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Abstract

Let I" be a graph with the doubling property for the volume of balls and P a reversible random walk on I'. We
introduce H' Hardy spaces of functions and 1-forms adapted to P and prove various characterizations of these spaces.
We also characterize the dual space of H' as a BMO-type space adapted to P. As an application, we establish H'
and H'-L! boundedness of the Riesz transform.

Keywords: Graphs - Hardy spaces - Differential forms - BMO spaces - Riesz transform - Gaffney estimates.
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We use the following notations. A(x) < B(x) means that there exists C' independant of  such that A(z) < C B(z)
for all z, while A(z) ~ B(x) means that A(z) < B(z) and B(x) < A(xz). The parameters from which the constant is
independant will be either obvious from context or recalled.

Furthermore, if E, F' are Banach spaces, £ C F' means that E is continuously included in F'. In the same way, £ = F
means that the norms are equivalent.

1 Introduction and statement of the results

The study of real variable Hardy spaces in R™ began in the early 1960’s with the paper of Stein and Weiss [26]. At the
time, the spaces were defined by means of Riesz transforms and harmonic functions. Fefferman and Stein provided in
[16] various characterizations (for instance in terms of suitable maximal functions) and developed real variable methods
for the study of Hardy spaces.

In several issues in harmonic analysis, H!(R") turns out to be the proper substitute of L!(R"). For example, the
Riesz transforms, namely the operators R; = 9;(—A)~%, are LP(R"™) bounded for all p € (1,40c), H'(R™)-bounded,
but not L!(R™)-bounded (see [22]).

Hardy spaces were defined in the more general context of spaces of homogeneous type by Coifman and Weiss in
[8], by means of an atomic decomposition. An atom is defined as a function supported in a ball, with zero integral
and suitable size condition. However, even in the Euclidean context, the definition of the Hardy space H' given by
Coifman and Weiss is not always suited to the H'-L' boundedness of some Calderon-Zygmund type operators. Indeed,
the cancellation condition satisfied by atoms does not always match with differential operators (consider the case of
—div(AV) on R™, for instance).

To overcome this difficulty, Hardy spaces adapted to operators were developed in various frameworks during the last
decade. In 2005, in [14] and [15], Duong and Yan defined Hardy and BMO spaces for an operator L when the kernel
of the semigroup generated by L satisfies a pointwise Gaussian upper bound. It was discovered later that, together
with the doubling condition for the volumes of balls, L? Davies-Gaffney type estimates for the semigroup generated by
L are enough to develop a quite rich theory of Hardy spaces on Riemannian manifolds (see [3]) and for second order
divergence form elliptic operator in R” with measurable complex coefficients (see [21]). These ideas were pushed further
in the general context of doubling measure spaces when L is self-adjoint (see [19]).

The present work is devoted to an analogous theory of Hardy spaces in a discrete context, namely in graphs I’
equipped with a suitable discrete Laplace operator, given by I — P where P is a Markov operator (see [18] and the
references therein). We define and give various characterizations of the Hardy space H!(I') adapted to P, under very
weak assumptions on I'. The first characterization is formulated in terms of quadratic functionals (of Lusin type),
relying on results and methods developed in [4] and [17]. The second one is the molecular (or atomic) decomposition
of HY(T'). A description of the dual space of H*(I') as a BMO-type space is obtained.

We also deal with the Riesz transform on T, namely the operator d(I — P)_% , where d stands for the differential on
T (ie. df(z,y):= f(y) — f(x) for all functions f on I' and all edges (x,y)). When p € (1, +00), the LP-boundedness
of the Riesz transform was dealt with in [4, 24]. Here, we prove an endpoint boundedness result for p = 1: roughly
speaking, the Riesz transform is H'-bounded. In the same spirit as [3], this assertion requires the definition a Hardy
space of “exact 1-forms* on the edges of I'. We define and give characterizations of this space by quadratic functionals
and molecular decompositions. Finally, the H'-boundedness of the Riesz transform is established.

Some Hardy spaces associated with I — P were introduced and characterized in [6], together with a description of
their duals and the H!-L' boundedness of Riesz transform was proved. Even if the authors in [6] also deal with the
case of HP for p < 1, their assumptions on P are stronger than ours (they assume a pointwise Gaussian upper bound
on the iterates of the kernel of P, which is not required for most of our results) and they do not consider Hardy spaces
of forms. Moreover, the Hardy spaces introduced in the present work are bigger than the ones in [6].

1.1 The discrete setting

Let T" be an infinite set and pizy = pys > 0 a symmetric weight on I' x I'. The couple (T, 4) induces a (weighted
unoriented) graph structure if we define the set of edges by

E={(z,y) €T xT, gy > 0}.

We call then x and y neighbours (or z ~ y) if (x,y) € E.

We will assume that the graph is connected and locally uniformly finite. A graph is connected if for all z,y € T', there
exists a path @ = xg,z1,...,2xy = y such that for all 1 <i < N, x;_1 ~ a; (the length of such path is then N). A
graph is said to be locally uniformly finite if there exists My € N such that for all x € T, #{y € ', y ~ 2} < My (i.e.
the number of neighbours of a vertex is uniformly bounded).



The graph is endowed with its natural metric d, which is the shortest length of a path joining two points. For all z € T’
and all > 0, the ball of center z and radius r is defined as B(x,r) = {y € T, d(z,y) < r}. In the opposite way,
the radius of a ball B is the only integer r such that B = B(xp,r) (with xp the center of B). Therefore, for all balls
B = B(z,r) and all A > 1, we set AB := B(z, Ar) and define C;(B) = 2971 B\27B for all j > 2 and C(B) = 4B.

If E,F CT,d(E,F) stands for the distance between F and F', namely

d(E,F)= _inf d(z,y).
(B, F)=__if _d(zy)

We define the weight m(z) of a vertex z € T' by m(z) = mey ltzy. More generally, the volume of a subset £ C I' is
defined as m(E) := Y . pm(x). We use the notation V(z,r) for the volume of the ball B(z,r), and in the same way,
V(B) represents the volume of a ball B.

We define now the LP(T") spaces. For all 1 < p < 400, we say that a function f on I" belongs to LP(I',m) (or LP(T")) if

1

I1£1lp = <Z|f )[Pm( z) < 400,

xzel’

while L>°(T") is the space of functions satisfying
[flloc == sup [f ()] < +oo.
zel

Let us define for all 2,y € T the discrete-time reversible Markov kernel p associated with the measure m by p(z,y) =
Py The discrete kernel p;(z,y) is then defined recursively for all I > 0 by

m@)m(y)
po(w,y) = 2 1)
pivi(z,y) = > crp(x, 2)pi(z, y)m(2).

Remark 1.1. Note that this definition of p; differs from the one of p; in [24], [4] or [12], because of the m(y) factor.
However, p; coincides with K in [13]. Remark that in the case of the Cayley graphs of finitely generated discrete groups,
where m(x) = 1 for all x, the definitions coincide.

Notice that for all [ > 1, we have

Ipe(, Wiy =Y _pi(zyymy) = > ple,y)my) =1  Voel, (2)

yer d(z,y)<l

and that the kernel is symmetric:

p(x,y) =ply,x)  Vae,yel. (3)
For all functions f on I', we define P as the operator with kernel p, i.e.
=> p,y)fly)mly) Vrel. (4)
yel

It is easily checked that P! is the operator with kernel p;.
Since p(z,y) > 0 and (2) holds, one has, for all p € [1, 4+00] ,

[1Pllp—p < 1. ()

Hp%p < 1, the operators (I — P)? and (I + P)® are LP-bounded
for all >0 (see [11]).

We define a nonnegative Laplacian on I' by A = I — P. One has then

Remark 1.3. One can check that ||All1_1 < 2. Moreover, the previous remark states that AP is L' (T")-bounded. Note
that the L' -boundedness of the operators AP is not true in the continuous setting (such as Riemannian manifolds), and
makes some proofs of the present paper easier than in the case of Riemannian manifolds. In particular, we did not need
then to prove similar results of the ones in [2].



<(T=P)f,f >r2wy = Y pl@,y)(f@) = F()f(@)m(z)m(y)

z,yel’

=3 3 e )lf@) — ) Pm(zm(y),

z,yel’

(6)

where we use (2) for the first equality and (3) for the second one. The last calculus proves that the following operator

2

Vi) = (53 eyl i) - f@Pm) |

yell

called “length of the gradient” (and the definition of which is taken from [9]), satisfies
1
IVF7ery =< (I = P)f, f >r2y= 1A% fll L2y (7)

1.2 Assumptions on the graph
Definition 1.4. We say that (T, u) satisfies the doubling property if there exists C > 0 such that
V(x,2r) < CV(z,r) Ve eT, Vr > 0. (DV)
Proposition 1.5. Let (T, u) satisfying the doubling property. Then there exists d > 0 such that
V(x, Ar) S AV () Veel,r>0and A > 1. (8)
We denote by dy the infimum of the d satisfying (8).
Definition 1.6. We say that (I', ) (or P) satisfies (LB) if there exists e = e, > 0 such that
plx,x)m(x) > € Ve el (LB)
Remark 1.7. In particular, the condition (LB) implies that —1 does not belong to the L2-spectrum of P, which implies
in turn the analyticity of P in LP(T'), 1 <p < +oo ([11]).

From now on, all the graphs considered ( unless explicitely stated) satisfy the doubling property and (LB). In this
context, Coulhon, Grigor’yan and Zucca proved in [10] (Theorem 4.1) that the following Davies-Gaffney estimate holds:

Theorem 1.8. Assume that (T, u) satisfies (DV). Then there exist C,c > 0 such that for all subsets E, F C T and all
fonctions f supported in F', one has

d(E, F)?

HPl*lf‘HLg(E) S Cexp <_C ]

) Il fllz2cry VI e N*. (GUE)

The estimate (GUE), also called Gaffney estimate, will be sufficient to prove most of the results of this paper.
However, some results proven here can be improved if we assume the following stronger pointwise gaussian estimate:

Definition 1.9. We say that (', u) satisfies (UE) if there exist C,c > 0 such that

1 d(:c,y)2>
_1(z,y) <KC———exp | —c Ve,y € T, VI € N*. UE
pi-1(2,y) V) p< ] y (UE)
Remark 1.10. Under (DV), property (UE) is equivalent to
(z,2) < _¢ Vr €T, VI € N* (DUE)
P1—1(Z,T) = Vi, \/Z) ) .

The conjonction of (DV) and (UE) (or (DUE)) is also equivalent to some relative Faber-Krahn inequality (see [9]).



1.3 Definition of Hardy spaces on weighted graphs

We introduce three different definitions for Hardy spaces. The first two ones rely on molecular decomposition.

Definition 1.11. Let M € N*. When € € (0,+00), a function a € L?(T") is called a (BZ1, M, €)-molecule if there exist
s € N*, a M-tuple (s1,...,50) € [5,25]M, a ball B of radius /s and a function b € L*(T) such that

(i) a=(I—Ps)...(I —PM)b,
(i) bl 2o,y < 277V(27B)7%, ¥j > 1.

A function a € L*(T) is called a (BZy, M,o00)-molecule (or a (BZy, M)-atom) if there exist s € N*, a M-tuple
(51,...,80m) € [1, M]™ a ball B of radius \/5 and a function b € L*(T') supported in B such that

(i) a=(I—Pst)... (I —Psm)b,
(ii) |Ibl|z= = [|b]lz2(m) < V(B)~%.

We say that a (BZ1, M, €)-molecule a is associated with an integer s, a M-tuple (s1,...,$n) and a ball B when we
want to refer to s, (s1,...,sm) and B given by the definition.

