)1+M

= d(E,F )−2(1+M)‖f‖L2(F )

∑

m≥1

d(E,F )2(1+M)

(m+ t)1+M
exp

(

−cd(E,F )2

m+ t

)

. d(E,F )−2(1+M)‖f‖L2(F )





d(E,F )2

∑

m=1

1 +
∑

m>d(E,F )2

d(E,F )2(1+M)

(m+ t)1+M





. d(E,F )−2M ‖f‖L2(F ).

As a consequence,
∥

∥Lβ(I − P s)Mf
∥

∥

L2(E)
.

(

d(E,F )2

s

)−M

‖f‖L2(F )

which is the desired conclusion.

�

Lemma 2.15. Let M ∈ R
∗
+ and β > 0 such that either M ∈ N or β ≥ 1. Define the Littlewood-Paley functional Gβ

on L2(Γ) by

Gβf(x) =





∑

l≤1

l2β−1|∆βP l−1f(x)|2




1
2

∀x ∈ Γ.

Then there exists CM > 0 such that for all sets E,F ⊂ Γ, all functions f supported in F and all s ∈ N, one has

∥

∥Gβ(s∆)Mf
∥

∥

L2(E)
≤ CM

(

d(E,F )2

s

)−M

‖f‖L2.

Proof: The proof is similar to the one of Lemma 2.14. Notice that sup
t∈[[0,Ms]]

Λ(t) is replaced by Λ := Λ(0). Then the end

of the calculus is the same provided that η − M ≥ 0, which is the case under our assumption on M and β. See
also [17, Lemma 3.3]. �

Lemma 2.16. Let M ∈ N. Then there exists CM > 0 such that for all sets E,F ⊂ Γ, all f supported in F and all
s ∈ N, one has

∥

∥

∥L 1
2
(I − (I + s∆)−1)M+ 1

2 f
∥

∥

∥

L2(E)
≤ CM

(

1 +
d(E,F )2

s

)−M− 1
2

‖f‖L2.
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Proof: Since L 1
2

and (I − (I + s∆)−1)M+ 1
2 are L2-bounded (uniformly in s) and without loss of generality, we can

assume that s ≤ d(E,F )2.

We use the following computation,

(I + s∆)−M− 1
2 f = ((1 + s)I − sP )−M− 1

2 = (1 + s)−M− 1
2

(

I − s

1 + s
P

)−M− 1
2

f

= (1 + s)−M− 1
2

∑

k≥0

ak

(

s

1 + s

)k

P kf

(25)

where
∑

akz
k is the Taylor series of the function (1 − z)−M− 1

2 and the convergence holds in L2(Γ).

By the use of the generalized Minkowski inequality, we get
∥

∥

∥L 1
2
(I − (I + s∆)−1)M+ 1

2 f
∥

∥

∥

L2(E)

≤ sM+ 1
2

(1 + s)M+ 1
2

∑

k≥0

ak

(

s

1 + s

)k




∑

l≥1

∑

x∈E

m(x)

V (x,
√
l)

∑

y∈B(x,
√

l)

m(y)|∆1+MP k+l−1f(y)|2




1
2

≤ sM+ 1
2

(1 + s)M+ 1
2

∑

k≥0

ak

(

s

1 + s

)k




∑

l≥1

∑

y∈Dl(E)

m(y)|∆1+MP k+l−1f(y)|2
∑

x∈B(y,
√

l)

m(x)

V (x,
√
l)





1
2

.
sM+ 1

2

(1 + s)M+ 1
2

∑

k≥0

ak

(

s

1 + s

)k




∑

l≥1

‖∆1+MP k+l−1f‖2
L2(Dl(E))





1
2

.

When l < d2(E,F )
4 , notice that d(F,Dl(E)) & d(E,F ) so that

‖∆1+MP k+l−1f‖L2(Dl(E)) .
exp(−cd2(E,F )

l+k )

(l + k)M+1
‖f‖L2. (26)

Moreover, when l ≥ d2(E,F )
4 , one has

‖∆1+MP k+l−1f‖L2(Dl(E)) ≤ ‖∆1+MP k+l−1f‖L2

.
1

(l + k)M+1
‖f‖L2

.
exp(−cd2(E,F )

l+k )

(l + k)M+1
‖f‖L2.

(27)

As a consequence

∥

∥

∥L 1
2
(I − (I + s∆)−1)M+ 1

2 f
∥

∥

∥

L2(E)
.

sM+ 1
2

(1 + s)M+ 1
2

‖f‖L2

∑

k≥0

ak

(

s

1 + s

)k




∑

l≥1

exp(−cd2(E,F )
l+k )

(l + k)2(M+1)





1
2

.
sM+ 1

2

(1 + s)M+ 1
2

‖f‖L2

∑

k≥0

ak

(

s

1 + s

)k




∑

n≥1

exp(−cd2(E,F )
n )

n2(M+1)





1
2

.
sM+ 1

2

d(E,F )2M+1

1

(1 + s)M+ 1
2

‖f‖L2

∑

k≥0

ak

(

s

1 + s

)k

=

(

s

d(E,F )2

)M+ 1
2

(1 + s(1 − 1))−M− 1
2 ‖f‖L2

=

(

s

d(E,F )2

)M+ 1
2

‖f‖L2.

�

21



Let us now recall a result that can be found in [17], Theorem 1.4.

Proposition 2.17. Assume that (Γ, µ) satisfy (UE). Let K > 0 and j ∈ N. There exist C, c > 0 such that for all sets
E,F ∈ Γ and all x0 ∈ Γ all l ∈ N

∗ satisfying

sup
y∈F

d(x0, y) ≤ Kd(E,F ) (28)

or
sup
y∈F

d(x0, y) ≤ K
√
l (29)

and all functions f supported in F , there holds

‖∆jP l−1f‖L2(E) ≤ C

lj
1

V (x0,
√
l)

1
2

e−c
d(E,F )2

l ‖f‖L1(F )

and

‖∇∆jP l−1f‖L2(E) ≤ C

lj+ 1
2

1

V (x0,
√
l)

1
2

e−c
d(E,F )2

l ‖f‖L1(F ).

Lemma 2.18. Assume that (Γ, µ) satisfy (UE). For all M ∈ N
∗ and all β > 0, there exists CM > 0 such that for all

disjoint sets E,F ∈ Γ and all x0 satisfying (28), all f supported in F and all s ∈ N
∗, one has

∥

∥Lβ(I − P s)Mf
∥

∥

L2(E)
≤ CM

V (x0, d(E,F ))
1
2

(

d(E,F )2

s

)−M

‖f‖L1.

Proof: The proof of this Lemma is similar to the one of Lemma 2.14 and we only indicate the main changes.

When l < d(E,F )2

4 , replace first (23) by

‖∆1+ηP k+l+t−1f‖L2(Dl(E)) .
1

V (x0,
√
k + l + t)

1
2

exp
(

−cd(E,F )2

l+k+t

)

(l + k + t)(1+η)
‖f‖L1

.
lM−η

V (x0, d(E,F ))
1
2

exp
(

−cd(E,F )2

l+k+t

)

(l + k + t)1+M
‖f‖L1

(30)

where the second line holds because M − η ≤ 0 and the first one holds by Proposition 2.17. Indeed, there exists
K > 0 such that

sup
y∈F

d(x0, y) ≤ Kd(E,F ).

Thus, x0, Dl(E) and F satisfy (28) with constant 4K .

When l ≥ d(E,F )2

4 , replace also (24) by

‖∆1+ηP k+l+t−1f‖L2(Dl(E)) .
1

V (x0,
√
k + l + t)

1
2

1

(k + l + t)1+η
‖f‖L1

.
lM−η

V (x0, d(E,F ))
1
2

exp
(

−cd(E,F )2

l+k+t

)

(k + l + t)1+M
‖f‖L1

(31)

where the first line follows from Proposition 2.17, since x0, F and k+ l+ t satisfy (29), and the second line to the
facts that k + l & d(E,F )2 and M − η ≤ 0. �

Lemma 2.19. Assume that (Γ, µ) satisfy (UE). For all M > 0 , there exists CM such that for all sets E,F ∈ Γ and
all x0 satisfying (28), all f supported in F and all s ∈ N

∗, one has

∥

∥

∥L 1
2
(I − (I + s∆)−1)M+ 1

2 f
∥

∥

∥

L2(E)
≤ CM

V (x0, d(E,F ))
1
2

(

d(E,F )2

s

)−M− 1
2

‖f‖L1.
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Proof: The proof of this Lemma is similar to the one of Lemma 2.16 and we only indicate the main changes.

When l < d(E,F )2

4 , replace (26) by

‖∆1+MP k+l−1f‖L2(Dl(E)) .
1

V (x0,
√
k + l)

1
2

exp
(

−cd(E,F )2

l+k

)

(l + k)(1+M)
‖f‖L1

.
1

V (x0, d(E,F ))
1
2

exp
(

−cd(E,F )2

l+k

)

(l + k)1+M
‖f‖L1

(32)

where the first line holds due to Lemma 2.17 since x0, Dl(E) and F satisfy (28).

When l ≥ d(E,F )2

4 , replace also (27) by

‖∆1+MP k+l−1f‖L2(Dl(E)) .
1

V (x0,
√
k + l)

1
2

1

(k + l)1+M
‖f‖L1

.
1

V (x0, d(E,F ))
1
2

exp
(

−cd(E,F )2

l+k

)

(k + l)1+M
‖f‖L1

(33)

where the second line follows from Lemma 2.17, since x0, F and k + l + t satisfy (29), and the third line to the
fact that k + l & d(E,F )2. �

3 BMO spaces

3.1 Dense sets in Hardy spaces

Lemma 3.1. Let M ∈ N and κ ∈ {1, 2}.
For all ǫ ∈ (0,+∞), we have the following inclusion

MM,ǫ
0 (Γ) →֒ H1

BZκ,M,∞(Γ)

and for all φ ∈ MM,ǫ
0 (Γ),

‖φ‖H1
BZκ,M,∞

≤ CM,ǫ‖φ‖MM,ǫ

0
.