The second kind of molecules we consider are defined via the operators I — (I + sA)™1:

Definition 1.12. Let M € N*. When € € (0,+00), a function a € L*(T") is called a (BZs, M, €)-molecule if there exist
s € N*, a ball B of radius \/s and a function b € L*(T") such that

(i) a=[I = (I+sA)~"Mb,
(i) [|bllz2(c;(B)) < 279V (21B)77, V) > 1.

A function a € L*(T) is called a (BZa, M, 00)-molecule (or a (BZy, M)-atom) if there exist s € N*, a ball B of radius
V/s and a function b € L*(T") supported in B such that

(i) a=[I—(I+sA)""Mb,
(i) bllz = [Ibll2(m) < V(B) 2.

We say that a (BZy, M, €)-molecule a is associated with an integer s and a ball B when we want to refer to s and B
given by the definition.

Remark 1.13. 1. When b is the function occurring in Definition 1.11 or in Definition 1.12, note that ||b||f2 <
1

V(B) =.

2. As will be seen in Proposition 2.7 below, when a is a molecule occurring in Definition 1.11 or in Definition 1.12,
one has ||a||r < 1.

Definition 1.14. Let M € N* and k € {1,2}.
Let € € (0,+00]. We say that f belongs to Hllazn,M,e(F) if f admits a molecular (BZ,,, M, €)-representation, that is

if there exist a sequence (\;)ien € L1 and a sequence (a;)ien of (BZ., M, €)-molecules such that
o]
f=> Na (9)
i=0
where the convergence of the series to f holds pointwise. The space is outfitted with the norm

o0 o0
= inf Z IA] Z)\jaj, is a molecular (BZ,, M, €)-representation of f
j=0 j=0

11|22

BZr,M,e

Proposition 1.15. Let M € N* and x € {1,2}. Then the space Hp 5, s (D) is complete. Moreover, Hp 5, s (T') C
LY(D).



Proof: That Hp,, \ (T) € L'(I') follows at once from assertion 2 in Remark 1.13, which shows that, if f €
Hp e ar.c(D), the series (9) converges in L'(T'), and therefore converges to f in L'(I'). Moreover, the space
Hp 7 a1.c(D) is complete if it has the property

oo o0
Z ||fj||HmeMY6 < too = ij converges in H}an,M,e(F)-
3=0 =0

This fact is a straightforward consequence of the fact that |la||z1 < 1 whenever a is a molecule (see Remark 1.13
and Proposition 2.7). See also the argument for the completeness of H} in [21], p. 48. O

Remark 1.16. The BZ,, molecules are molecules in the sense of Bernicot and Zhao in [5] (and then BZ, are Hardy
spaces in the sense of Bernicot and Zhao). Note that the definition of molecules is slightly different from the one given
in [3], [21] or [19]. The article [5] provides some properties of the spaces HEZK,M,S. In particular, under the assumption
(UE), these Hardy spaces are suited for LP interpolation (see Remark 1.41 below) .

The third Hardy space is defined via quadratic functionals.

Definition 1.17. Define, for 8 > 0, the quadratic functionals Lg on L*(T) by

=

_ (141)*-1 8 pl 2

where y(z) = {(y,1) e T x N, d(z,y)? < 1}.

Remark 1.18. One can also use instead of Lg the Lusin functional i’B defined by

=

Lf@ = Y armveren EY P remeP

(y,k)e7(x)

where (z) = {(y, k) € I' x N, d(z,y) < k}.

The functionals Lg and Lg are two different ways to discretize the “countinuous” Lusin functional defined by

¢ o e 1 s ﬁefsA 2 s
Bf<:c></0 Lo o e 2 ) du(y)d>

_ o 1 9 ﬁeftZA ) 2
- </0 /d<y,x><t tV(m,t)Kt A) fW)l du(y) dt) .

Definition 1.19. The space E},, ., 5(T) is defined by

W=

Bauaas (D) = {f € L*(T), | Lgfllz: < +oo}.
It is outfitted with the norm
[, , o= ILafll

Remark 1.20. Notice that || f|/g: , s a morm because the null space of A is reduced to {0} (because the set T is
quad,

infinite by assumption). So, if k > B is an integer and f € L*(T) is such that APf =0, then A¥f = AF=BAPf =0, so0
that f = 0.

wad,

Remark 1.21. Replacing Lg by 1:45 in the definition of E;uad.ﬂ yields an equivalent space E;uadﬁ, in the sense that

the sets are equal and the norms are equivalent. The proof of this nontrivial fact can be done by adapting the proof of
Theorem 1.86 below (details are left to the reader).



1.4 Definition of BMO spaces on weighted graphs

Fix g € I and let By = B(xg,1) = {x¢}. For ¢ > 0 and M € N, for all functions ¢ € L?*(T') which can be written as
¢ = AMy for some function ¢ € L?, define

[6lladgre = sup [27°V (27 Bo) e, o | € [0, +oc)
1=

We set then
MM = {¢ =AM € IA(T), || gy < +oo}.
Definition 1.22. For any M € N, we set,
M e *
en = J M)

e>0

and
Fur = [ (Mgh)".

e>0

Proposition 1.23. Let M € N, s € N* and (s1,...,sn) € [s,25]M. If f € Epr, then the functions (I — P*Y) ... (I —
P fand (I — (I +sA)"HMf can be defined in the sense of distributions and are included in L3, (T').

Proof: The proof of this fact is done in Lemma 3.2. O

Definition 1.24. Let M € N. Let f € Eyy.
We say then that f belongs to BMOpgz1,m(T) if

1
2

I £l BMOB 210 = sup ( Z (I —=P)...(I- PSM)f(»’C)|2m(iE)> < Foo. (10)
seN”, IEB
(sl,...,sM)E[[s,Qs]]M,
B of radius /s
We say then that f belongs to BMOpggza am(T) if
1 flBrMOE 2200 = sup ( Z I = +sA)” ]Mf(90)|2m($)> < +oo0. (11)
sEN™, zEB

B of radius /s

1.5 Definition of Hardy spaces of 1-forms
We define, for all x € T', the set T,, = {(x,y) € I'?, y ~ 2} and

Tr = UTz:{(zay)EIvaNx}'
xzel

Definition 1.25. If x € I, we define, for all F, defined on T, the norm

|F||T=<pry IF(wy)|> :

y~x
Moreover, a function F: Tr — R belongs to LP(1T) if
(i) F is antisymmetric, that is F(x,y) = —F (y,x) for all x ~ y,

(it) | F| o1y < +00, with
IF||ocry = N1z = [1F (@, )zl Loy

Definition 1.26. Let f: ' — R and F : Tt — R be some functions. Define the operators d and d* by

and

©) =Y p(x,y)F(z,y)m(y) Veel.

y~z



Remark 1.27. [t is plain to see that d*d = A and ||df (x, )|, = Vf(z).

The definition of Hardy spaces of 1-forms is then similar to the case of functions. First, we introduce Hardy spaces
via molecules.

Definition 1.28. Let M € N and € € (0,+00). A function a € L*(Tt) is called a (BZ2, M + 3, €)-molecule if there
exist s € N*, a ball B of radius \/s and a function b € L?(T") such that

(i) a = sMt3dAM (I — sA)~M=2p;
(i) |1b]lL2(c;(my) < 279°V(29B)~% for all j > 1.

Remark 1.29. As in the case of functions, Corollary 2.12 below implies a uniform bound on the L' norm of molecules,
that is, for all M € N and all € € (0,+00), there exists C > such that each (BZs, M, €)-molecule a satisfies

lallLi(zey < C.

Definition 1.30. Let M € N and € € (0,400). We say that F belongs to H}, ., M4l
(BZa, M + 5, €)-representation, that is if there exist a sequence (\;)ien € £ and a sequence (a;)ien of (BZy, M + 5, ¢€)-

molecules such that -
F = Z /\iai
i=0

where the sum converges pointwise on Tr . The space is outfitted with the norm

(Tr) if F admits a molecular

o0 o0
1
| £l = inf{ E [\l g Xia; is a molecular (BZa, M + —, €)-representation of f} .
Bzz,M+%,s £ . 2
=0 =0
Remark 1.31. The space H113Z2 Ml 6(Tp) is complete. The argument is analogous to the one of Proposition 1.15.
M3,

In order to define the Hardy spaces of forms associated with operators, we introduce the L? adapted Hardy spaces
H?(Tr) defined as the closure in L?(Tt) of

E*(Tv) := {F € L*(Tr), 3f € L*(I') : F = df}.
Notice that dA™'d* = Idgz2(ry.). The functional dA~'d* can be extended to a bounded operator on H?(Tr) and
dA~ d* = IdHZ(TF)- (12)

Proposition 1.32. For all p € [1,+00], the operator d* is bounded from LP(Tr) to LP(T).

1 1
The operator dA™3 is an isometry from L*(T') to L2(Tr) (or H*(1r)), and the operator A=2d* is an isometry from
H?(Tv) to L*(T).

Proof: First, the LP-boundedness of d* is provided by

p
1 FIZ iy = S S pla, y)m(y) P, y)| mi)
zel |yel’
< S IFG ) m@) = [FIE -
N*zel’

The L2-boundedness of dA~% is obtained by the calculus

1dATE f|[3 27,y = % Y p(@,y)|ATF @) — A7F f(y)[Pm(z)m(y)

z~y
= [VAT2 fllT2r) = 1AZAT2 f|[2r
= 1122 (r)-
The L2-boundedness of A~2d* is then a consequence of (12). Indeed, if F € H2(T),
IAT2d F | r2qry = |dA™2AT2d F || p2(ry
= [1Fll z2(zv)-



Definition 1.33. The space E;uadﬁ(Tr‘) is defined by

1o
Bruoa p(Tv) i= { F € H*(Tp), |Ls[A™3d F|l 1 < +oo}

equipped with the norm

1.
IEW s, = LalATZd"F]|| L1

Note that, if || F'|| ;1 T 0, one has A~1/2d*F = 0, so that dA~Y/2A~1/24*F = 0, which implies that F' = 0 since
F € H*(Tr). Morcover, check that for all F' € H*(Tr), [|F| g, = [AT2d*F|lp ,

quad,f

ad,p

1.6 Main results
In the following results, I' is assumed to satisfy (DV) and (LB).
Theorem 1.34. Let M € N*. Then BMOBZLM(F) = BMOBZQ,M(F)-

Theorem 1.35. Let M € N* and k € {1,2}. Let € € (0, +0o0].

Then the dual space of Hpy, (T) is BMOpzi m(T) = BMOpza m(T). In particular, the spaces Hpy, o (T)
depend neither on € nor on k.

Moreover, BMOpyz(T), initially defined as a subspace of Enr, is actually included in Fay.

Theorem 1.36. Let 8 > 0 and v € {1,2}. The completion H;uadﬁ(F) of E;uad_ﬂ(lj) in LY(T') exists. Moreover,

if M € (%, 4+00) NN* and € € (0,+00], then the spaces Hp 0. (T)s Hpgoar(T) and Hp, oy 5(T) coincide. More
precisely, we have
E;uad.ﬂ(r) = HEZK,,I\/[,C(F) N LQ(F)

Once the equality Hp ;2 (T) = Hpzo pp (T) = Hy,ypq 5(0) is established, this space will be denoted by H'(T).
Corollary 1.37. Let My, Ms > %. Then we have the equality
BMOBZI,M1 (F) = BMOBZQ,]\/IZ (F)

Theorem 1.38. Let 3> 0. The completion Hy, o4 5(Tr) of E},q 5(Tr) in L' (Tr) exists.
Moreover, if M € (% — 1 +00) NN and € € (0,+00), then the spaces H;ZQ,]\J-{-%,G(TF) and Hy,.q5(Tr) coincide.
More precisely, we have

Eéuad,ﬂ(TF) = HéZ?,MJr%,e(TF) N LQ(TF)'
Again, the space HEZZIV[JF%,C(TF) = H;uad.ﬂ (Tr) will be denoted by H!(Tr).