Proof: Let φ in MM,ǫ
0 (Γ). Then there exists ϕ ∈ L2(Γ) such that φ = ∆Mϕ and for all j ≥ 1,

‖ϕ‖L2(Cj(B0))2
jǫ . ‖φ‖MM,ǫ

0
.

Observe that

ϕ(x) =
∑

y∈Γ

ay

1l{y}(x)

m(y)
∀x ∈ Γ (34)

where ay = ϕ(y)m(y). In order to prove that φ ∈ H1
BZκ,M,∞, it suffices to prove

(i) for every y ∈ Γ, ∆M 1l{y}
m(y) is, up to a harmless multiplicative constant, a (BZκ,M)-atom,

(ii)
∑

y∈Γ

|ay| . ‖φ‖MM,ǫ
0

,

(iii) φ =
∑

y∈Γ

ay∆M 1l{y}
m(y)

where the convergence holds in L1(Γ).

It is easy to check that ∆M 1l{y}
m(y) is a (BZ1,M)-atom associated with s = 1, (1, . . . , 1) and the ball B(y, 1). When

κ = 2, notice that

∆M 1l{y}
m(y)

=
(

I − (I + (M2 + 1)∆)−1
)M
(

I + (M2 + 1)∆

M2 + 1

)M 1l{y}
m(y)

.
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Moreover,
(

I+(M2+1)∆
M2+1

)M 1l{y}
m(y) is supported in B(y,M + 1) and

∥

∥

∥

∥

∥

(

I + (M2 + 1)∆

M2 + 1

)M
1l{y}
m(y)

∥

∥

∥

∥

∥

L2

≤
(

2M2 + 3

M2 + 1

)M ∥

∥

∥

∥

1l{y}
m(y)

∥

∥

∥

∥

L2

.
1

m(y)
1
2

.
1

V (y,M + 1)
1
2

.

For point (ii), remark that

∑

y∈Γ

|ay| =
∑

j≥1

∑

y∈Cj(B0)

|ay|

≤
∑

j≥1





∑

y∈Cj(B0)

|ay|2
m(y)





1
2

(m(Cj(B0)))
1
2

.
∑

j≥1

V (2jB0)
1
2





∑

y∈Cj(B0)

|ϕ(y)|2m(y)





1
2

=
∑

j≥1

V (2jB0)
1
2 ‖ϕ‖L2(Cj(B0))

≤
∑

j≥1

2−jǫ‖φ‖MM,ǫ

0

. ‖φ‖MM,ǫ
0
.

For point (iii), notice that (ii) implies the L1-convergence in (34). The result is then a consequence of the L1-
boundedness of ∆. �

Lemma 3.2. Let M ∈ N
∗ and let B ⊂ Γ be a ball. For all s ∈ N

∗, define As as either (I − P s1) . . . (I − P sM ) with

(s1, . . . , sM ) ∈ [[1, 2s]]M , or (I − (I + s∆)−1)M . If ϕ ∈ L2(B) then, for all s ∈ N
∗, ǫ > 0 and M ∈ N

∗, Asϕ ∈ MM,ǫ
0 (Γ).

As a consequence, if f ∈ EM for some M ∈ N, then for all s ∈ N we can define Asf as a linear form on finitely
supported functions and

Asf ∈ L2
loc(Γ)

Remark 3.3. In the case of graphs, a distribution g is in L2
loc(Γ) means that we can write g(x) for all x ∈ Γ, that is g

is a function. On the contrary, notice that each function on Γ belongs to L2
loc(Γ) and we use then the notation L2

loc(Γ)
only by analogy to the case of continuous spaces.

Proof: Fix ǫ > 0 and let ϕ ∈ L2(B) for some ball B and k ∈ N such that B ⊂ 2k+2B0. The uniform L2-boundedness
of As(s∆)−M yields

sup
j∈[[1,k+1]]

2jǫV (2jB0)
1
2

∥

∥As∆−Mϕ
∥

∥

L2(Cj(B0))
. sM 2kǫV (2kB0)

1
2 ‖ϕ‖L2(B).

Moreover, Proposition 2.6 implies, for j ≥ k + 2

2jǫV (2jB0)
1
2

∥

∥As∆−Mϕ
∥

∥

L2(Cj(B0))
. sM2jǫV (2jB0)

1
2 e

−c 2j
√

s ‖ϕ‖L2(B)

. sM+ ǫ
2 +

d0
4 +1V (B0)

1
2 ‖ϕ‖L2(B)

where d0 is given by Proposition 1.5. One concludes that Asϕ ∈ MM,ǫ
0 (Γ) and

‖Asϕ‖MM,ǫ

0
. sM+ ǫ

2 +
d0
4 +12kǫV (2kB0)

1
2 ‖ϕ‖L2(B). (35)
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Let us prove the second claim of the lemma. Let ǫ such that f ∈ (MM,ǫ
0 (Γ))∗. For all balls B and all functions ϕ

supported in B, one has

|〈Asf, ϕ〉| := |〈f,Asϕ〉|
. ‖f‖(MM,ǫ

0 )∗ ‖Asϕ‖MM,ǫ
0

. ‖f‖(MM,ǫ

0 )∗‖ϕ‖L2(B),

which proves the lemma since the estimate works for any ball B and any ϕ ∈ L2(B). �

Definition 3.4. Let κ ∈ {1, 2} and M ∈ N
∗. Define H

1
BZκ,M,ǫ(Γ) as the subset of H1

BZκ,M,ǫ(Γ) made of the functions

g that can be written as g =
∑N

i=0 λiai where λi ∈ R and ai is a (BZκ,M, ǫ)-molecule and

N
∑

i=0

|λi| . 2‖g‖H1
A,ǫ
.

Lemma 3.5. For κ ∈ {1, 2} and M ∈ N
∗, the set H

1
BZκ,M,ǫ(Γ) is dense in H1

BZκ,M,ǫ(Γ).

Remark 3.6. This lemma is identical to Lemma 4.5 in [5]. However, we present here a different proof.

Proof: Let κ ∈ {1, 2} and M ∈ N
∗.

Let f ∈ H1
BZκ,M,ǫ(Γ). There exist a numerical sequence (λi)i∈N ∈ ℓ1(N) and a sequence (ai)i∈N of (BZκ,M, ǫ)-

molecules such that f =
∑

λiai and
∑

i∈N

|λi| ≤ 3

2
‖f‖H1

BZκ,M,ǫ
.

Let η ∈
(

0, 1
4

)

. There exists N ∈ N such that
∑

i>N |λi| ≤ η‖f‖H1
BZκ,M,ǫ

. We set g =

N
∑

i=0

λiai. Then

‖f − g‖H1
BZκ,M,ǫ

=

∥

∥

∥

∥

∥

∑

i>N

λiai

∥

∥

∥

∥

∥

H1
BZκ,M,ǫ

≤
∑

i>N

|λi| ≤ η‖f‖H1
BZκ,M,ǫ

and, therefore ‖f‖H1
BZκ,M,ǫ

≤ ‖g‖H1
BZκ,M,ǫ

+ η‖f‖H1
BZκ,M,ǫ

, which implies

N
∑

i=0

|λi| ≤ 3

2
‖f‖H1

BZκ,M,ǫ

≤ 3

2(1 − η)
‖g‖H1

BZκ,M,ǫ

≤ 2‖g‖H1
BZκ,M,ǫ

.

�

Lemma 3.7. Let κ ∈ {1, 2} and M ∈ N. Let 0 < ǫ < ǭ ≤ +∞. Then H
1
BZκ,M,ǭ(Γ) ⊂ MM,ǫ

0 .

Proof: Since MM,ǫ
0 is a vector space, it is enough to prove that for each (BZκ,M, ǭ)-molecule a, one has a ∈ MM,ǫ

0 .

Notice that the case ǭ = ∞ is proven in Lemma 3.2. Let ǭ < +∞ and a = Asb be a (BZκ,M, ǭ)-molecule associated
with s ∈ N

∗ and the ball B of radius
√
s. For all j ≥ 1, Corollary A.2 provides a covering of Cj(B) with balls of

radius
√
s and with bounded overlapping. We label these balls as (Bi)i∈Ij

. . Consequently,

‖a‖MM,ǫ

0
≤
∑

j≥1

‖As(b1lCj(B))‖MM,ǫ

0

≤
∑

j≥1

∑

i∈Ij

‖As(b1lBi
)‖MM,ǫ

0
.
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Moreover, d(Bi, B0) . 2j+k where k is such that B ⊂ 2k+2B0. Thus Lemma 3.2 implies

‖a‖MM,ǫ

0
≤ Cs

∑

j≥1

∑

i∈Ij

2(j+k)ǫV (2j+kB0)
1
2 ‖b‖L2(Bi)

≤ Cs

∑

j≥1

2(j+k)ǫV (2j+kB0)
1
2 ‖b‖L2(C̃j(B))

≤ Cs

∑

j≥1

2(j+k)ǫ

2jǭ

(

V (2j+kB0)

V (2j−1B)

)

1
2

≤ Cs2k(ǫ+ d
2 )
∑

j≥1

2j(ǫ−ǭ)

< +∞

where C̃j denote Cj(B) ∪ Cj−1(B) ∪ Cj+1(B), and where we use the definition of a (BZκ,M, ǭ)-molecule for the
third line and the fact that 2j+kB0 ⊂ 2j+k+2B. �

3.2 Inclusions between BMO spaces

Lemma 3.8. There exists C > 0 such that for all s ∈ N
∗, all M -tuples (s1, . . . , sM ) ∈ [[s, 2s]]M , all balls B of radius√

s and all functions f ∈ BMOBZ2,M , one has

‖(I − P s1 ) . . . (I − P sM )f‖L2(B) ≤ CV (B)
1
2 ‖f‖BMOBZ2,M

.

Proof: For s ∈ N
∗, the operator Qs stands for

Qs :=
1

s

s−1
∑

k=0

P k = (I − P s)(s∆)−1.