Theorem 1.39. For this theorem only, assume furthermore that (', u) satisfies (UE). Then M can be choosen arbi-
trarily in N* in Theorem 1.36 and Corollary 1.37, M can be choosen arbitrarily in N in Theorem 1.38.

Theorem 1.40. The Riesz transform dA™2 is bounded from H'(T') to H(Tt). As a consequence the Riesz transform
VA~ is bounded from HYT) to LY(T).

Proof: By definition,

_1 _1 S R |
1A= flla () ~ NdAT= fllan, vy = [ATEAAT2 fllg, oy = 1 F @) = [l @)-

wad,1 quad,1

Therefore, dA~% is H'-bounded. Moreover, ||VA’%f||L1(p) = ||dA’%f||L1(TF) < HdA*%fHHl(TF). Indeed, the
uniform L'-bound of (BZ2, M + 1, €)-molecules (see Corollary 2.12) yields
HY(Tv) = H;ZQ,]M-%%,G(TF) < LY(Tt)

d 1
for any M > 2 — 3. O

Remark 1.41.

(a) It is easily checked that under (UE), the Hardy space H'(T') = Hp () satisfies the assumption of Theorem
5.8 in [5]. As a consequence, the interpolation between H(T') and L*(T) provides the spaces LP(T), 1 < p < 2.

Together with Theorem 1.40, we can recover the main result of [24], that is: under (UE), the Riesz transform VA~
is LP-bounded for all p € (1,2].



(b)

(c)

(d)

An interesting byproduct of Theorem 1.36 is the equality, for any € € (0,+00] and any M > %, between the spaces
Hflazﬁ,M,e(F) n LQ(F) and E}an,M,e(F) defined by

Ebzenne(D) == {f e L*(I), Z Nja; is a molecular (BZ,, M, €)-representation of f and the series converges in L*(T) }

Jj=0

and outfitted with the norm

BZk,M,e

| £l g1 = inf {Z [Asl, Z Nja; is a molecular (BZ,, M, €)-representation of f and the series converges in L*(I) } .
iEN j=0

We have similar byproducts of Theorems 1.38 and 1.39. Precise statements and proofs are done in Corollary 4.13.
As a consequence, the completion of E}an,M,e(F) in LY(T) exists and is equal to H}meM76. On Riemannian
manifolds or in more general contexts, the proof of this fact is much more complicated and is the main result of [2].
Let us emphasize that the proofs of our main results does not go through the E}an,M,e spaces.

We may replace (i) in the definition of (BZa, M, €)-molecules by

(i) a=(I—(T+s: A1) .. (I =T+ spA)~1)b, where (s1,...,5m) € [s,28]M

or

(i”) a = (I — (I +72A)~)Mb, where r is the radius of the ball B (or the smallest integer greater than \/s)

and still get the same space Hp 7o 5y (T).

However, when M > 3, it is unclear whether replacing item (i) of the definition of (BZ1, M, e€)-molecules by
(i’) a= (I — P$)M

yields the same space H11321,M,5(F)-

Section 2 is devoted to the proof of auxiliary results that will be useful for the next sections. The proof of Theorem

1.34

is treated in paragraph 3.2 and the proof of Theorem 1.35 is done in paragraph 3.3. In the last section, we establish

Theorems 1.36, 1.38 and 1.39.

1.7

Comparison with other papers

Comparison with [3]: In [3], the authors proved analogous results (that is the H' boundedness of the Riesz
transform under very weak assumptions and the various characterizations of H! ) on Riemannian manifolds.
Some differences between the two papers can be noted. First, BMO spaces are not considered there. They also
choose to define some Hardy spaces via tent spaces (while we prefer to use Lusin functionals). Contrary to us,
they introduced the spaces H?, for all p € [1,+0o0] , and proved that these spaces form an interpolation scale for
the complex method.

Comparison with [19]: This article develops Hardy and BMO spaces adapted to a symmetric operator L in a
general context of doubling measure spaces when the semigroup generated by L satisfies L? Gaffney estimates.
However, on graphs, it is unclear whether these L? Gaffney estimates for the semigroup generated by the Laplacian
hold or not. Yet, Coulhon, Grigor'yan and Zucca proved in [10] that we have L? Gaffney type estimates for the
discrete iterates of Markov operators and we only rely on these estimates in the present paper.

Comparison with [6]: First of all, as in [19], there are no results about Hardy spaces on 1-forms and the authors
do not prove the H' boundedness of the Riesz transforms. Then, as said in the introduction, they assume in
all their paper a pointwise gaussian bound of the Markov kernel while it is not required for most of our results.
Moreover, the results of the present paper stated under (UE) are stronger that those stated in [6]. Indeed, in the
results stated in [6], the constant M need to be greater than d—2“ while, in the present paper, we used the pointwise
gaussian bound in order to get rid of the dependance of M on the “dimension” dj.

Besides, the definitions of their Hardy spaces and ours a priori differ. Let us begin with the Hardy spaces defined
via molecules. For convenience, we introduce a new definition of molecules.

Definition 1.42. Let M € N* and ¢ € (0,+00). A function a € L*(T") is called a (HM, M, ¢)-molecule if there
exist a ball B of radius r € N* and a function b € L*(T') such that

(i) a = [r?A)Mb,

10



(i) [P A)*D|| 12 ey < 279V (29B)7%, Vj € N*, Vk € [0, M].

The space Hiypy ap (L) ds then defined in the same way as Hp . ().

Using methods developed in [19] and in the present paper, it can be proved that, if M > % (or if M € N* if

we assume the extra condition (UE)), there is equality between the spaces Hyy s s (D) and Hp,oq,(T) = H'(T).

The proofs are similar to those of the present paper. The molecules introduced by Bui and Duong - we call them
(BD, M, ¢)-molecules - are the (H M, M, ¢)-molecules where we replaced r2 by r in (i) and (ii). It is easily checked
that a (BD, M, e)-molecule is a (HM, M, ¢)-molecule and hence, under assumption (UE), our Hardy spaces are
bigger than theirs.

Since they proved (as we do here) that Hardy spaces defined with molecules and with quadratic functionals
coincide, the Hardy spaces via quadratic functionals in [6] are also different from ours. Indeed, our Hardy spaces
are of parabolic type (heat kernel) while those of [6] are modelled on the Poisson semigroup. Furthermore, they
only consider one Lusin functional, while we consider a family of Lusin functionals (indexed by 8 > 0), and the
independance of Hardy spaces H, ;ua d. ﬁ(l") with respect to g is a key point of the proof of the boundedness of Riesz
transforms.

Acknowledgements: the author is grateful to E. Russ for comments and suggestions that improved the paper.
He would also like to thank P. Auscher and A. Morris for interesting discussions.

2 Preliminary results

2.1 L?-convergence
Proposition 2.1. Let 8 > 0. Let P satisfying (LB). One has the following convergence: for all f € L*(T),

N
S ar(I - PPPRFEEES f i L)
k=0

where " apz" is the Taylor series of the function (1 — z)~7.

Remark 2.2. This result extends Lemma 1.13 in [}]. It provides a discrete version of the identity
f=cs / (tA)Pe B fdt.
0

Corollary 2.3. Let (T', 1) a weighted graph. One has the following convergence: for all f € L?(T),

N
STan(I - PP f EEEE p L)
k=0

Proof: (Proposition 2.1)

First, notice that Corollary 2.3 is an immediate consequence of Proposition 2.1 since P? is a Markov operator
satisfying (LB) (see [10]).
Let f € L?(T"). Let us check the behavior of

N
| [Z ap(I — P)PPE —TI| f (13)
k=0 L2
when N — +o00. Since || P|j2—y2 = 1 and P satisfies (LB), there exists a > —1 such that
1
P = / AE(N).
Thus
N 2 1 N 2
| [Z an(I — PP 1| f|| = / lz ar(1= NN — 1] dEfr(N). (14)
k=0 2 @ k=0

11



However,
N

 \\Byk Nooo 1 forall A € [a,1)
2;““1 AA >{o ifA=1

and since the sum is nonnegative and increasing in N, then

N

D a1 =17 -1

k=0

<1 VA € [a,1].

We use this result in (14) to get the uniform bound

2

1
/o< / A () = |12 (15)

[ﬁ)ma—PWPk—I

k=0

L2

Let us focus on (13) when we furthermore assume that f € R(A), that is f = Ag for some g € L*(T"). The identity
(14) reads as

2 2

N 1 N
‘ [Z ar(l— PP —1I|f| = / lZ ar(1 = NN — (1= )| dBgy (V).
k=0 L2 @ k=0
Yet, chvzo ar(1 — N)PTIAF — (1 — \) converges uniformly to 0 for all \ € [a, 1].
Consequently, for all € > 0, there exists Ny such that, for all N > Np,
N 2 1
| lzak(lp)ﬁpkl f Sf/ dEgg()‘)ZEHQH%?'
k=0 L2 @
This implies
N
S ar(I - P)PPrF E22 f o in L2 and for all f € R(A). (16)
k=0

Since L? = R(A), the combination of (15) and (16) provides the desired conclusion. Indeed, (16) provides the
L?-convergence on the dense space R(A) and the uniform boundedness (16) allows us to extend the convergence
to L*(T). O

2.2 Davies-Gaffney estimates

Definition 2.4. We say that a family of operators (As)sen satisfies Davies-Gaffney estimates if there exist three
constants C,c,n > 0 such that for all subsets E, F C I" and all functions f supported in F', there holds

d(E, F)?1]"
N i e DL (17)

Hofmann and Martell proved in [20, Lemma 2.3] the following result about Davies-Gaffney estimates:

Proposition 2.5. If A; and By satisfy Davies-Gaffney estimates, then there exist C,c,n > 0 such that for all subsets
E,F CT and all functions f supported in F, there holds

d(E, F)?]"
4.5l < Coxp (- | D22 11 (19)

In particular, (AsBs)sen satisfies Davies-Gaffney estimates.
More precisely, if na and ng are the constants involved in (17) respectively for As and By , then the constant n that
occurs in (18) can be choosen equal to min{na,np}.

Proposition 2.6. Let M € N. The following families of operators satisfy the Davies-Gaffney estimates

12



M
(i) H — ZPk , where for all i € [1, M], t& € [1,2s],
i=1

SkO

M
(ii) H(I— P, where for all i € [1,M], t' € [s,2s],

i=1
(iii) (sA)M P?,
(iv) (I +sA)=™M
(v) (I =(I+ SA)_l)M = (sA)M(I +sA)™M
In (i), (ii) and (iii), the parameter n is equal to 1 and in () and (v), n is equal to 5.

Proof: (i) and (ii) are direct consequences of (GUE) and Proposition 2.5. Assertion (iii) is the consequence of (GUE)
and (LB) and a proof can be found in [13].