For all s ∈ N
∗, all s0 ∈ [[s, 2s]] and all f ∈ E0, one has

(I − P s0 )f = (I − P s0 )(I + s∆)(I + s∆)−1f

=

(

1

s

s0−1
∑

k=0

P kf

)

(I + s∆)s∆(I + s∆)−1f

=
[s0

s
Qs0 + (I − P s0)

]

(I − (I + s∆)−1)f

Recall that all terms make sense and are in L2
loc(Γ), according to Lemma 3.2. As a consequence, for (s1, . . . , sM ) ∈

[[s, 2s]]M , one has

(I − P s1) . . . (I − P sM )f =

M
∏

i=1

[si

s
Qsi

+ (I − P si)
]

(I − (I + s∆)−1)Mf (36)

Since si

s ≤ 2, Proposition 2.6 yields that

M
∏

i=1

[si

s
Qsi

+ (I − P si )
]

satisfies Gaffney-Davies estimates. Hence,

‖(I − P s1) . . . (I − P sM )f‖L2(B) ≤
∑

j≥1

∥

∥

∥

∥

∥

M
∏

i=1

[si

s
Qsi

+ (I − P si )
]

[

1lCj(B)(I − (I + s∆)−1)Mf
]

∥

∥

∥

∥

∥

L2(B)

.
∑

j≥1

e−c4j ‖(I − (I + s∆)−1)Mf‖L2(Cj(B))

.
∑

j≥1

e−c4j ‖(I − (I + s∆)−1)Mf‖L2(2j+1B)

.
∑

j≥1

e−c4j

V (2j+1B)
1
2 ‖f‖BMOBZ2,M

. V (B)
1
2 ‖f‖BMOBZ2,M

where the last line holds thanks to Proposition 1.5. �
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Corollary 3.9. Let M ∈ N
∗. Then BMOBZ2,M (Γ) ⊂ BMOBZ1,M (Γ). More precisely, for all f ∈ BMOBZ2,M (Γ),

‖f‖BMOBZ1,M
. ‖f‖BMOBZ2,M

.

Proof: Immediate consequence of Lemma 3.8. �

We want now to prove the converse inclusion, that is BMOBZ1,M (Γ) ⊂ BMOBZ2,M (Γ). We begin with the next
proposition, inspired from Proposition 2.6 in [15].

Proposition 3.10. Let M ∈ N
∗. There exists C > 0 only depending on Γ and M such that for all f ∈ BMOBZ1,M (Γ),

for all balls B = B(x0,
√
s) and all integers (a, b1, . . . , bM ) ∈ N × [[0, 2s]]M ,

‖P a(I − P b1 ) . . . (I − P bM )f‖L2(B) ≤ Ca
d0+1

2
s V (B)

1
2 ‖f‖BMOBZ1,M

where as = max
{

1, a
s

}

.

Remark 3.11. We can replace ad0+1
s by ad0+ǫ

s with ǫ > 0 in the conclusion of the Proposition 3.10 (in this case, C
depends on ǫ).

Proof: (Proposition 3.10)

(1) Let us prove the proposition when s ≤ min
i∈[[1,M ]]

bi. The case where a = 0 is a consequence of the definition of

BMOBZ1,M and will therefore be skipped. Let (Bi)i∈Ij
be the covering of Cj(B) provided by Corollary A.2.

Then,

‖P a(I − P b1 ) . . . (I − P bM )f‖L2(B)

. ‖(I − P b1) . . . (I − P bM )f‖L2(C1(B)) +
∑

j≥2

exp

(

−c4jb

a

)

‖(I − P b1 ) . . . (I − P bM )f‖L2(Cj(B))

≤ ‖(I − P b1) . . . (I − P bM )f‖L2(4B) +
∑

j≥2

exp

(

−c4jb

a

)

‖(I − P b1 ) . . . (I − P bM )f‖L2(2j+1B)

. V (4B)
1
2 ‖f‖BMOBZ1,M

+
∑

j≥2

∑

i∈Ij

exp

(

−c4jb

a

)

‖(I − P b1 ) . . . (I − P bM )f‖L2(Bi)

. V (B)
1
2 ‖f‖BMOBZ1,M



1 +
∑

j≥2

2jd0+1 exp

(

−c4jb

a

)





. V (B)
1
2 ‖f‖BMOBZ1,M

a
d0+1

2
s

(37)

where we use the Davies-Gaffney estimates for the first line and the doubling property for the last but one
line.

(2) General case. For each bi < s, write

(I − P bi) = (I − P 2s) − P bi (I − P 2s−bi).

Hence, P a(I − P b1) . . . (I − P bM ) can be written as a sum of terms

P ã(I − P b̃1 ) . . . (I − P b̃M )

where b̃i ∈ [[s, 2s]] and ã ∈ [[a, a+Ms]]. The general case can be then deduced from the previous case.

�

Proposition 3.12. Let M ∈ N
∗. There exists C > 0 such that for all balls B of radius

√
s, all integers b ∈ [[0, 2s]] and

all f ∈ BMOBZ1,M , one has

‖(I − (I + b∆)−1)Mf‖L2(B) ≤ CV (B)
1
2 ‖f‖BMOBZ1,M

.
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Proof: Let ϕ ∈ L2(Γ) supported in B. Recall that Lemma 3.2 states that ϕ, (I − P k1 ) . . . (I − P kM )ϕ and (I − (I +

b∆)−1)Mϕ are in MM,ǫ
0 for all ǫ > 0. Moreover, for all b ∈ N, one has

(I + b∆)−1ϕ = (1 + b)−1

(

I − b

1 + b
P

)−1

ϕ

=

+∞
∑

k=1

(

1

1 + b

)(

b

1 + b

)k

P kϕ

where the convergence holds in L2(Γ). Consequently,

(I − (I + b∆)−1)ϕ =

+∞
∑

k=1

(

1

1 + b

)(

b

1 + b

)k

(I − P k)ϕ

and thus,

(I − (I + b∆)−1)Mϕ =

(

1

1 + b

)M +∞
∑

k=1

(

b

1 + b

)k
∑

k1+···+kM =k

(I − P k1 ) . . . (I − P kM )ϕ

where the convergence still holds in L2(Γ).

In order to prove that the convergence holds in MM,ǫ
0 for all ǫ > 0, it suffices to show that

S :=

(

1

1 + b

)M +∞
∑

k=1

(

b

1 + b

)k
∑

k1+···+kM =k

‖(I − P k1) . . . (I − P kM )ϕ‖MM,ǫ
0

< +∞.

Indeed, according to (35), one has

S .

(

1

1 + b

)M +∞
∑

k=1

(

b

1 + b

)k
∑

k1+···+kM =k

k
ǫ
2 + d

4 +1‖ϕ‖L2(B)

.

+∞
∑

k=1

(k + 1)M+ ǫ
2 + d

4

(1 + b)M

(

b

1 + b

)k

‖ϕ‖L2(B)

. b
ǫ
2 + d

4 +2
+∞
∑

k=1

1

(1 + k)2
‖ϕ‖L2(B)

< +∞
where the third line comes from Lemma B.1.

For f ∈ EM , there exists ǫ > 0 such that (MM,ǫ
0 )∗. Moreover, Lemma 3.2 states that (I − (I + s∆)−1)Mf and

(I − P k1 ) . . . (I − P kM )f (for all (k1, . . . , kM ) ∈ N
M ) are in L2

loc(Γ). As a consequence,

‖(I − (I + b∆)−1)Mf‖L2(B) = sup
‖ϕ‖2=1

Supp ϕ⊂B

|
〈

f, (I − (I + b∆)−1)Mϕ
〉

|

≤
(

1

1 + b

)M +∞
∑

k=1

(

b

1 + b

)k
∑

k1+···+kM =k

sup
‖ϕ‖2=1

Supp ϕ⊂B

|
〈

f, (I − P k1) . . . (I − P kM )ϕ
〉

|

=

(

1

1 + b

)M +∞
∑

k=1

(

b

1 + b

)k
∑

k1+···+kM =k

‖(I − P k1) . . . (I − P kM )f‖L2(B)

where the pairing is between MM,ǫ
0 and its dual. Therefore

‖(I − (I + b∆)−1)Mf‖L2(B) .

(

1

1 + b

)M +∞
∑

k=1

(

b

1 + b

)k
∑

k1+···+kM =k

‖(I − P k1) . . . (I − P kM )f‖L2(B)

≤
(

1

1 + b

)M b
∑

k=1

(

b

1 + b

)k
∑

k1+···+kM =k

‖(I − P k1) . . . (I − P kM )f‖L2(B)

+

(

1

1 + b

)M ∞
∑

k=b+1

(

b

1 + b

)k
∑

k1+···+kM =k

‖(I − P k1) . . . (I − P kM )f‖L2(B)

:= I1 + I2.
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We estimate the first term with Proposition 3.10 and Lemma B.1:

I1 .

b
∑

k=1

(1 + k)M−1

(1 + b)M

(

b

1 + b

)k

‖f‖BMOBZ1,M
V (B)

1
2

. (1 + b)−1
b−1
∑

k=0

‖f‖BMOBZ1,M
V (B)

1
2

. ‖f‖BMOBZ1,M
V (B)

1
2 .

We turn now to the estimate of the second term. One has, using Proposition 3.10 and Lemma B.1 again,

I2 .

(

1

1 + b

)M ∞
∑

k=b+1

(

b

1 + b

)k
∑

k1+···+kM =k

‖(I − P k1 ) . . . (I − P kM )f‖
L2(

√
k
b

B)

.

∞
∑

k=b+1

1

1 + k

(

1 + k

1 + b

)M (

b

1 + b

)k

‖f‖BMOBZ1,M
V

(
√

k

b
B

)
1
2

.

∞
∑

k=b+1

1

1 + k

(

1 + k

1 + b

)M+
d0
2 +1(

b

1 + b

)k

‖f‖BMOBZ1,M
V (B)

1
2

.

∞
∑

k=b+1

1

1 + k

(

1 + k

1 + b

)−1

‖f‖BMOBZ1,M
V (B)

1
2

. ‖f‖BMOBZ1,M
V (B)

1
2 ,

where we used Proposition 1.5 for the third line. �

Corollary 3.13. Let M ∈ N. Then BMOBZ1,M (Γ) ⊂ BMOBZ2,M (Γ). More precisely, for all f ∈ BMOBZ1,M (Γ),

‖f‖BMOBZ2,M
. ‖f‖BMOBZ1,M

.