We turn now to the proof of (iv) and (v). According to Proposition 2.5, it remains to show the Davies-Gaffney
estimates for (I + sA)~1, and since sA(I + sA)™! =1 — (I + sA)~!, it is enough to deal with (I + sA)~!. The
L2-functional calculus provides the identity

. 1 s -t
(I+sA)~1f = (I— P) f

1+s 1+s
400 1 s k (19)
S i (1) 7
o + s + s
where the convergence holds in L2(T).
Let f be a function supported in F. Then, one has with the Gaffney-Davies estimates (GUE):
I2+58)" ey $ 3 15 (1 ) P*fllecey
+
d(E, F)? )
exp (= HE L) 1l
> (75) e (15
1 d(E, F)? k
< ) _ —
< 1l LZ_OHSGXP( e erd
—+oo
1+s dE,F)? | &k
+Z 1+ k)2 eXp<c 1+k  1+s
Yet, the function ¢ : k € RT cd(EJrIZ) + i is bounded from below and
d(E,F)
k) 2 .
Hence, the use of Lemma B.1 proved in the appendix yields
_ d(E,F) 1 X 145
I+sA)7! < _ ’ l+s
(I +sA)" fllezey S I fll 2y exp ( ¢ M) k=0 1+s +; (1+ k)2
d(E, F
S fllaacey exo (S22 ).
O

Proposition 2.7. Let k € {1,2}. Let a be a (BZ,, M, €)-molecule. Then

2 Je o
||a||L1 <1 and HG/HLZ(CJ'(B)) < V) € N*.

SveBi
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Proof: We will only prove the case where k = 1. The case k = 2 is proven similarly and will therefore be skipped.

Since . )
llallzr < Z V(2 B)2|all L2, m))

Jjz1

we only need to check the second fact. Let s € N, (s1,...,51) € [s,2s]™ and a ball B associated with the
molecule a.
j+1
Define C}(B) = U Cy(B) and observe that d(C;(B),T'\C;(B)) = 2//s. Then Proposition 2.6 provides
k

=j—1

lallrzic gy < NI = P*) ... (I = PP)[ble gy lllL2cc;my) + I = P%) o (I = PPM) bl e, )il z2o; 8))

S0l e,my) + e~ b| 2

2—j€ e—c4j
5 - T+ 1
V(2/B)z  V(B):
2-J¢

5 e oLt
V(2/B)z

O
2.3 Gaffney estimates for the gradient
Proposition 2.8. Let (T', 1) satisfying (LB) (note that (DV) is not assumed here). Let ¢ > 0 such that
8c
See 4. (20)
€LB

There exists C' > 0 such that for all subsets F' C ' and all f supported in F', one has

d2(.,F

Hpkfec T )

< COlfl

L2
The proof of Proposition 2.8 is based on the following result of Coulhon, Grigor’yan and Zucca:

Lemma 2.9. Let (I',n) satisfying (LB). Let (k,x) — gr(x) be a positive function on N x T'. Then, for all finitely
supported functions f € L*(T') and for all k € N,

|v9k+1 ($)|2 ) m(m)

derBGr+1(x)

Vo P f e = [VaeP fl5e < SO 1P f(a)? (gk+1($) — gi(x) +

zel’

Proof: This fact is actually established in the proof of [10, Theorem 2.2, pp. 566-567]. O

Proof: (Proposition 2.8).

First, let us prove the result for f supported in a finite set F' C I'. Let f (finitely supported and) supported in F.

We wish to use Lemma 2.9 with

2042 (@, F)

gk(;p) = e k+1

Check that, with Taylor-Lagrange inequality

{ 2cd?(x, F) 5, @2 (e, F) }

_ < T1
gre+1(z) — gr(z) _teI[E,%)il] (t+1)2 €
d(z, F)\>
=—-2c <7k+2 > 1 ().

In the same way, one has
deld(x, F) + 1] o ld(z.F) 4112
Vgit1(r) < —[ (k ; ]62 k2,

14



Since f is supported in F, then P*f is supported in {x € T, d(x, F') < k}. As a consequence, we can assume in
the previous calculus that d(x, F') < k and thus

[d(, F) + 1] _ &(x, F)

2.
kr2 - ki2

Then

Vg (@) _ <[d(x’F) ha 1])2 4626869“1(@)-

derpgr+1(x) — k42 €LB
First case: d(z, F') > 1, then

2 C

Vi (@)? _ (dlz, F)\" 16c%e® st (2)

derpgryi(z) — \ k+2 €LB
and by (20),

[Vghi1(2)]?
) — gp(x) + ———"2_ <0.
gk+1( ) gk( ) 46Lng+1(.’L') =
Second case, d(z, F)) = 0, then
\Y% x)|? 1 16¢2e8¢ 2¢
gk+1($)_gk(l')+ | gk+1( )l <

<
derpgpr1(z) — (k+2)2 25 — (k+2)2
In all cases, one has then P* f(x) =0 or

Vi (@) _ 2
4€Lng+1(x) - (k+2)2.

gk+1(w) — gr(z) +

Lemma 2.9 yields

d2(,F) d2(,F) 2¢
PkJrl C%ta o Pk CT%F1 < Pk 2
|proseed | et < Zimipte
and hence, by induction,
IR 2 LN~ 2 Lei2. < | £1|2
PEfetTr <|Ifllze + I P fllize S A Nze-
o 2 T+2)

Consider now a general f € L?(T"). Without loss of generality, we can assume that f is nonnegative. Let (I';);en
an increasing sequence of finite subsets of T' such that [ J;° T'; = I'. Let f; = fIp,. One has then for any 2 € T
and k € N,

fitf  and PAfi1 PES.

By the monotone convergence theorem, we obtain,

2
d2(.,F) d2(,F)
Pkfiec—k+1 /]\ Pkfec—k+1
L2 L2
so that
2
PF fec w1 = lim ||P*fec w1
L2 11— 00 L2

< sup | fill
€N
= [ f11Z--
O

Proposition 2.10. Let (T', u) satisfying (LB) (note that (DV) is not assumed here). Let ¢ > 0 as in Proposition 2.8.
There exists C > 0 such that for all subsets F C T' and all functions [ supported in F, one has

1122
<(C .
2 T WVk+1

d2(.,F)

vakfe% R
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Proof: The proof of this proposition is very similar to the one of Lemma 7 in [24]. We define

L cd?(LF) 2
I =I(f) = ||VP*fes 5T

L2
One has then
1= % pla,y)|Pr() - PHy) e FF m(aymiy)
z,yel
= 3 play) [P f(2) — PFE) P* f () 5 m(zymiy)
xz,yel
= 3 pla P () — PRI f)e T m@)m(y)
z,yel’
=23 pla, y)[P*F(z) — PEH@)IP* f(2)es T m(z)m(y)
z,yel
+ 3 pla,y)[PFf(a) — P*F(y)|P* f () [ecdk‘il“ — e n(a)miy)
z,yel’
= 2[1 + IQ.

We first estimate I;. One has

= 3 Pr (@) T m(z) 3 pla, ) [P () — P F)lmiy)

zel’ yel’
= 3°(1 = PYP* f(2) P* £ ()= T m(w).
xzel’

Consequently, with the analyticity of P and Proposition 2.8, we get

k kop el
I < (I = P)Pf|[L2 || P" fetw

w 21)
S 2

We now turn to the estimate of I5. One has, since d(z,y) < 1 (otherwise p(z,y) = 0),

ecd2l§<y#f) — ecd%if) 27[6“% F) +1] ecdigi'lm
- E+1
1 3_ (. F)
2 k+1
\/_
Since f is supported in F, P*f is supported in {z € T, d(z,F) < k}. Consequently, we can assume that
d(z,F) <k +1 so that
d(x, F 12 d*(x, F
e F) 1P _ PF)
k+1 k+1
Therefore, the term I can be estimated by
3¢ d%(x,F)
1Ll S 77— > [P f() = PEF(y)I[P* f(2)]e® TR m(z)m(y)
k+ z,yel’
1 d2(x,F) 2 (2, F)
S——=—=| D IP"f(x) = P*f(y)fPe” 77 m(x)m(y) S PR @) PR ma)m(y)
k + 1 z,yel’ z,yel’ (22)

et

1
N 7\/k1
g FAIPZR

L‘Z

k+1
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where we used again Proposition 2.8 for the last line.
The estimates (21) and (22) yield

I + ) = [l

Nk:—i—l k:—i—l

that is
15 =51

which is the desired conclusion. O

Corollary 2.11. Let (T, ) satisfying (LB) (note that (DV) is not assumed here). Let M € N. The following families
of operators satisfy the Davies-Gaffney estimates

(i) sM+3vAMPps,
(i) sMT2VAM(I 4+ sA)~M~32

Proof: According to Propositions 2.5 and 2.6, it is enough to check that /sVP*® and /sV(I + sA)’% satisfy Davies-
Gaffney estimates.

Indeed, Proposition 2.10 yields, if E, F C T, f supported in F' and ¢ > 0 satisfy (20)

c d(E,F) c d?(,F)
VSV P fll p2(myed 71 < /5 ||VP" feb 531"

L2

< Yoy
vs+1

It suffices now to check that /sV (I + SA)_% satisfies Davies-Gaffney estimates. First notice that
VSV +sA)72 |2 = [|(sA)? (I+SA flle
= H (I+sA)”
< [Ifllze-

Then the family of operators /sV (I + SA)_% is L?-uniformly bounded. Hence, we can suppose without loss of
generality that d(E, F)? > 1+ s. Write,

1 1 S 7%
I+ sA)% -2 p
(I+sR)72f = 1+s< 1+ s ) /

1 > s
= -~ ) pk
v1+skz_%a’°<1+s> /

where S agz® is the Taylor serie of the function (1 — z)~% and the convergence holds in L2(I'). Note that
ar, ~ vk +1 (see for example [17], Lemma B.1) and

o0 k
_1 Vs 1 S
VAV + o8l § s S m<1+s) IVP*flaae)
<Y 1 (75 ) oot

1+s

o0

d(E,F)2
<l g 2 1) et

<l STn e
~ W e Fy
k=0
1+k
k=s+1



where we used (i) for the second estimate and Lemma B.1 for the last one.

Arguing as in the proof of Proposition 2.6, we find

1 - 145 _oawn
[VsV(I+sA)™2 l2my S ||f||L2m€ Vits
S 1z,
since we assumed that d(E, F)? > 1+ s. O

Corollary 2.12. Let M € N. Then if a = sMT3dAM (I 4+ sA)"M~3b is a (BZy, M + 1, €)-molecule associated with
the ball B, then
27J¢

—  _ VjeN~
V(2iB)3 J

||a’||L1(Tl") Sl and HGHLZ(TCJ-(B)) S

Proof: First, notice that

lallizy <D VETB)? |z = lla(z, )z, | 2o, )
j=>1

Then it remains to check the last claim, that is
27Je
V(2 B)2

||a||L2(ch(B)) = ||$ = ||a(ac, ')HTIHC]‘(B) S

Since a = sM*+2dAM (I + sA)~M~3p, then
z s la(z, )|z, = sMTEVAM(T + sA) "M~ 3(2).

We conclude as in Proposition 2.7, using the Davies-Gaffney estimates provided by Corollary 2.11. O

2.4 Off diagonal decay for Littlewood-Paley functionals
Lemma 2.13. Let M >0 and « € [0,1]. Define A= {(A;i’“)leN*, d € Ry, u € N}, where, for alll > 1,

(18]

d,ui [e%
AP =

Then there exists C = Chy,o such that

Proof: The proof is similar to Proposition C.2 in [17]. O

Lemma 2.14. Let M € N* and 3 > 0. Then there exists Car,g such that for all sets E, F C I, all f supported in F,
all s € N and all M -tuples (s1,...,su) € [s,25]M, one has

d(B,F)>\ M
AEIE) e

ILg(I = P*1) (I = P f|| oy < Crrg (1 +

Proof: The proof follows the ideas of [17] Lemma 3.3 (or [4] Lemma 3.2 if 3 = 1). First, since Lg and (I — P**)...(I —
Psm) are L2-bounded (uniformly in s) and without loss of generality, we can assume that s < d(E, F)?.

Denote by 7 the only integer such that n+1 > g+ M > n > 0. Notice that M —n < 1—-3 < 1 and thus M —n < 0.