Proof: Immediate consequence of Proposition 3.12. �

3.3 Duals of Hardy spaces

Proposition 3.14. Let κ ∈ {1, 2} and M ∈ N
∗.

Let ℓ be a bounded linear functional on H1
BZκ,M,∞(Γ). Then ℓ actually belongs to BMOBZκ,M (Γ) ∩ FM and for all

g ∈ H
1
BZκ,M,∞(Γ), there holds

ℓ(g) = 〈ℓ, g〉 (38)

where the pairing is between MM,ǫ
0 (Γ) and its dual. Moreover,

‖ℓ‖BMOBZκ,M
. ‖ℓ‖(H1

BZκ,M,∞)∗

Proof: Let κ ∈ {1, 2} and M ∈ N.

Let ℓ in
[

H1
BZκ,M,∞(Γ)

]∗
. According to Lemma 3.1, ℓ ∈ ⋂ǫ>0

[

MM,ǫ
0

]∗
= FM . The following two claims

(i) H
1
BZκ,M,∞(Γ) ⊂ MM,ǫ

0 ,

(ii) H
1
BZκ,M,∞(Γ) is dense in H1

BZκ,M,∞(Γ),

are respectively a consequence of Lemma 3.7 and of Lemma 3.5. They imply that (38) makes sense and uniquely
describes ℓ.

It remains to check the last claim, that is

‖ℓ‖BMOA
. ‖ℓ‖(H1

BZκ,M,∞)∗
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Fix s ∈ N
∗, a M -tuple (s1, . . . , sM ) ∈ [[s, 2s]]M , and a ball B of radius

√
s. We wrote As for (I−P s1) . . . (I−P sM )

if κ = 1 and for (I − (I + s∆)−1)M if κ = 2.

Let ϕ ∈ L2(B) with norm 1. Then
1

V (B)
1
2

Asϕ

is a (BZκ,M)-atom. Thus,
∥

∥

∥

∥

1

V (B)
1
2

Asϕ

∥

∥

∥

∥

H1
BZκ,M,∞

≤ 1,

i.e.,

1

V (B)
1
2

| 〈Asℓ, ϕ〉 | =
1

V (B)
1
2

| 〈ℓ, Asϕ〉 |

. ‖ℓ‖(H1
BZκ,M,∞)∗ .

Lemma 3.2 provides that Asℓ ∈ L2
loc(Γ). Taking the supremum over all ϕ supported in B, we obtain

(

1

V (B)

∑

x∈B

|Asℓ(x)|2m(x)

)
1
2

. ‖ℓ‖(H1
BZκ,M,∞)∗ .

Finally, taking the supremum over all s ∈ N
∗, all M -tuples (s1, . . . , sM ) ∈ [[s, 2s]]M and all balls B of radius

√
s

leads us to the result. �

Proposition 3.15. Let κ ∈ {1, 2} and M ∈ N
∗.

Let ǫ > 0 and f ∈ BMOBZκ,M (Γ) ∩ FM . The linear functional given by

ℓ(g) := 〈f, g〉

initially defined on H
1
BZκ,M,2ǫ(Γ), and where the pairing is between MM,ǫ

0 and its dual, has a unique bounded extension

to H1
BZκ,M,2ǫ(Γ) with

‖ℓ‖(H1
BZκ,M,2ǫ

)∗ . ‖f‖BMOBZκ,M (Γ).

Proof: Let κ ∈ {1, 2} and M ∈ N
∗. In the proof, As will denote (I−P s1 ) . . . (I−P sM ) (for some (s1, . . . , sM ) ∈ [[s, 2s]]M )

or (I − (I + s∆)−1)M , depending whether κ is equal to 1 or 2.

Let us prove that for every (BZκ,M, 2ǫ)-molecule a, one has

| 〈f, a〉 | . ‖f‖BMOBZκ,M
. (39)

Since f ∈ FM , then f ∈
(

MM,ǫ
0

)∗
. In particular, Lemma 3.2 provides that Asf ∈ L2

loc(Γ). Thus, if a = Asb is a

(BZκ,M, 2ǫ)-molecule associated with a ball B of radius
√
s, we may write

| 〈f, a〉 | =

∣

∣

∣

∣

∣

∑

x∈Γ

Asf(x)b(x)m(x)

∣

∣

∣

∣

∣

≤
∑

j≥1

‖Asf‖L2(Cj(B))‖b‖L2(Cj(B))

≤
∑

j≥1

2−2jǫV (2jB)− 1
2 ‖Asf‖L2(2j+1B)

.
∑

j≥1

2−2jǫV (2jB)− 1
2V (2j+1B)

1
2 ‖f‖BMOBZκ,M

. ‖f‖BMOBZκ,M
,

where we used for the last but one line Proposition 3.10 (if κ = 1) or Proposition 3.8 and Corollary 3.9 (if κ = 2).

Our next step is to show that for every g ∈ H
1
BZκ,M,2ǫ, we have

| 〈f, g〉 | . ‖g‖H1
BZκ,M,2ǫ

‖f‖BMOBZκ,M
.
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Indeed, let N ∈ N, (λi)i ∈ [[0, N ]] ∈ R
N and (ai = Asi

bi)i∈[[0,N ]] a sequence of (BZκ,M, 2ǫ)-molecules that satisfies
g =

∑

λiai and
∑ |λi| . 2‖g‖H1

BZκ,M,2ǫ
, then

|ℓ (g)| ≤
N
∑

i=0

|λi| |ℓ(ai)|

. ‖f‖BMOBZκ,M

N
∑

i=0

|λi|

. ‖f‖BMOBZκ,M
‖g‖H1

BZκ,M,2ǫ
.

Since H
1
BZκ,M,2ǫ is dense in H1

BZκ,M,2ǫ, ℓ has an unique bounded extension that satisfies

‖ℓ‖(H1
BZκ,M,2ǫ

)∗ . ‖f‖BMOBZκ,M
.

�

Proposition 3.16. Let κ ∈ {1, 2} and M ∈ N
∗.

Let f ∈ BMOBZκ,M (Γ) and let ǫ > 0 such that f ∈ (MM,ǫ
0 (Γ))∗. The linear functional given by

ℓ(g) := 〈f, g〉

initially defined on H
1
BZκ,M,∞(Γ) which is a dense subset of MM,ǫ

0 , and where the pairing is that between MM,ǫ
0 and

its dual, has a unique extension to H1
BZκ,M,∞(Γ) with

‖ℓ‖(H1
BZκ,M,∞)∗ . ‖f‖BMOBZκ,M

.

Proof: Same proof than Proposition 3.15 with obvious modifications. The only difference is: in Proposition 3.15, ǫ > 0
is given by the Hardy space H1

BZκ,M,2ǫ and in Proposition 3.16, ǫ > 0 is given by the functional f ∈ EM . �

We turn now to the proof of Theorem 1.35.

Proof: Let κ ∈ {1, 2} and M ∈ N
∗.

Proposition 3.14 and Corollary 3.16 provide the continuous embeddings

(H1
BZκ,M,∞)∗ →֒ BMOBZκ,M ∩ FM →֒ BMOBZκ,M →֒ (H1

BZκ,M,∞)∗.

As a consequence, BMOBZκ,M is the dual space of H1
BZκ,M,∞ and is actually included in FM .

Besides, Propositions 3.14 and 3.16 yield, for any ǫ > 0

(H1
BZκ,M,∞)∗ →֒ BMOBZκ,M ∩ FM →֒ (H1

BZκ,M,ǫ)
∗.

Since the inclusion (H1
BZκ,M,ǫ)

∗ →֒ (H1
BZκ,M,∞)∗ is obvious, we obtain that BMOBZκ,M ∩ FM = BMOBZκ,M is

also the dual space of H1
BZκ,M,ǫ.

The last claim of the Theorem, that is for a fixed M ∈ N
∗, the spaces H1

BZκ,M,ǫ(Γ) for κ ∈ {1, 2} and ǫ ∈ (0,+∞]
are all equivalent, is only a consequence of the proposition 3.17 below. Indeed, for m ∈ N

∗ and κ ∈ {1, 2}, the
inclusion H1

BZκ,M,ǫ ⊂ H1
BZκ,M,η when 0 < η < ǫ ≤ +∞ is obvious and then Proposition 3.17 yields the equality

between the spaces H1
BZκ,M,ǫ for ǫ ∈ (0,+∞], together with the equivalence of norms. It remains to check that,

for example, H1
BZ1,M,∞ ⊂ H1

BZ2,M,1. For this, notice first that similarly to (36), for a (BZ1,M)-atom a associated

with s ∈ N
∗, (s1, . . . , sm) ∈ [[s, 2s]]M , a ball B of radius

√
s and a function b ∈ L2(B), one has

a = (I − P s1) . . . (I − P sM )b

= (I − (I + s∆)−1)M
M
∏

i=1

[si

s
Qsi

+ (I − P si )
]

b.

We have to check that
∏M

i=1

[

si

s Qsi
+ (I − P si )

]

b satisfies, up to a multiplicative constant, the estimates given
by (ii) of the definition of a (BZ2,M, 1)-molecule. This calculus, which is a straightforward consequence of the
Gaffney estimates provided by Proposition 2.6, is left to the reader. �

31



Proposition 3.17. If (E, ‖.‖E) and (F, ‖.‖F ) are two Banach spaces with the same dual (G, ‖.‖G) and moreover if we
have the continuous inclusion E ⊂ F , then E = F with equivalent norms.

Proof: Let T be the linear operator defined by
T : e ∈ E 7→ e ∈ F.