We use the following fact, which is an immediate consequence of Proposition 2.1

AB-!—Mf:(I_P)ﬂ-i-Mf:ZakPk(I_P)n-Hf VfGLQ(F)
k>0
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where >~ axz" is the Taylor serie of the function (1—z)?*M="~1 Notice that if 3+ M is an integer, then a, = &y (k).
By the use of the generalized Minkowski inequality, we get

HLﬁ(I - PS)MfHLZ(E)

Nf=

- m(z) 1+n—M ; ktl—1 2
<> an | Y PP N m(y)| AT = P (T - P PR f ()
k>0 1>1 i Vi VD) yeB(z,VI)

N

M a 28—1 m(z) m 1470 ph+l+t—1 2
S DY ap |1 Ziv(x,\/i) D my) AP f(y))

tef0.2Ms] 1 =1 oy yeBEA)

=

S s D e (DY m(y)ATTPH L) Y e

te[0,2Ms] 13 51 yeDi(E) e B D V(x, V1)

=

5 sM sup Zak Zlwfl||A1+77Pk+l+t71f||2L2(Dl(E))
te0,2Ms] ;= >1

=sM sup  A(t)
t€[0,Ms]

where Dy(E) = {y € T, dist(y, E) < V1}, and where we notice that Z _m@)_ < 1 with the doubling
€B(y.VI) Vi, Vi)
z€B(y,

property.
1- Estimate when 1 < d(ETva

The important point here is to notice that dist(F, D;(F)) >
estimates (Proposition 2.6, (iii) ) , we may obtain

1d(E,F) Z d(E, F). Then, using Davies-Gaffney

d(E,F)?
exXp | —c¢ [

140 phtl+t—1
AT PR ey S gy 1 2
ex (—cd(E’F)Q) ( 3)
< l]w,,,7 p I+k+t
< e Wl
since M —n < 0.
2- Estimate when 1 > d(ET’Ff
We use the analyticity of P to obtain,
[AYET PR E s oy < 11— PYFTPR L] o )
1
< mﬂfﬂm
_ 1
<M "m”f”m (24)
_ d(B.F)?
_ M_nexp CITR

where the third line is due to M — 7 < 0 and the last one holds because | + k > d(E, F)?.

3- Conclusion
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The first two steps imply the following estimate on A(t):

d(E,F)? ) 2

1 eXP( Cl Tt
Alf) < 2 |j(B+M—n)
()NI\fI\LZ(m];)“k »le (k+1+t)1+M

A(B,F)*

Xp( CO kTt )
< HfHLZ(F)ZakZ Lyeem-m

1+M
k>0 >1 k +i+ t)

where we used Lemma 2.13 for the last line (indeed, 8 + M —n € (0, 1]). Check that Thus since

,_.

m—
ap(m — k)PTM=n=1 <1,
k=0

Indeed, when S+ M —n = 1, the result is obvious. Otherwise, it is a consequence of the fact that aj, ~ k7~ =5
(see Lemma B.1 in [17]). Hence, one has

exp( d(E?)
m+
MO Sz D g yrea

m>1

E, F)20+M) d(E,F)?
= d(B. )0 e LD (_07< ) )

1+M
= m+ )+ m+t
d(E,F)?
3 d E,F 2(14+M)
S E gy | 3 1 Y (B, F)

1+ M
m>d(E,F)?2 (m+1)

SAE,F) M| fllp2cr)

As a consequence,
' d(e F)P\ "
2ol = P ] oy S (45 11z

which is the desired conclusion.

O

Lemma 2.15. Let M € RY and 3 > 0 such that either M € N or 8 > 1. Define the Littlewood-Paley functional Gg
on L?(T) by

2

Gaf(w)= | Y PP AP f(a)? Vo eT.

1<1

Then there exists Cpy > 0 such that for all sets E, F C T, all functions f supported in F and all s € N, one has
(B, F)2\ M
G862 Ty < Cao (LEEE) 7

Proof: The proof is similar to the one of Lemma 2.14. Notice that sup A(t) is replaced by A := A(0). Then the end
te[0,Ms]

of the calculus is the same provided that 7 — M > 0, which is the case under our assumption on M and 3. See

also [17, Lemma 3.3]. O

Lemma 2.16. Let M € N. Then there exists Cpr > 0 such that for all sets E,F C T', all f supported in F and all

s € N, one has
, d(E, F)2\ M3
s —aesayypety] <o (14 BEEE) g,

1
2 LZ (E)
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Proof: Since Ly and (I — (I + sA)"1)M+3 gre [2-bounded (uniformly in s) and without loss of generality, we can
assume that s < d(E, F)%.

We use the following computation,

-M-1
(T+5A8) M3 f = (14 8)T—sP)™M% = (145" M3 (1 e 5P> ;

) s \* (25)
-1 -M-1 _s k
(1+5) Zak(1+s) Pty
k>0
where " ayz* is the Taylor series of the function (1 — z)~™ ~2 and the convergence holds in L2 (T).
By the use of the generalized Minkowski inequality, we get
HL%(I ~ (I 4 sA)"H)M+3
1
+3 k ’
17M+ (1 m S) >, Z \/ > my) AT PRy
( + S) 2 > 1>1 zEE ) yEB(m,\ﬂ)
ST () (B E mwarecsgr B E
< )| A P f —_—
= M+1 1
(1+5)%= T 1>1 yeDy(E) seniy | @ Vi)
1
stz : 14+M pk+l—1 ¢)|2 )
_— A prTtT
(1+5)M+2 7 <1+s> 1221” f||L2(Dl(E))
When [ < @, notice that d(F, D;(E)) 2 d(E, F) so that
M pk+l eXp(_Cdzl(Ech))
[ATM PR ey () S WWHL?- (26)
Moreover, when [ > @, one has
HAlJrI\/[PkJrlflfHLZ(Dl(E)) S |‘A1+I\/[Pk+l71f||L2
1
S o ez
G ] (21)
d*(E,F
- exp(—c l(+k ))
~ (l + k)]\/[_l,_l HfHL2
As a consequence
> 3
| S]\/j_,_% s k exp(—cd l(E;CF))
bt b, s s () (e
H 2 2(B) ~ (14 s)M+z Igo 1+s lzzl (I + k)2(M+1)
1
2 2
< S]M+ HfHL Z ( S )k Z eXP(_Cd (gyF))
Tt s\t gy e
sM+3 1 s
< 2
~d(E, F)PMEL (4 S)M+% £l ];)ak <1 + s>
S I\/[Jr% 1
~(qmE)  QHsa-D)
M+3
S
() e
O
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Let us now recall a result that can be found in [17], Theorem 1.4.

Proposition 2.17. Assume that (I', p) satisfy (UE). Let K > 0 and j € N. There exist C,c > 0 such that for all sets
E,FeTl and all xg € T all l € N* satisfying

sup d(zo,y) < Kd(E, F) (28)
yeF
or
sup d(zo,y) < KV1 (29)
yeF

and all functions [ supported in F', there holds

2
1 _UEF)

o C ate.r)?
I8P o) < g g™ T W lerery

and
1 LB F)?

, C
VAT pit <—a 7€ < T .
IV87P o < g Iz
Lemma 2.18. Assume that (I', u) satisfy (UE). For all M € N* and all § > 0, there exists Cpy > 0 such that for all
disjoint sets E, F € T' and all xo satisfying (28), all f supported in F' and all s € N*, one has

 ps\M Cwm d(EvF)Q)_M
260 = P s < o (o) Ml

Proof: The proof of this Lemma is similar to the one of Lemma 2.14 and we only indicate the main changes.

When [ < M, replace first (23) by

1 €xp (_C I+k+t )
A1+77Pk+l+t—1 < 1
H f||L2(Dz(E)) ~ V(ZL'(), L1l +t)% (l Tk +t)(1+77) HfHL
. o (_cd<EvF>2) (30)
- I+k+t
S 1122

Y V(o d(E, F))s (L4 E+ )

where the second line holds because M — n < 0 and the first one holds by Proposition 2.17. Indeed, there exists
K > 0 such that

sup d(zo,y) < Kd(E, F).
yel

Thus, xo, D;(F) and F satisfy (28) with constant 4K .
When [ > M, replace also (24) by

1 1
AlJrnPkJrlthfl < .
H Hlexoimy & g ot i+ o e
[M—=n exp (fcdl(f];if) (31)
<

S Viao d(B, F)E Gt ir e e

where the first line follows from Proposition 2.17, since xq, F' and k4 [ + t satisfy (29), and the second line to the
facts that k +1 > d(E,F)? and M —n < 0. a

Lemma 2.19. Assume that (T, u) satisfy (UE). For all M > 0 , there exists Cpy such that for all sets E,F € T' and
all xo satisfying (28), all [ supported in F and all s € N*, one has

HL%(I -+ SA)*l)MJr%f’

- Cwm <d(E7F)2)_M_%
L2(B) ~ V(xo, d(E, F))*
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Proof: The proof of this Lemma is similar to the one of Lemma 2.16 and we only indicate the main changes.

When [ < M, replace (26) by

1 exp (*C—d(f’f)Z)
AM pkti=1¢) < +
(B (32)
1 exp ( —c=3%
5 I 1+M ||f||L1
V(ZCQ,d(E,F))2 (l+k)
where the first line holds due to Lemma 2.17 since x¢, D;(E) and F satisfy (28).
When [ > M, replace also (27) by
AP ) § ——— el o
(Di(E)) ~ V(wo, VE )T (k+1)1+M
d(B,F)> (33)
1 exp (—c—(lJr,C )

<
¥ Viao.d(E,F)F (k4D

£l

where the second line follows from Lemma 2.17, since xg, F and k + [ + ¢ satisfy (29), and the third line to the
fact that k +1 > d(E, F)2. O

3 BMO spaces

3.1 Dense sets in Hardy spaces

Lemma 3.1. Let M € N and x € {1,2}.
For all € € (0,400), we have the following inclusion

M e
My (T) = HEZK,,I\/[,OO(F)

and for all ¢ € ./\/léw’E(F),
¢||Mé‘4v6-

1011211

BZk,M,c0

S C'M,e|

Proof: Let ¢ in M(I)V[’C(I‘). Then there exists ¢ € L2(T) such that ¢ = AM¢ and for all j > 1,
el L2(cy B0y 2 S 16l pgaeee-

Observe that 1 ()
{y}\
) = g Ay ———= Ve el 34

where a, = @(y)m(y). In order to prove that ¢ € Hp,. 3/ o, it suffices to prove

(i) for every y €T, AM% is, up to a harmless multiplicative constant, a (BZ,, M)-atom,

(i) Z lay| < H(b”/\/lé‘“a

yel’

1
(iii) ¢ = Z ay, AM {(y}) where the convergence holds in L!(T").
m\y
yel

It is easy to check that AM% is a (BZ1, M)-atom associated with s =1, (1,...,1) and the ball B(y,1). When

k = 2, notice that

I+ (M2 + 1)A)M Il{y} .

av ok _ e g ya ) ( M2 m(y)

m(y)
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is supported in B(y, M + 1) and

2M? +3 ]l{y}
<
A\ M2+1

M
I+(M2+1)A) Ly

Moreover, ( EES] ()

I+ (M2 + 1)ANY Ty,
M2 41 m(y)

LZ

A

A

For point (ii), remark that

Z|ay|:2 Z |ay|

yel j21yeC;(Bo)

<[ v b)) e mon?