T is bounded and its adjoint T ∗ is
T ∗ : g ∈ G 7→ g ∈ G,

that is the identity on G. Theorem 4.15 in [23] implies that E = F , and then, by the open mapping theorem, we
deduce that the norm of E is dominated by the norm of F . �

4 Inclusions between Hardy spaces

4.1 H1
BZ1,M,ǫ ∩ L2 ⊂ E1

quad,β: the case of functions

Proposition 4.1. Let ǫ > 0 , M ∈ (d0

4 ,+∞) ∩ N and β > 0. Then H1
BZ1,M,ǫ(Γ) ∩ L2(Γ) ⊂ E1

quad,β(Γ) and

‖f‖H1
quad,β

. ‖f‖H1
BZ1,M,ǫ

Proof: Let f ∈ H1
BZ1,M,ǫ ∩ L2(Γ). Then there exist (λi)i∈N ∈ ℓ1 and (ai)i∈N a sequence of (BZ1,M, ǫ)-molecules such

that f =
∑

λiai and
∑

i∈N

|λi| ≃ ‖f‖H1
BZ1,M,ǫ

.

First, since ‖P k‖1→1 ≤ 1 for all k ∈ N, the operators ∆β and then ∆βP l−1 are L1-bounded for β > 0 (see [11]).
Consequently,

∆βP l−1
∑

i∈N

λiai =
∑

i∈N

λi∆
βP l−1ai.

Since the space Γ is discrete, the L1-convergence implies the pointwise convergence, that is, for all x ∈ Γ,

∣

∣

∣

∣

∣

∆βP l−1
∑

i∈N

λiai(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i∈N

λi∆
βP l−1ai(x)

∣

∣

∣

∣

∣

≤
∑

i∈N

|λi|
∣

∣∆βP l−1ai(x)
∣

∣ .

From here, the estimate

‖Lβf‖L1 =

∥

∥

∥

∥

∥

Lβ

∑

i∈N

λiai

∥

∥

∥

∥

∥

L1

.
∑

i∈N

|λi|‖Lβai‖L1

is just a consequence of the generalized Minkowski inequality.

It remains to prove that there exists a constant C such that for all (BZ1,M, ǫ)-molecules a, one has

‖Lβa‖L1 ≤ C. (40)

Let s ∈ N
∗, (s1, . . . , sM ) ∈ [[s, 2s]]M and a ball B associated with the molecule a. By Hölder inequality and the

doubling property, we may write

‖Lβa‖L1 .

∞
∑

j=1

V (2jB)
1
2 ‖Lβa‖L2(Cj(B)). (41)

We will estimate now each term ‖Lβa‖L2(Cj(B)).

The result is then a consequence of Lemma 2.14 which can be reformulated as follows

‖Lβ(I − P s1 ) . . . (I − P sM )[f1lF ]‖L2(E) ≤ CM

(

1 +
d(E,F )2

s

)−M

‖f‖L2(F ). (42)
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Notice that

d(Ck(B), Cj(B)) ≃







0 if |j − k| ≤ 1
2j

√
s if k ≤ j − 2

2k√
s if k ≥ j + 2

.

Thus,

‖Lβa‖L2(Cj(B)) ≤
∑

k≥1

‖Lβ(I − P s1 ) . . . (I − P sM )[b1lCk(B)]‖L2(Cj(B))

.
∑

k≤j−2

4−jM ‖b‖L2(Ck(B)) +

j+1
∑

k=j−1

‖b‖L2(Ck(B)) +
∑

k≥j+2

4−kM ‖b‖L2(Ck(B))

.
∑

k≤j−2

4−jM 2−ǫkV (2kB)− 1
2 + 2−ǫjV (2jB)− 1

2 +
∑

k≥j+2

4−kM 2−ǫjV (2kB)− 1
2

. 2−ǭjV (2jB)− 1
2

where ǭ = min{ǫ, 2M − d0

2 }.

As a consequence, one has

‖Lβa‖L1 .
∑

j≥1

2−ǭj

(

V (2jB)

V (2jB)

)
1
2

< +∞.

�

Proposition 4.2. Let (Γ, µ) satisfying (UE), M ∈ N
∗, ǫ > 0 and β > 0. Then H1

BZ1,M (Γ) ∩ L2(Γ) ⊂ E1
quad,β(Γ) and

‖f‖H1
quad,β

. ‖f‖H1
BZ1,M,ǫ

Proof: As in the proof of Proposition 4.1, it remains to check that for all (BZ1,M, ǫ)-molecules a = (I − P s1 ) . . . (I −
P sM )b associated with s ∈ N, (s1, . . . , sM ) and B = B(xB , rB), one has

∞
∑

j=1

V (2jB)
1
2 ‖Lβa‖L2(Cj(B)) . 1.

The case j = 1 follows from the L2-boundedness of Lβ and of (I − P s)M , thus

‖Lβa‖L2(Cj(B)) . ‖a‖L2 .
1

V (B)
1
2

.

For the case j ≥ 2, we introduce C̃j(B) defined by

C̃j(B) =
⋃

1≤k≤j−2

Ck(B).

Check that C̃j(B), Cj(B), and xB satisfy (28), since d(C̃j(B), Cj(B)) & 2jrB . Thus, Lemma 2.18 yields

‖Lβa‖L2(Cj(B)) ≤ ‖Lβ(I − P s)M [b1lC̃j(B)]‖L2(Cj(B)) + ‖Lβ(I − P s)M [b1lΓ\C̃j(B)]‖L2(Cj(B))

.
4−jM

V (xB , 2jrB)
1
2

‖b‖L1(C̃j(B)) + ‖b‖L2(Γ\C̃j(B))

.
2−jǭ

V (2jB)
1
2

where ǭ = min{2M, ǫ}. Summing in j ≥ 1 ends the proof. �
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4.2 H1

BZ2,M+
1

2
,ǫ

∩ H2 ⊂ E1
quad,β: the case of 1-forms

Proposition 4.3. Let ǫ > 0 , M ∈ (d0

4 − 1
2 ,+∞) ∩ N. Then H1

BZ2,M+ 1
2

(TΓ) ∩H2(TΓ) ⊂ E1
quad, 1

2

(TΓ) and

‖f‖H1

quad, 1
2

. ‖f‖H1

BZ2,M+ 1
2

,ǫ

.

Proof: Let F ∈ H1
BZ2,M+ 1

2 ,ǫ
(TΓ) ∩ H2(TΓ). Then there exist (λi)i∈N ∈ ℓ1 and (ai)i∈N a sequence of (BZ2,M + 1

2 , ǫ)-

molecules such that F =
∑

λiai and
∑

i∈N

|λi| ≃ ‖f‖H1
BZ1,M,ǫ

.

First, by L1-boundedness of the operators P and d∗ (see Proposition 1.32) and by the Minkowski inequality, one
has

‖L 1
2
∆− 1

2 d∗F‖L1 =
∑

x∈Γ

m(x)





∑

l≥1

∑

y∈B(x,
√

l)

m(y)|P l−1d∗F (y)|2




1
2

=
∑

x∈Γ

m(x)





∑

l≥1

∑

y∈B(x,
√

l)

m(y)|P l−1d∗
∑

i∈N

λiai(y)|2




1
2

.
∑

i∈N

|λi|
∑

x∈Γ

m(x)





∑

l≥1

∑

y∈B(x,
√

l)

m(y)|P l−1d∗ai(y)|2




1
2

.

It remains to prove that there exists a constant C such that for all (BZ2,M + 1
2 , ǫ)-molecules a, one has

∑

x∈Γ

m(x)





∑

l≥1

∑

y∈B(x,
√

l)

m(y)|P l−1d∗ai(y)|2




1
2

. 1. (43)

Let a = d∆− 1
2 (I − (I + s∆)−1)M+ 1

2 b be a (BZ2,M + 1
2 , ǫ)-molecule associated with s ∈ N

∗ and the ball B. Since

d∗d∆− 1
2 = ∆

1
2 , (43) becomes

‖L 1
2
(I − (I + s∆)−1)M+ 1

2 b‖ . 1.

We end the proof as we did for Proposition 4.1, using Lemma 2.16 instead of Lemma 2.14. �

Proposition 4.4. Let (Γ, µ) satisfying (UE). Let ǫ > 0 , M ∈ N. Then H1
BZ2,M+ 1

2
(TΓ) ∩H2(TΓ) ⊂ E1

quad, 1
2
(TΓ) and

‖f‖H1

quad, 1
2

. ‖f‖H1

BZ2,M+ 1
2

,ǫ

.

Proof: We begin the proof as the one of Proposition 4.3. We end the proof as Proposition 4.2 instead of Proposition
4.1, using Lemma 2.19 instead of Lemma 2.16. �

4.3 E1
quad,β ⊂ H1

BZ2,M,ǫ ∩ L2: the case of functions

In this paragraph, we will need a few results on tents spaces (see [7], [25], [19]). However, we need in our proofs some
"discrete" tent spaces, defined below:

Definition 4.5. For x ∈ Γ, we recall

γ(x) =
{

(y, k) ∈ Γ × N, d(x, y)2 ≤ k
}

and for a set O ⊂ Γ, we define
Ô = {(y, k) ∈ Γ × N, d(y,Oc)2 > k}.
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For a function F defined on Γ × N, consider for all x ∈ Γ

AF (x) =





∑

(y,k)∈γ(x)

1

k + 1

m(y)

V (x,
√
k + 1)

|F (y, k)|2




1
2

.

For p ∈ [1,+∞), the tent space T p
2 (Γ) is defined as the space of functions F on Γ × N for which AF ∈ Lp(Γ), and is

outfitted with the norm ‖F‖T p

2
= ‖AF‖Lp (the space T p

2 is then complete).

Definition 4.6. A function A on Γ × N is said to be a T 1
2 -atom if there exists a ball B ⊂ Γ such that A is supported

in B̂ and

‖A‖2
T 2

2
:=

∑

(x,k)∈B̂

m(x)

k + 1
|A(x, k)|2 ≤ 1

V (B)
.

Proposition 4.7. For every element F ∈ T 1
2 (Γ), there exist a scalar sequence (λi)i∈N ⊂ ℓ1 and a sequence of T 1

2 -atoms
(Ai)i∈N such that

F =

+∞
∑

i=0

λiAi in T 1
2 (Γ). (44)

Moreover,
∑

i≥0

|λi| ≃ ‖F‖T 1
2

where the implicit constants only depend on the constant in (DV). Finally, if F ∈ T 1
2 (Γ)∩T 2

2 (Γ), then the decomposition
(44) also converges in T 2

2 (Γ).