Jj=1 \yeC;(Bo)

W=

S ZV(QjBo)
j=1 yGCj(BU)

= ZV(QjBo)E lell2(c; (Bo))

jz1
< 326y
jz1
< 1] e

N
S
—
&
T

3
—
&

For point (iii), notice that (ii) implies the L!-convergence in (34). The result is then a consequence of the L!-
boundedness of A. O

Lemma 3.2. Let M € N* and let B C T be a ball. For all s € N*, define A, as either (I — P5).. (I PsM) with
(51,...,80) € [1,25]M, or (I — (I +sA)"HYM. If o € L?(B) then, for all s € N*, ¢ > 0 and M € N*, Ayp € M(I)WG( ).

As a consequence, if [ € En for some M € N, then for all s € N we can define Asf as a linear form on finitely
supported functions and

As f € Lloc(F)

Remark 3.3. In the case of graphs, a distribution g is in L} (I') means that we can write g(x) for all x € T, that is g
is a function. On the contrary, notice that each function on I' belongs to L .(I') and we use then the notation L7, (T)
only by analogy to the case of continuous spaces.

Proof: Fix € > 0 and let p € L?(B) for some ball B and k € N such that B C 2872 B;. The uniform L2-boundedness
of As(sA)™M yields

sup 2jEV(2jBo)%HAsA_M§0HL2

1
5 SMQkGV(QkBo) 2 H‘PHLZ(B)-
Jellk+1]

(C;(Bo))
Moreover, Proposition 2.6 implies, for j > k + 2

) ) 1 1 o2
2V (20 By) 2 ||A5A_M < SM2]€‘/(2JBO)E *2/;H<,0HL2(B)

‘P”L%c (Bo)) ~
4 % 1

< MY (Bo) o] 1)
where dj is given by Proposition 1.5. One concludes that A, € M) (T) and

e do € 1
1Aspl pqpre S sMFEEF IRV (2R Bo)E ]| 12 (35)
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Let us prove the second claim of the lemma. Let € such that f € (M{"“(T"))*. For all balls B and all functions ¢
supported in B, one has

|<A5f7 90>| = |<fa ASQO>|
S Fll ey [ Asipll g

< 1l gy el o

which proves the lemma since the estimate works for any ball B and any ¢ € L?(B). O

Definition 3.4. Let x € {1,2} and M € N*. Define Hp,, 1, (T) as the subset of Hp . 1 (T) made of the functions
g that can be written as g = Zfio Aia; where \; € R and a; is a (BZ,;, M, €)-molecule and

N

SIS 2l -

=0
Lemma 3.5. For x € {1,2} and M € N*, the set Hy,, ), () is dense in Hp,, 5 (T).

Remark 3.6. This lemma is identical to Lemma 4.5 in [5]. However, we present here a different proof.

Proof: Let k € {1,2} and M € N*.

Let f € H,ézmM’e(F). There exist a numerical sequence (\;);eny € ¢1(N) and a sequence (a;)ien of (BZ., M, ¢)-
molecules such that f =" \;a; and

3
Z |>\Z| = §HfHHEZN,A4,6.
i€N
N
. We set g = Z)‘iai' Then

=0

Let n € (0,%). There exists N € N such that Y,y [As| < 0l f[| g2

BZr,M,e

Z )\iai

i>N

I1f = gl =

BZr,M,e

1
HBZK/,J\l,S

<Y <l f

BZk,M,e
i>N

and, therefore | fl|gy
K, M,e

+ 1l fll , which implies

BZk,M,e

< llgll e

BZk,M,e
N
3
> il < 30l
1=0
< 3
< s 19

< 2[lgll

BZr,M,c

A

Lemma 3.7. Let k€ {1,2} and M € N. Let 0 < e < € < +o0o. Then Hpy, 5 (T) C M

M,e
0o -

Notice that the case € = 0o is proven in Lemma 3.2. Let € < 400 and a = Asb be a (BZ,;, M, €)-molecule associated
with s € N* and the ball B of radius y/s. For all j > 1, Corollary A.2 provides a covering of C;(B) with balls of
radius /s and with bounded overlapping. We label these balls as (B;)icr,. . Consequently,

Proof: Since ./\/léw’6 is a vector space, it is enough to prove that for each (BZ,, M, €)-molecule a, one has a € M

lall wqsee < 3 14x(00c, () e

j=1

<33 144615

j>1iel;

M,e.
My

25



Moreover, d(B;, By) < 291* where k is such that B C 28¥2B;. Thus Lemma 3.2 implies
lal e < o 3 3 20+ (234 B )
J>14el;

< Cs Z 2(j+k)€V(2j+kBo)% 10l L2(e, By

i>1
1
2Utk)e (y(21HkBy)\ ?
< — -
<oy 55 (V)
j=1
S 052k(6+%) Z2j(€—€)

Jjz1

< +00

where C; denote C;(B) U Cj_1(B) U Cj41(B), and where we use the definition of a (BZ,, M, €)-molecule for the
third line and the fact that 201+ By ¢ 20tF+2 B, O

3.2 Inclusions between BMO spaces

Lemma 3.8. There exists C > 0 such that for all s € N*, all M-tuples (s1,...,sum) € [[8,2s]*, all balls B of radius
/s and all functions f € BMOpgz2,m, one has

; s 1
(= P*) ... (I = P fll 2y < CV(B)Z | fll Bros 2200

Proof: For s € N*, the operator @ stands for
ZP’“ (I — P*)(sA)™?

For all s € N*  all sg € [[s,2s] and all f € &, one has
(1= P*)f = (I— P)(I +sA)(I +sA)"1f

( Z Prf ) (I +sA)sA(I +sA)f

_ [S_OQSO + (L= P)| (1= (I +s8)™)f

Recall that all terms make sense and are in L?, (T), according to Lemma 3.2. As a consequence, for (s1,...,sy) €
[s,2s]*, one has

(T—P)...0—pP)f=]] {%Q Y (- Psi)} (I—(I+sA)y"HMy (36)

i=1

Since 2 < 2, Proposition 2.6 yields that H [ Qs, + (I Psi)} satisfies Gaffney-Davies estimates. Hence,
i=1

1= P T = P2 gy < D2 TT[2 Qe + (= P)] (e, (= (14 58) 1) ]

i>1 lli=1 L3(B)
SN = I+ s8) )M fllzae,
7j>1
< Z e_c47 H I + sA)” ) If||L2(2j+lB)
7j>1
’S Z eiC4]V(2j+1B)% HfHBJWOBzz,M
j>1
5 V(B)§ ||f||BMOBZ2,M
where the last line holds thanks to Proposition 1.5. 0
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Corollary 3.9. Let M € N*. Then BMOpz2 nm (') C BMOpzi m(T). More precisely, for all f € BMOpgzo,m(T),

||f||BMOBZ1,M 5 HfHBJWOBzz,M'

Proof: Immediate consequence of Lemma 3.8. 0

We want now to prove the converse inclusion, that is BMOBZLM(F) C BMOBZQ,M(F). We begin with the next
proposition, inspired from Proposition 2.6 in [15].

Proposition 3.10. Let M € N*. There exists C > 0 only depending onI' and M such that for all f € BMOpz1,m(T),
for all balls B = B(xg,+/s) and all integers (a,by,...,byr) € N x [0,2s]M,

do+1

a 1
HP (I_Pbl)"'(I_PbM)f||L2(B) <Cas* V(B)2 ||f||BMOBZ1,M

where as = max {1, %}

Remark 3.11. We can replace a%t! by a%otc with ¢ > 0 in the conclusion of the Proposition 3.10 (in this case, C
depends on €).

Proof: (Proposition 3.10)
(1) Let us prove the proposition when s < Iﬁlin ]] b;. The case where a = 0 is a consequence of the definition of
ie[1,M
BMOpz1,m and will therefore be skipped. Let (B;)icr; be the covering of C;(B) provided by Corollary A.2.
Then,

1P(1 = P*)... (I = P")fllr2(m)

49b
ST =PP) o (I = P)fllp2cymy) + D exp <c7) (T —P)...(I = P™)fllr2(c;(m))

Jj=2

47p
< ”(I - Pbl) ce (I - PbM)fHLZ(4B) + ZeXP (—CT) H(I — Pbl) R (I — PbM)f||L2(2j+1B)
Jj=2
1 47h (37)
SVUAB)? || fllBroszia + Z Z exp (—07) (1 = P*) .o (I = P") fll L2,

j>2icl;

1 . 47p
S/ V(B)2||f||BMOBz1,M 1 +22jd0+1 exp (_CT)
Jj=2

do+1

1
5 V(B)2 ||f||BMOBZ1,MaS 2

where we use the Davies-Gaffney estimates for the first line and the doubling property for the last but one
line.

(2) General case. For each b; < s, write
(I — P¥%) = (I — P*) — P (I — P?*7"%),
Hence, P%(I — P)...(I — P®) can be written as a sum of terms
Pi(I — PPy, (I — PP
where b; € [s,2s] and @ € [a,a + Ms]. The general case can be then deduced from the previous case.

O

Proposition 3.12. Let M € N*. There exists C > 0 such that for all balls B of radius \/s, all integers b € [0, 2s] and
all f € BMOBpBzi,m, one has

(I = (I +bA) ™M fll 125y < CV(B)2 || | BMOs 71,00
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Proof: Let ¢ € L?(T) supported in B. Recall that Lemma 3.2 states that ¢, (I — P*)... (I — P¥)p and (I — (I +
bA) )My are in MOI ¢ for all € > 0. Moreover, for all b € N, one has

b -1
-1, _ “1(7_
(I+bA) o= (1+0) (I 1+bP) 7

“+o0 k
w) () 7

:Z — ) (— ) Prop

k_1<1—|—b 140

where the convergence holds in L?(I"). Consequently,

(I —(T+bA)Y)p = io <1L+b) <1L+b)k (I = P")e

k=1
and thus,

(I—(I+bA)"HMp= (ﬁ)M S <1L+b)k S PR (- PRy

k=1 ki+-+kv=k
where the convergence still holds in L*(T).

In order to prove that the convergence holds in Méw © for all € > 0, it suffices to show that

1 M +oo b k
=\ FRA — ph — phu M,e .
s.<1+b) ;(Hb> > o o JI-Py.(1-P )Pl aqarne < +00

ki+-+km=k

Indeed, according to (35), one has

1 M +oo b k B
() X)X H el
kf

ki+-+kn=k
+iok+1M++ < b )k
H@HLZ(B)
P (1+0)M 1+
+oo 1
< p5tit2
~ Z 1_'_]{/,)QHSDHL (B)
< 400

where the third line comes from Lemma B.1.

For f € Eu, there exists € > 0 such that (./\/léw’e)*. Moreover, Lemma 3.2 states that (I — (I + sA)™)Mf and
(I — Pkv)y .. (I — PF)f (for all (ky,...,ky) € NM) arein L? (T). As a consequence,

loc
(1 = (I +6A)")M fll L2y = sup [(f, (I = (T +0A)"H)Mp) |
Supw o B

g(ﬁ)”f(%b) S swp [{(fI- PRI — PR

k=1 ki+-+kp= kSHg;llfpclB
1 M +o0 b k
= (—1 +b) > (—1 +b) S =PRI PR ]|
k=1 ki+-+kn=k

where the pairing is between /\/léw “ and its dual. Therefore

1 M +o0 b k
=08 P o s (1) 2 (155) 5 0= P = Pl
k=1

ki+-+kn=k
1 M b b k
< (1+b) Z( er) Z H(I_Pkl)-'-(I_PkM)fHLZ(B)
k=1 ki+-+kv=k

b k

(113 +b) (53) (T = P) .o (T = P fl o

k=b+1 ki+-- JrkM k
= Il +IQ



We estimate the first term with Proposition 3.10 and Lemma B.1:

b k
(14 k)M-1 b .
I E y V(B)2
13 £ 1+b (1+b) HfHBJWOBZ1,M ( )

=
—

5 (1 + b)_l ||f||BMOBZ1,J\4V(B)E
0

1
5 HfHB]WOBZ1,MV(B) 2.
We turn now to the estimate of the second term. One has, using Proposition 3.10 and Lemma B.1 again,

1 M o b k
I < (—1+b) 2 (m) > =Py I = POl g
k=b+1

ki+-+kn=k

S 1+ E\M b \* 7 \°
Z <1+b> (1——|—b> | fllBMOE 1 2V EB

- M+ 41 k 1
( ) (1+b) HfHB]\/IOBZLMV(B)E

b
Il

M

szm(

k=b+1

1
HfHBIV10521 Z\/IV(B)2

1
5 ||f||BMOBZ1,J\4V(B)2)

where we used Proposition 1.5 for the third line. O

Corollary 3.13. Let M € N. Then BMOpzi m(T') C BMOpzom(T). More precisely, for all f € BMOpzi v (T),

”f”BMoszz,M /S HfHBI\/[OBZI,Z\/I'

Proof: Immediate consequence of Proposition 3.12. O

3.3 Duals of Hardy spaces

Proposition 3.14. Let k € {1,2} and M € N*.
Let € be a bounded linear functional on Hpy, ;o (T). Then £ actually belongs to BMOpz, n(T) N Far and for all

9 € Hpy, a1.00(T), there holds
tlg) = (L,9) (38)

where the pairing is between Méw’e(l") and its dual. Moreover,

||£HB]\/IOBZ~,A4 HEH(HBZ,@ Moo

Proof: Let k € {1,2} and M € N.

Let ¢ in [H%%ZK,M,oo( )] According to Lemma 3.1, £ € (.. [ é”’e} = Fpr. The following two claims

(1) HlBZn,M,oo(F) C MA/I 6’
(i) H}BZH,M,OO(F) is dense in H}an,M,oo(F)v

are respectively a consequence of Lemma 3.7 and of Lemma 3.5. They imply that (38) makes sense and uniquely
describes £.

It remains to check the last claim, that is

[l Baron S 1€l car

BZk,M, oo)*
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Fix s € N*, a M-tuple (s1,...,sn) € [s,25]*, and a ball B of radius y/s. We wrote Ay for (I — P*1)... (I — P$M)
if k =1 and for (I — (I +sA)"HM if x = 2.

Let ¢ € L?(B) with norm 1. Then

1
—Asp
V(B)=
is a (BZ,, M)-atom. Thus,
1
TRE
V(B)2 H}?ZN,A{,OC
i.e.,
1 1
Al = ——[{ A,
V(B)%H ©) | V(B)%l( ) |
S, e

Lemma 3.2 provides that A,/ € L? (T'). Taking the supremum over all ¢ supported in B, we obtain

loc

1

2

1
— A l(x)|Pm(x < |l me .
(71 T ettonto)) < ..,

Finally, taking the supremum over all s € N*, all M-tuples (s1,...,sn) € [s,2s]™ and all balls B of radius /s
leads us to the result. O

Proposition 3.15. Let k € {1,2} and M € N*.
Let e >0 and f € BMOpz.m(T) N Far. The linear functional given by

Ug) = (f,9)

initially defined on H}gzmM,ze(F), and where the pairing is between Méw’
to HEZK,M,QC(F) with

€ and its dual, has a unique bounded extension

141l 2 y» S BB 2 ar(D)-

BZk,M,2e¢

Proof: Let r € {1,2} and M € N*. In the proof, As will denote (I—P*1)...(I—P*™) (for some (s1,...,su) € [s,2s]M)
or (I — (I +sA)"1)M, depending whether & is equal to 1 or 2.

Let us prove that for every (BZ,, M, 2¢)-molecule a, one has
| <f’ a’> | 5 HfHB]\/IOBZn,]W' (39)

Since f € Far, then f € (Méw’g) . In particular, Lemma 3.2 provides that Af € L? (I'). Thus, if a = Asb is a

loc

(BZ,, M, 2¢)-molecule associated with a ball B of radius /s, we may write

(.0} = |3 Asf@b(e)m()

zel

< DMz lbllzae; )
j=1

<> 279V B) E || Auf | 12inn)
i>1

< Z 272]'5‘/(23'3)*%1/(2]'*13)% | fllBMOBZ 0
i>1

5 ||f||BMOBZn,1\4?

where we used for the last but one line Proposition 3.10 (if x = 1) or Proposition 3.8 and Corollary 3.9 (if x = 2).

Our next step is to show that for every g € H}BZ&M’QU we have

[(£:9) | S Mgl

BZk,M,2¢

fHB]\/IOBZn,]W'

30



Indeed, let N € N, (\;); € [0, N] € RY and (a; = Ay, bi)icqo,n] a sequence of (BZ,, M, 2¢)-molecules that satisfies

g= Z)\ a; and Y |\ | < 29l vpae then
N
<) Il 1(as)]
=0
N
S 18MOssne Y IN
=0

< ||f||BMOBZN M ”gHH

BZk,M, 2¢°

. 1 . . 1 . . .
Since Hpz, pr.oc is dense in Hp oy o,, £ has an unique bounded extension that satisfies

H£||(H )* /S HfHBI\/[OBZR,]\/I'

BZkK,M,2e

Proposition 3.16. Let k € {1,2} and M € N*.
Let f € BMOpz. (1) and let € > 0 such that f € (Mp"(T))*. The linear functional given by

Ug) :=(f,9)

initially defined on H}BZ&M’OO(F) which is a dense subset of Méw’s, and where the pairing is that between MémS and
its dual, has a unique extension to H%%ZK,M,OO(F) with

1€l crr SN f1BrO5 2,0

BZk,M, oo)*

Proof: Same proof than Proposition 3.15 with obvious modifications. The only difference is: in Proposition 3.15, € > 0
is given by the Hardy space HEZK7M72€ and in Proposition 3.16, € > 0 is given by the functional f € &y;. O

We turn now to the proof of Theorem 1.35.

Proof: Let k € {1,2} and M € N*.
Proposition 3.14 and Corollary 3.16 provide the continuous embeddings

(Hp 2 01,00)" = BMOpzi it N Far = BMOpzeng = (Hp g ar.00)™

As a consequence, BMOpz, a is the dual space of Hé; Z ke, M .00 and is actually included in Fa,.

Besides, Propositions 3.14 and 3.16 yield, for any € > 0
(H}BZK,M,OO)* — BMOBzr,m N Fu — (H}an,M,e)*-

Since the inclusion (H%%ZK,M,E)* — (HéZmM’OO)* is obvious, we obtain that BMOpgz..m N Fay = BMOpzw v is
also the dual space of Hpy, 5/ .

The last claim of the Theorem, that is for a fixed M € N*, the spaces Hp,,. 5, .(T) for & € {1,2} and € € (0, +00]
are all equivalent, is only a consequence of the proposition 3.17 below. Indeed, for m € N* and x € {1,2}, the
inclusion Hy . ;. C Hpy, pr,, When 0 < 7 < € < +o00 is obvious and then Proposition 3.17 yields the equality
between the spaces H ZwM,e LOT € € (0, +00], together with the equivalence of norms. It remains to check that,
for example, Hp 5 1 oo C Hp o pr.1- For this, notice first that similarly to (36), for a (BZ;, M)-atom a associated
with s € N*, (s1,...,8m) € [5,25]™, a ball B of radius /s and a function b € L?(B), one has

a=(I—P")...(I—P)b

= (I—(I+sA)~ MH{SZQSI (I- PS)}b

We have to check that Hﬁl [%Qsi + (I - Psi)} b satisfies, up to a multiplicative constant, the estimates given
by (ii) of the definition of a (BZa, M, 1)-molecule. This calculus, which is a straightforward consequence of the
Gaffney estimates provided by Proposition 2.6, is left to the reader. O
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Proposition 3.17. If (E,|.||g) and (F,|.]|r) are two Banach spaces with the same dual (G, ||.|¢) and moreover if we
have the continuous inclusion B2 C F', then E = F with equivalent norms.

Proof: Let T be the linear operator defined by
T:ecE—eckh.

T is bounded and its adjoint T is
T :9geG—geq,

that is the identity on G. Theorem 4.15 in [23] implies that E = F, and then, by the open mapping theorem, we
deduce that the norm of E is dominated by the norm of F. O

4 Inclusions between Hardy spaces

4.1 Hpy p NL* CE),.q4 the case of functions
Proposition 4.1. Let ¢ >0, M € (%,400) NN and 8 > 0. Then H},, ,, (T) N LAT) C E},,q 5(T) and

Wl < 1l

wad,B BZ1,M,e

Proof: Let f € Hpyy N L*(T). Then there exist (\;)ien € ¢! and (a;)ien a sequence of (BZ1, M, e)-molecules such

that f = > A\a; and

S = -

€N
First, since ||P¥||;1 < 1 for all k € N, the operators A® and then A®P!~! are L'-bounded for 8 > 0 (see [11]).
Consequently,

AﬁPlil Z )\iai = Z )\iAﬁPlilai.
i€N ieN

Since the space I' is discrete, the L'-convergence implies the pointwise convergence, that is, for all z € T,

ABPl_l Z )\Zaz(:c)

Z )\iABPl_lai(z)

€N €N
<INl [APP T ()|
€N
From here, the estimate
ILgfllr =|[Ls > Nail| S INilllLpail
i€EN L1 ieN

is just a consequence of the generalized Minkowski inequality.

It remains to prove that there exists a constant C' such that for all (BZ1, M, €)-molecules a, one has

[ Lgallr < C. (40)

Let s € N*, (s1,...,51) € [5,25]™ and a ball B associated with the molecule a. By Holder inequality and the
doubling property, we may write

%) . s
ILgallr £V (2'B)7 | Lsall 2o, (m))- (41)
j=1

We will estimate now each term || Lgal r2(c; (B))-

The result is then a consequence of Lemma 2.14 which can be reformulated as follows

M)M

ILs(I = P**)...(I = P*)[f1p]|l 12y < Cnr (1+ 1flL2(r).- (42)
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Notice that
0 if|[j—kl <1

d(Cr(B),C;(B)) ~< 21\/s ifk<j—2
2k /s ifk>j+2

Thus,

ILgall 2,y < YL = P*) ... (I = P*) bl s)llL2(cya)

k>1
> aMbllz ey + D Wbl + Y, 4TMIBl L))
k<2 k=i1 k2j+2

S Y 4 V@) LGB Y 4Tyt
ol k>j42

<279V (2/B)" 3

where € = min{e,2M — %}
As a consequence, one has
e (V(2/B)
L 1 < 27| ——=¢
Ll $ X279 (7o) )
jz1
< +o00.

O

Proposition 4.2. Let (T, ) satisfying (UE), M € N*, ¢ >0 and 3 > 0. Then Hpz 1,(T) N L*(T) C B4 5(T) and

I, S 0l

quad, BZ1,M,e

Proof: As in the proof of Proposition 4.1, it remains to check that for all (BZ1, M, €)-molecules a = (I — P**)...(I —
PsM)p associated with s € N, (s1,...,sy) and B = B(zp,rp), one has

> V(B): )2 || Lpall 2 (my S 1
j=1

The case j = 1 follows from the L%-boundedness of Lz and of (I — P*)™ | thus

1
V(B)z

| Lgall2c; sy < llallze <

For the case j > 2, we introduce C’j(B) defined by

Cy(B) = U Ck(B).