Proof: This proof is analogous to the one of Theorem 1.1 in [25] and of Theorem 4.10 in [19] with obvious modifications.
�

We introduce the functional πη,β : T 2
2 (Γ) → L2(Γ) defined for any real β > 0 and any integer η ≥ β by

πη,βF (x) =
∑

l≥1

cη
l

lβ
[

∆η−β(I + P )ηP l−1F (., l − 1)
]

(x)

where
∑

l≥1

cη
l z

l−1 is the Taylor series of the function (1 − z)−η.

Lemma 4.8. The operator πη,β is bounded from T 2
2 (Γ) to L2(Γ).

Proof: Let g ∈ L2(Γ). Then, for all F ∈ T 2
2 (Γ),

〈πη,βF, g〉 =
∑

l≥1

cη
l

lβ
〈

∆η−β(I + P )ηP l−1F (., l), g
〉

=
∑

l≥1

cη
l

lβ
〈

F (., l − 1),∆η−β(I + P )ηP l−1g
〉

≤
∑

l≥1

cη
l

lβ
‖F (., l − 1)‖L2‖∆η−β(I + P )ηP l−1g‖L2

≤





∑

l≥1

1

l
‖F (., l − 1)‖2

L2





1
2




∑

l≥1

l1−2β(cη
l )2‖∆η−β(I + P )ηP l−1g‖2

L2





1
2

. ‖F‖T 2
2
‖(I + P )ηg‖L2

. ‖F‖T 2
2
‖g‖L2

where the last but one line comes from the L2-boundedness of Littlewood-Paley functionals (since l1−2β(cη
l )2 ≃

l2(η−β)−1, see [17], Lemma B.1). �
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Lemma 4.9. Suppose that A is a T 1
2 (Γ)-atom associated with a ball B ⊂ Γ. Then for every M ∈ N

∗, β > 0 and
ǫ ∈ (0,+∞), there exist an integer η = ηM,β,ǫ and a uniform constant CM,β,ǫ > 0 such that C−1

M,β,ǫπη,β(A) is a
(BZ2,M, ǫ)-molecule associated with the ball B.

Proof: Let η = ⌈ d0

4 + ǫ
2 + β⌉ +M + 1, that is the only integer such that

η ≥ d0

4
+
ǫ

2
+ β +M + 1 > η − 1.

Let A be a T 1
2 -atom associated with a ball B of radius r. We write

a := πη,β(A) = (I − (I + r2∆)−1)M b

where

b :=
∑

l≥1

cη
l

lβ

(

I + r2∆

r2

)M

∆η−β−M (I + P )ηP l−1A(., l − 1)

Let us check that a is a (BZ2,M, ǫ)-molecule associated with B, up to multiplication by some harmless constant
CM,ǫ. First, one has, for all g ∈ L2(4ηB),

|〈b, g〉| ≤
M
∑

m=0

cm

r2(M−m)

∑

l≥1

cη
l

lβ
∣

∣

〈

∆η−β−M+m(I + P )ηP l−1A(., l − 1), g
〉∣

∣

=
M
∑

m=0

cm

r2(M−m)

∑

l≥1

cη
l

lβ
∣

∣

〈

A(., l − 1),∆η−β−M+m(I + P )ηP l−1g
〉∣

∣

.

M
∑

m=0

1

r2(M−m)

∑

l≥1

lη−β−1‖A(., l − 1)‖L2(B)‖∆η−β−M+m(I + P )ηP l−1g‖L2(B)

.

M
∑

m=0

1

r2(M−m)
‖A‖T 2

2





r2
∑

l=1

l2(η−β)−1‖∆η−β−M+m(I + P )ηP l−1g‖2
L2(B)





1
2

.

M
∑

m=0

‖A‖T 2
2





r2
∑

l=1

l2(η−β−M+m)−1‖∆η−β−M+m(I + P )ηP l−1g‖2
L2(B)





1
2

. ‖A‖T 2
2

M
∑

m=0

‖Gη−β−M+m(I + P )ηg‖L2

. ‖A‖T 2
2

‖(I + P )ηg‖L2

.
1

V (B)
1
2

‖g‖L2

where we used the L2-boundedness of the quadratic Littlewood-Paley functional for the last but one line (see [17],
[1]).

Let j > log2(η) + 1 and g ∈ L2(Cj(B)). Since Supp(I + P )ηg ∈ Cj,η(B) = {x ∈ Γ, d(x,Cj(B)) ≤ η} and
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d(Cj,η(B), B) & 2jr,

|〈b, g〉| .
M
∑

m=0

1

r2(M−m)
‖A‖T 2

2





r2
∑

l=1

l2(η−β)−1‖∆η−β−M+m(I + P )ηP l−1g‖2
L2(B)





1
2

.

M
∑

m=0

r2(η−β−M−1)‖A‖T 2
2





r2
∑

l=1

l2(1+m)−1‖∆η−β−M+m(I + P )ηP l−1g‖2
L2(B)





1
2

. r2(η−β−M−1)‖A‖T 2
2

M
∑

m=0

∥

∥G1+m∆η−β−M−1(I + P )ηg
∥

∥

L2(B)

.
r2(η−β−M−1)

(4jr2)η−β−M−1
‖A‖T 2

2
‖(I + P )ηg‖L2

. 2−j(
d0
2 +ǫ)‖A‖T 2

2
‖g‖L2

.
2−jǫ

V (2jB)
1
2

‖g‖L2

where we used Lemma 2.15 for the last but two line and Proposition 1.5 for the last one. We conclude that, up to
multiplication by some harmless constant, b is a (BZ2,M, ǫ)-molecule. �

Proposition 4.10. Let M ∈ N
∗, ǫ > 0 and β > 0. Then E1

quad,β(Γ) ⊂ H1
BZ2,M,ǫ(Γ) ∩ L2(Γ) and

‖f‖H1
BZ2,M,ǫ

. ‖f‖H1
quad,β

.

Proof: Let f ∈ E1
quad,β(Γ). We set

F (., l) = [(l + 1)∆]βP lf.

By definition of H1
quad,β(Γ), one has that F ∈ T 1

2 (Γ). Moreover, since f ∈ L2(Γ), L2-boundedness of Littlewood-

Paley functionals (see [4], [17]) yields that F ∈ T 2
2 (Γ). Thus, according to Lemma 4.7, there exist a numerical

sequence (λi)i∈N and a sequence of T 1
2 -atoms (Ai)i∈N such that

F =

∞
∑

i=0

λiAi in T 1
2 (Γ) and T 2

2 (Γ)

and
∑

i∈N

|λi| . ‖F‖T 1
2

= ‖f‖H1
quad,β

.

Choose η as in Lemma 4.9. Using Corollary 2.3, since f ∈ L2(Γ),

f = πη,βF (., l)

=

+∞
∑

i=0

λiπη,β(Ai)
(45)

where the sum converges in L2(Γ). According to Lemma 4.9, πη,β(Ai) are molecules and then (45) would provide
a (M, ǫ)-representation of f if the convergence held in L1(Γ). By uniqueness of the limit, it remains to prove that
∑

λiπη,β(Ai) converges in L1. Indeed,

∑

i∈N

|λi| ‖πη,β(Ai)‖L1 .
∑

i∈N

|λi|

< +∞

where the first line comes from Proposition 2.7 and the second one from the fact that (λi)i∈N ∈ ℓ1(N). �

37



4.4 E1
quad,β ⊂ H1

BZ2,M+
1

2
,ǫ

∩ H2: the case of 1-forms

Lemma 4.11. Suppose that A is a T 1
2 (Γ)-atom associated with a ball B ⊂ Γ. Let M ∈ N and ǫ > 0, there exist an

integer η = ηM,ǫ and a uniform constant CM,ǫ > 0 such that C−1
M,ǫd∆− 1

2 πη, 1
2
(A) is a (BZ2,M+ 1

2 , ǫ)-molecule associated
with the ball B.

Proof: Let η = ⌈ d0

4 + ǫ
2 ⌉ +M + 2. We will also write t for ⌈ d0

4 + ǫ
2 ⌉ ∈ N

∗.

Let A be a T 1
2 -atom associated with a ball B of radius r. We write

a := d∆− 1
2 πη, 1

2
(A) = r2M+1d∆M (I + r2∆)−M− 1

2 b

where

b :=
∑

l≥1

cη
l√
l

(

I + r2∆

r2

)M+ 1
2

∆η−1−M (I + P )ηP l−1A(., l − 1)

=

√

r2

1 + r2

∞
∑

k=0

ak

(

r2

1 + r2

)k
∑

l≥1

cη
l√
l

(

I + r2∆

r2

)M+1

∆1+t(I + P )ηP l+k−1A(., l − 1)

(46)

where
∑

akz
k is the Taylor serie of the function (1 − z)− 1

2 (cf (25)).

Let us check that a is a (BZ2,M + 1
2 , ǫ)-molecule associated with B, up to multiplication by some harmless

constant CM,ǫ.

Let g ∈ L2(4ηB). One has with the first equality in (46),

|〈b, g〉| ≤ r−2M−1
∑

l≥1

cη
l√
l

∣

∣

∣

〈

A(., l − 1),
(

I + r2∆
)M+ 1

2 ∆1+t(I + P )ηP l−1g
〉∣

∣

∣

. r−2M−1
∑

l≥1

cη
l√
l
‖A(., l − 1)‖L2(B)‖

(

I + r2∆
)M+ 1

2 ∆1+t(I + P )ηP l−1g‖L2

. ‖A‖T 2
2
r−2M−1





r2
∑

l=1

l2(η−1)‖
(

I + r2∆
)M+ 1

2 ∆1+t(I + P )ηP l−1g‖2
L2





1
2

. ‖A‖T 2
2
r−2M−1





r2
∑

l=1

l2(1+t+M)‖
(

I + r2∆
)M+ 1

2 ∆1+t(I + P )ηP l−1g‖2
L2





1
2

. ‖A‖T 2
2
‖(I + P )ηg‖L2

. ‖A‖T 2
2
‖g‖L2

where we use that the functionals g 7→ r−2M−1





r2
∑

l=1

l2(1+t+M)|
(

I + r2∆
)M+ 1

2 ∆1+tP l−1g|2




1/2

are L2-bounded

uniformly in r. Indeed, since (−1) /∈ Sp(P ), functional calculus provides, for some a > −1,

‖
(

I + r2∆
)M+ 1

2 ∆1+tP l−1g‖2
L2 =

∫ 1

a

(1 + r2(1 − λ))2M+1(1 − λ)2(1+t)λ2(l−1)dEgg(λ)

.

∫ 1

a

[

1 + r2(2M+1)(1 − λ)2M+1
]

(1 − λ)2(1+t)λ2(l−1)dEgg(λ).
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Thus,

r−2(2M+1)
r2
∑

l=1

l2(1+t+M)‖
(

I + r2∆
)M+ 1

2 ∆1+tP l−1g‖2
L2

.

∫ 1

a

(1 − λ)2(1+t)
r2
∑

l=1

l2(1+t)−1λ2(l−1)dEgg(λ) +

∫ 1

a

(1 − λ)2(1+t+M)+1
r2
∑

l=1

l2(1+t+M)λ2(l−1)dEgg(λ)

.

∫ 1

a

(1 − λ)2(1+t)
∞
∑

l=1

l2(1+t)−1λ2(l−1)dEgg(λ) +

∫ 1

a

(1 − λ)2(1+t+M)+1
∞
∑

l=1

l2(1+t+M)λ2(l−1)dEgg(λ)

.

∫ 1

a

(1 − λ)2(1+t)

(1 − λ2)2(1+t)
dEgg(λ) +

∫ 1

a

(1 − λ)2(1+t+M)+1

(1 − λ2)2(1+t+M)+1
dEgg(λ)

=

∫ 1

a

[

(1 + λ)−2(1+t) + (1 + λ)−2(1+t+M)−1
]

dEgg(λ)

.

∫ 1

a

dEgg(λ) = ‖g‖2
L2

where the third inequality comes from the fact that lξ−1 ∼ cξ
l (see Lemma B.1 in [17]).

Let j > log2(η) + 1 and g ∈ L2(Cj(B)). One has d(Cj,η(B), B) & 2jr (cf Lemma 4.9). The second identity in (46)
provides

|〈b, g〉| ≤
M+1
∑

m=0

cm

r2(M+1−m)

√

r2

1 + r2

∞
∑

k=0

ak

(

r2

1 + r2

)k
∑

l≥1

cη
l√
l

∣

∣

〈

A(., l − 1),∆1+t+m(I + P )ηP l+k−1g
〉∣

∣

.

M+1
∑

m=0

cm

r2(M+1−m)

∞
∑

k=0

ak

(

r2

1 + r2

)k
∑

l≥1

cη
l√
l
‖A(., l− 1)‖L2(B)‖∆1+t+m(I + P )ηP l+k−1g‖L2(B)

. ‖A‖T 2
2

M+1
∑

m=0

1

r2(M+1−m)

∞
∑

k=0

ak

(

r2

1 + r2

)k




r2
∑

l=1

l2(η−1)‖∆1+t+m(I + P )ηP l+k−1g‖2
L2(B)





1
2

. ‖A‖T 2
2
‖(I + P )ηg‖L2

M+1
∑

m=0

r2(η−M−2+m)
∞
∑

k=0

ak

(

r2

1 + r2

)k




r2
∑

l=1

e−c 4j r2

l+k

(l + k)2(1+t+m)





1
2

. ‖A‖T 2
2
‖g‖L2

M+1
∑

m=0

r2(t+m)
∞
∑

k=0

ak

(

r2

1 + r2

)k
( ∞
∑

l=1

e−c 4j r2

l+k

(l + k)2(1+t+m)

)

1
2

. ‖A‖T 2
2
‖g‖L2

M+1
∑

m=0

r2(t+m)+1 1√
1 + r2

∞
∑

k=0

ak

(

r2

1 + r2

)k
1

(4jr2)t+m+ 1
2

. ‖A‖T 2
2
‖g‖L2

M+1
∑

m=0

r2(t+m)+1

(4jr2)t+m+ 1
2

(1 + r2(1 − 1))− 1
2

. 2−j(2t+1)‖A‖T 2
2
‖g‖L2

.
2−jǫ

V (2jB)
‖g‖L2

where we used the estimate (GUE) for the forth line. �

Proposition 4.12. Let M ∈ N and ǫ > 0. Then E1
quad, 1

2

(TΓ) ⊂ H1
BZ2,M+ 1

2

(TΓ) ∩H2(TΓ) and

‖G‖H1

BZ2,M+ 1
2

,ǫ

. ‖G‖H1

quad, 1
2

∀G ∈ E1
quad, 1

2
(TΓ)
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Proof: Let G ∈ E1
quad, 1

2

(TΓ). We set

F (., l) =
√
l + 1P ld∗G.

By definition of H1
quad, 1

2

(TΓ), one has that F ∈ T 1
2 (Γ). Moreover, Proposition 1.32 yields that ∆− 1

2 d∗G ∈ L2(G)

and therefore F ∈ T 2
2 (Γ) with the L2-boundedness of Littlewood-Paley functionals.

Thus, according to Lemma 4.7, there exist a scalar sequence (λi)i∈N ∈ ℓ1(N) and a sequence of T 1
2 -atoms (Ai)i∈N

such that

F =

∞
∑

i=0

λiAi in T 1
2 (Γ) and in T 2

2 (Γ)

and
∑

i∈N

|λi| . ‖F‖T 1
2

= ‖G‖H1

quad, 1
2

.

Choose η as in Lemma 4.9. Using Lemma 2.3, since ∆− 1
2 d∗G ∈ L2(Γ),

∆− 1
2 d∗G = πη, 1

2
F (., l)

=

+∞
∑

i=0

λiπη, 1
2
(Ai)

where the sum converges in L2(Γ). Recall that d∆−1d∗ = IdH2(TΓ). Moreover, d∆− 1
2 is bounded from L2(Γ) to

L2(TΓ) (see Proposition 1.32). Then

G =

+∞
∑

i=0

λid∆− 1
2 πη, 1

2
(Ai) (47)

where the sum converges in L2(TΓ). According to Lemma 4.11, d∆− 1
2πM, 1

2
(Ai) are (BZ2,M + 1

2 , ǫ)-molecules and

then (47) would provide a (BZ2,M + 1
2 , ǫ)-representation of f if the convergence held in L1(Γ). By uniqueness of

the limit, it remains to prove that
∑

λid∆− 1
2πη, 1

2
(Ai) converges in L1. Indeed,

∑

i∈N

|λi|
∥

∥

∥
d∆− 1

2 πη, 1
2
(Ai)

∥

∥

∥

L1(TΓ)
.
∑

i∈N

|λi|

< +∞
where the first line comes from Corollary 2.12 and the second one because (λi)i∈N ∈ ℓ1(N). �

4.5 Proof of Theorems 1.36, 1.38 and 1.39

Proof: (Theorem 1.36)

Let β > 0, M ∈ N
∗ ∩ (d0

4 ,+∞) and ǫ > 0. Propositions 4.1 and 4.10 yield the continuous embeddings

H1
BZ1,M,ǫ(Γ) ∩ L2(Γ) ⊂ E1

quad,β(Γ) ⊂ H1
BZ2,M,ǫ(Γ) ∩ L2(Γ).

However, Theorem 1.34 states that H1
BZ1,M,ǫ(Γ) = H1

BZ2,M,ǫ(Γ). Thus, we deduce

H1
BZ1,M,ǫ(Γ) ∩ L2(Γ) = E1

quad,β(Γ) = H1
BZ2,M,ǫ(Γ) ∩ L2(Γ) (48)

with equivalent norms. In particular, E1
quad,β(Γ) ⊂ L1(Γ).

Let us now prove that the completion of E1
quad,β(Γ) in L1 exists. To that purpose, it is enough (see Proposition

2.2 in [2]) to check that, for all Cauchy sequences (fn)n in E1
quad,β(Γ) that converges to 0 in L1(Γ), fn → 0 for the

‖.‖H1
quad,β

norm. Equivalent norms in (48) implies that (fn)n is a Cauchy sequence in H1
BZκ,M,ǫ(Γ) that converges

to 0 in L1(Γ). Since H1
BZκ,M,ǫ(Γ) is complete, it follows that fn → g for some g ∈ H1

BZκ,M,ǫ(Γ), but then also for

the L1-norm, which entails that g = 0. Thus, fn → 0 for the norm H1
BZκ,M,ǫ(Γ) and so for the norm ‖.‖H1

quad,β

(the norms being equivalent on E1
quad,β(Γ)).

Therefore, the completion H1
quad,β(Γ) of E1

quad,β(Γ) exists and is defined by

H1
quad,β(Γ) = {f ∈ F, there exists (fn)n Cauchy sequence in E1

quad,β(Γ) such that fn → f in L1(Γ)}.
The fact that H1

quad,β(Γ) = H1
BZκ,Mǫ(Γ) is then a straightforward consequence of (48) and the fact that the space

H1
BZκ,Mǫ(Γ) ∩ L2(Γ) is dense in H1

BZκ,Mǫ(Γ). �
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Proof: (Theorem 1.38)

Let M ∈ N ∩ (d0

4 − 1
2 ,+∞) and ǫ > 0. Propositions 4.3 and 4.12 yield the continuous embeddings

H1
BZ2,M+ 1

2 ,ǫ(TΓ) ∩H2(TΓ) ⊂ E1
quad, 1

2
(TΓ) ⊂ H1

BZ2,M+ 1
2 ,ǫ(TΓ) ∩H2(TΓ),

from which we deduce the equality of the two spaces, with equivalent norms.

Since H1
BZ2,M+ 1

2 ,ǫ
(TΓ) is dense in H1

BZ2,M+ 1
2 ,ǫ

(TΓ) ⊂ L1(TΓ) and is included in H1
BZ2,M+ 1

2 ,ǫ
(TΓ)∩H2(Γ), it follows

that H1
BZ2,M+ 1

2 ,ǫ
(TΓ) is the completion in L1(TΓ) of H1

BZ2,M+ 1
2 ,ǫ

(TΓ) ∩H2(Γ) and thus also of E1
quad, 1

2

(TΓ) with

the same arguments than those used in the proof of Theorem 1.36.

Moreover, notice that if F ∈ H2(TΓ),

F ∈ E1
quad,β(TΓ) ⇐⇒ ∆− 1

2 d∗F ∈ E1
quad,β(Γ).

Indeed, the implication ∆− 1
2 d∗F ∈ E1

quad,β(Γ) ⇒ F ∈ E1
quad,β(TΓ) is obvious, and the converse is due to Propo-

sition 1.32. As said in Theorem 1.36, the spaces E1
quad,β(Γ) are all equivalent once β > 0; and so are the spaces

E1
quad,β(TΓ). Consequently, for all β > 0, the completion of E1

quad,β(TΓ) in L1(TΓ) exists and is the same as the

one of E1
quad, 1

2

(TΓ). �

Proof: (Theorem 1.39)

Just use Proposition 4.2 instead of Proposition 4.1 (in the proof of Theorem 1.36), and Proposition 4.4 instead of
Proposition 4.3 (in the proof of Theorem 1.38). �

Let us state and prove now item b) of Remark 1.41. We first introduce E1
BZκ,M,ǫ(Γ) defined by

E
1
BZκ,M,ǫ(Γ) :=

{

f ∈ L
2(Γ),

∞
∑

j=0

λjaj is a molecular (BZκ, M, ǫ)-representation of f and the sum converges in L
2(Γ)

}

and outfitted with the norm

‖f‖E1
BZκ,M,ǫ

= inf

{

∑

i∈N

|λi|,

∞
∑

j=0

λjaj is a molecular (BZκ, M, ǫ)-representation of f and the sum converges in L
2(Γ)

}

.

In the same way, we define E1
BZ2,M+ 1

2 ,ǫ
(TΓ) by

E
1

BZ2,M+ 1
2

,ǫ
(TΓ) :=

{

f ∈ H
2(TΓ),

∞
∑

j=0

λjaj is a mol. (BZ2, M +
1

2
, ǫ)-representation of f and the sum converges in L

2(TΓ)

}

and we equipped it with the norm

‖f‖E1

BZκ,M+ 1
2

,ǫ

= inf

{

∑

i∈N

|λi|,

∞
∑

j=0

λjaj is a mol. (BZ2, M +
1

2
, ǫ)-representation of f and the sum converges in L

2(TΓ)

}

.

Corollary 4.13. Let Γ be a weighted graph satisfying (DV) and (LB).

(i) If κ ∈ {1, 2}, ǫ ∈ (0,+∞) and M ∈ N
∗ ∩ (d0

4 ,+∞), then

E1
BZκ,M,ǫ(Γ) = H1

BZκ,M,ǫ(Γ) ∩ L2(Γ) = E1
quad,1(Γ)

with equivalent norms. As a consequence, the completion of E1
BZκ,M,ǫ(Γ) in L1(Γ) exists and is equal to H1(Γ) =

H1
BZκ,M,ǫ(Γ).

(ii) If ǫ ∈ (0,+∞) and M ∈ N ∩ (d0

4 − 1
2 ,+∞), then

E1
BZ2,M+ 1

2 ,ǫ(TΓ) = H1
BZ2,M+ 1

2 ,ǫ(TΓ) ∩ L2(Γ) = E1
quad, 1

2
(TΓ)

with equivalent norms. As a consequence, the completion of E1
BZ2,M,ǫ(TΓ) in L1(TΓ) exists and is equal to

H1(TΓ) = H1
BZ2,M+ 1

2 ,ǫ
(TΓ).
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(iii) If the Markov kernel p(x, y) satisfies the pointwise gaussian bound (UE), then M can be choosen arbitrarily in N
∗

in (i) and in N in (ii).

Proof: The proof consists in noticing, as the proofs show, that the (BZκ,M, ǫ) (resp. (BZ2,M + 1
2 , ǫ)) representation

of f ∈ E1
quad,1(Γ) (resp. F ∈ E1

quad, 1
2

(TΓ)) constructed in Proposition 4.10 (resp. 4.12) also converges in L2(Γ)

(resp. L2(TΓ)).

Therefore, we proved in Propositions 4.10 and 4.12 that

E1
quad,1(Γ) ⊂ E1

BZκ,M,ǫ(Γ) ⊂ H1
BZκ,M,ǫ(Γ) ∩ L2(Γ)

and
E1

quad, 1
2
(TΓ) ⊂ E1

BZ2,M+ 1
2 ,ǫ(TΓ) ⊂ H1

BZ2,M+ 1
2 ,ǫ(TΓ) ∩ L2(TΓ).

We end then the proof as in Theorems 1.36, 1.38 and 1.39. �

A A covering lemma

Lemma A.1. Let B a ball of radius r ∈ N
∗ and α ≥ 1. There exists a collection of pairwise disjoint balls (Bi)i∈lα

of
radius r such that

⋃

i∈Iα

Bi ⊂ αB ⊂
⋃

i∈Iα

3Bi.

Proof: It is a classical fact and we provide a proof for completeness. Let B be a ball of radius r and of center x0. Let
(Bi)i∈Iα

be a set of disjoint balls included in αB and of radius r. Assume that (Bi)i∈Iα
is maximal, that is, for

every ball B0 of radius r, either B0 is not included in αB, or there exist i ∈ Iα such that B0 ∩ Bi 6= ∅. Let us
prove that

αB ⊂
⋃

i∈Iα

3Bi. (49)

Let x ∈ αB and let us prove that the ball B(x, 2r) intersects one of the Bi’s. Assume the opposite. There exists
a path x0, x1, . . . , xn−1, x joining x0 to x and of length n = d(x, x0) < αr. Then the balls B(xmax{0,n−r}, r) is
included in B(x, 2r) and in αB, that is the set (Bi)i∈Iα

is not maximal. By contradiction, there exists i ∈ Iα such
that B(x, 2r) ∩Bi 6= ∅, that implies x ∈ 3Bi. �

Corollary A.2. There exist M ∈ N and C > 0 such that for all balls B of radius r and all j ≥ 1, there exists a
covering (Bi)i∈Ij

of Cj(B) such that

(i) each ball Bi is of radius r,

(ii) the covering is included in C̃j := Cj−1(B) ∪ Cj(B) ∪ Cj+1(B) (with the convention C0(B) = ∅), that is
⋃

i∈Ij

Bi ⊂ C̃j

(iii) each point is covered by at most M balls Bi.

(iv) the number of balls #Ij is bounded by C2j(d0+1)

Proof: Let B be a ball of radius r and j ≥ 1. Notice that (iv) is a consequence of the three first points. Indeed,

#Ij =
1

V (2jB)

∑

i∈Ij

V (2jB)

≤ 1

V (2jB)

∑

i∈Ij

V (2j+3Bi)

.
2j(d0+1)

V (2jB)

∑

i∈Ij

V (Bi)

≤ M2j(d0+1) 1

V (2jB)
V (2j+2B)

. 2j(d0+1).
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where the second line is a consequence of (i) and (ii), the third one holds thanks to Proposition 1.5, and the forth
one is due to (ii) and (iii).

Let us now prove the first three conclusions of the corollary.

Assume that r ∈ {1, 2}. Then the collection of balls (B(x, r))x∈Cj (B) satisfies (i), (ii) and (iii). Indeed, only (iii)
for r = 2 is not obvious, but is a consequence of the uniform local finiteness of Γ.

Assume now that r ≥ 3. Let s ∈
[

r
5 ,

r
3

]

∩ N. By Lemma A.1 (with α = 2j+1 s
r ), there exists a collection (B̃i)i∈Iα

of balls of radius s such that
⋃

i∈Iα

B̃i ⊂ 2j+1B ⊂
⋃

i∈Iα

3B̃i.

We set
Ij = {i ∈ Iα, 3B̃i ∩ Cj(B) 6= ∅}

and then Bi = r
s B̃i. Let us check that the collection of balls (Bi)i∈Ij

satisfies the conclusions of the corollary. (i)
is a consequence of the construction. (ii) is true since

⋃

i∈Ij

Bi ⊂ {x ∈ Γ, d(x,Cj(B)) < 2s}.

For the point (iii), define for x ∈ Γ,
Ix = {i ∈ Ij , B(x, s) ∩Bi 6= ∅}.

Since all B̃i are disjoints, one has then

∑

i∈Ix

V (B̃i) ≤ V (x, r + s) ≤ V (x, 6s).

However, notice that B(x, 6s) ⊂ V (12B̃i) for all i ∈ Ix. Hence, with the doubling property,

V (x, 6s) &
∑

i∈Ix

V (12B̃i) &
∑

i∈Ix

V (x, 6s)

and therefore, #Ix . 1. �

B Exponential decay of some functions

Lemma B.1. For all m ∈ [0,+∞), there exists Cm, c > 0 such that for all t ≥ 0 and k ∈ N, one has

(

1 + k

1 + t

)m(
t

1 + t

)k

≤ Cm exp

(

−c k

1 + t

)

.

Proof: First check that the function

ϕ(t) ∈ R
∗
+ 7→

(

1 − 1

1 + t

)1+t

satisfies 0 < ϕ(t) < 1 for all t > 0 and lim
t→∞

ϕ(t) = e−1 < 1. Then there exists c > 0 such that ϕ(t) ∈ (0, e−c) for

all t > 0. From here, one has

(

1 + k

1 + t

)m(
t

1 + t

)k

≤
(

1 +
k

1 + t

)m(
t

1 + t

)k

=

(

1 +
k

1 + t

)m

exp

(

k

1 + t
lnϕ(t)

)

≤
(

1 +
k

1 + t

)m

exp

(

−c k

1 + t

)

≤ Cm exp

(

− c

2

k

1 + t

)

.

�
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