1<k<j—2
Check that C;(B), Cj(B), and zp satisfy (28), since d(C;j(B), C;(B)) = 2/rp. Thus, Lemma 2.18 yields

ILgallL2(c; ) < I1Ls( = PYM[ble, plllca(c, ) + 1Ls(I = PHYM [blp &, ]l L2(c;(3))
4=iM

A

- . 1 b 1 + b 2

Vam rayd Pl Iblzaee, o)
277

~ V@B

where € = min{2M, ¢}. Summing in j > 1 ends the proof. O
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4.2 H!

2 1 )
BZ2.M+L.c NH* C E .5t the case of 1-forms

Proposition 4.3. Lete >0, M € (% — 1 +00)NN. Then HEZZMJF%(TF) N H2(Tt) C E;uad_é(Tp) and
Il S Al -
quad, % BZ2,M+53 e
Proof: Let F € H,,, a1 (IT) N H?(Tt). Then there exist (\;)ien € ¢! and (a;)ien a sequence of (BZ2, M + %, ¢)-

molecules such that £ =Y \;a; and

Z |>\Z| = HfHHllfiZI,]M,e.

i€EN

First, by L'-boundedness of the operators P and d* (see Proposition 1.32) and by the Minkowski inequality, one
has

1Ly AT d Pl =Y "m@) [ Y. Y m)| P d Fy)?

= =1 ye B Vi)

= mla) (> Y mIPTY Naiy)?

zel 121 yeB(z,V1) €N

SY Y m) (Y D m@)IP T ey

€N zel 121 yeB(x,V1)

It remains to prove that there exists a constant C' such that for all (BZ2, M + %, €)-molecules a, one has

1
2

Yom@) | > > myP' eyl St (43)

zel 121 yeB(x,V1)

Let a = dA~2 (I — (I +sA)"Y)M+3p be a (BZy, M + 1, ¢)-molecule associated with s € N* and the ball B. Since
d*dA~7 = Az, (43) becomes
L3 (T = (T +58)"H)MF2b) S 1.

We end the proof as we did for Proposition 4.1, using Lemma 2.16 instead of Lemma 2.14. O
Proposition 4.4. Let (T, u) satisfying (UE). Let e >0, M € N. Then H}, ., . . (Tr) N H*(Tr) C E;uad . (Tr) and
» 3 »2

1l S 1l
quad,i

BZ2,M+34 e

Proof: We begin the proof as the one of Proposition 4.3. We end the proof as Proposition 4.2 instead of Proposition
4.1, using Lemma 2.19 instead of Lemma 2.16. O

4.3 Eja5 C Hpyy N L% the case of functions

In this paragraph, we will need a few results on tents spaces (see [7], [25], [19]). However, we need in our proofs some
"discrete" tent spaces, defined below:

Definition 4.5. For x € ', we recall
v(z) = {(y,k) € T x N, d(z,y)* <k}

and for a set O C I, we define

~

O ={(y,k) €T x N, d(y,0°?* > k}.
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For a function F defined on I' x N, consider for all x € T

_ 1 m(y) 2
AF(z) = (M%m PSR k+1)IF( Y, k)l

For p € [1,+00), the tent space TS (T) is defined as the space of functions F on T x N for which AF € LP(T), and is
outfitted with the norm ||F||zp = ||AF||L» (the space T3 is then complete).

Definition 4.6. A function A on I' x N is said to be a T21-at0m if there exists a ball B C I' such that A is supported

in B and )
2, k)? < ——.
1= v

|A||T2 = k
(z,k)eB

Proposition 4.7. For every element F € T}(T), there exist a scalar sequence (\;)ien C ¢1 and a sequence of T, -atoms
(Ai)ien such that

F = f i A; in T)(T). (44)

Moreover,

> il = || Fllzy

i>0

where the implicit constants only depend on the constant in (DV). Finally, if F € T3(I')NT3(T), then the decomposition
(44) also converges in T3 (T).

Proof: This proof is analogous to the one of Theorem 1.1 in [25] and of Theorem 4.10 in [19] with obvious modifications.
O

We introduce the functional m, 5 : T5(I') — L?(I") defined for any real 8 > 0 and any integer n > /3 by

s F(z) =3 ;—g [A" (I + P)"PR(L 1 1)] (x)

1>1

where Z ¢} 2!~ is the Taylor series of the function (1 — z)~".
1>1

Lemma 4.8. The operator m, g is bounded from T3 (') to L*(T).

Proof: Let g € L*(T). Then, for all F' € T$(T),

c _ _
(mp5F, g) = Zl_g (A"P(I + P)"PTIR (1), g)

1>1

_ch (,1—1), A7 3(I 4 P)1P=1g)
1>1

< S L YPC = Dl AT+ PYP g
>1

N
N

IN

1
Z;IIF(-,lfl)H%z S U ATP (I + PYTP T g7
1>1 >1
S NE Nz I+ P)"gll 2

~

SIFlzzllgllc2

where the last but one line comes from the L%-boundedness of Littlewood-Paley functionals (since I'=%%(c]')?
121=9)=1 "see [17], Lemma B.1).

O R
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Lemma 4.9. Suppose that A is a T} (T)-atom associated with a ball B C T'. Then for every M € N*, 3 > 0 and
€ € (0,+00), there exist an integer n = narp,.c and a uniform constant Carp.e > 0 such that C&fﬂyeﬂ'n’ﬂ(A) is a
(BZ3, M, €)-molecule associated with the ball B.

Proof: Let n = f% + 5 + ] + M + 1, that is the only integer such that

do
Nzt S4B+ MA1>y—1.

Let A be a Tj-atom associated with a ball B of radius 7. We write
a:=myp(A) =0 - T+ r2A)"HMp

where y
1T r2A
b= f—é (%) ATBM(T 4 Pl AL 1)
1>1

Let us check that a is a (BZs2, M, €)-molecule associated with B, up to multiplication by some harmless constant
Chp... First, one has, for all g € L?(4nB),

Mz

(b, g)| < Q(M - Z \ (An=A=MER (L PYTPITA(L L= 1), 9)|
=0 >1
M
= Z T2(M ) Z — 1), AT=AmMET(T 4 P)1PIg) |
Moo
<2 20 0—m) DU IHIAC T = Dz | AN 4 PY P gl 2 )
m=0 >1
M 1 2 3
<Y =y 141z 212 1T AT MET (L 4 PP g2
m=0 =1
M r? 3
SO NAllge | D PO pmMEmIm A= B M (T PYTP g
m=0 =1

M
S Al D IGy—s-srem (I + P)gll 2

m=0
S ANz 1T+ P)gll -
1
< 2
Sy ol

where we used the L2-boundedness of the quadratic Littlewood-Paley functional for the last but one line (see [17],
[1])-
Let j > logy(n) + 1 and g € L?(C;(B)). Since Supp(I + P)’g € C;,(B) = {z € I',d(z,C;(B)) < n} and
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d(Cjn(B), B) 2 2'r,

M r2 2
1 _B)— _B—M4am —
0.9 S 3 ey Al | S22t Ar-dm g PP,
m=0 =1
o 2 3
< 3 PN Ay | ST RO A S M g Pt o
m=0 =1

M
PO MDAy 3 (|G rem AT M+ PYg|

m=0

~

p2(n—B—M-1)

S WHAHQ? (I + P)"gll 2

<2797 Az gl e
9~

.

S vaps ol

where we used Lemma 2.15 for the last but two line and Proposition 1.5 for the last one. We conclude that, up to
multiplication by some harmless constant, b is a (BZ3, M, €)-molecule. O

Proposition 4.10. Let M € N*, € > 0 and 3 > 0. Then E}, .4 5() C Hpyy py () N L*(T) and

11|22 Sl

BZ2,M,e quad@

Proof: Let f € Ej,qq5(T). We set
F(.,1) = [(1+ DA]PP'S.

By definition of H quad 5(I'), one has that I € T4(T). Moreover, since f € L*(T"), L?-boundedness of Littlewood-
Paley functionals (see [4], [17]) yields that F' € T%(T"). Thus, according to Lemma 4.7, there exist a numerical
sequence (\;)ien and a sequence of T-atoms (A;);en such that

F=> NA in T3 () and T4(T)

and

YA S IFlry = 1l

quad, B
€N

Choose 7 as in Lemma 4.9. Using Corollary 2.3, since f € L*(T),

f=mypF (1)

+oo
= Z )\Z‘Trn_ﬂ (A
i=0

where the sum converges in L*(T'). According to Lemma 4.9, 7, 5(4;) are molecules and then (45) would provide
a (M, €)-representation of f if the convergence held in L*(T"). By uniqueness of the limit, it remains to prove that
S>> Aimy.5(Ai) converges in L. Indeed,

(45)

D il (Al £ D Il

ieN ieN
< +00
where the first line comes from Proposition 2.7 and the second one from the fact that (\;);en € £*(N). O
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4.4 E..;CHL,, et H?: the case of 1-forms

Lemma 4.11. Suppose that A is a T3 (T)-atom associated with a ball B C T. Let M € N and ¢ > 0, there exist an
integer n = nar,e and a uniform constant Care > 0 such that C];I;dA_%W %(A) is a (BZy, M + %, €)-molecule associated

n,
with the ball B.

Proof: Let n=[% + £] + M + 2. We will also write ¢ for [ + £] € N*.

Let A be a Tj-atom associated with a ball B of radius 7. We write
(A) = r2MHAAM (I 4 2 A) M3

where
r

r [e'e] 7’2 k c'ly] I+ QA M+1
=/ — - = AT L pyrpltRE=l A 11
1+r2];)ak<1+r2> Z\/Z< r2 > (I+P) e )

1>1

o 2A\ M+3
=% <#) ATI=M(T 4 pynpILA( L - 1)
= Vi

where S ag 2" is the Taylor serie of the function (1 — z)~ 2 (cf (25)).

Let us check that a is a (BZy, M + %,e)—molecule associated with B, up to multiplication by some harmless
constant Cy,c.

Let g € L?*(4nB). One has with the first equality in (46),

(b, g)] < r—2M— 12 ’<A ),(I+T2A)M+% A1+t(I+P)nPl—1g>’

l>1

_ M+1 _
2M—1 Z HA 1)HL2(B)H (I+T2A) A1+t(1+ P)nPl 1gHL2
>1

[SIE

2

5 ||A||T227’72I\/[71 212(7771)H (I+T2A)M+E A1+t(I+P)’7PlflgH%2
=1

[SIE

5 ||A||T227’72I\/[71 212(1+t+1\/[)” (I+T2A)M+§ A1+t(1+ P)"PlilgH%z
=1

S Az I+ P)gl[ 2

S [ Allzzllgll e

) 1/2
1
where we use that the functionals g +— r~ 2 =1 212(1+t+M)| (I+ T2A)M+2 AlTtpl=ig)? are L2-bounded
=1

uniformly in r. Indeed, since (—1) ¢ Sp(P), functional calculus provides, for some a > —1,
L 1
I+ r2a) Y APtz = [ (1 20— )P 20N, ()

1
- / {1 +r2(2M+1)(1 _ )\)2M+1} (1- )\)2(1+t))\2(l—1)dEgg()\)-
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Thus,

2

p2CMAD) § R | (14 2 A)MTE AL Pt g2,
=1

1 r? 1 2
< / (1 _ )\)2(1+t) Z l2(1+t)_1)\2(l_1)dEgg()\) + / (1 _ )\)2(1+t+]\/1)+1 Z l2(1+t+1\/1))\2(l_1)dEgg()\)

=1 @ =1
1 [ee] 1 )

< / (1 _ )\)2(1+t) Z l2(1+t)_1)\2(l_1)dEgg()\) + / (1 _ )\)2(1+t+]\/1)+1 Z l2(1+t+1\/1))\2(l_1)dEgg()\)
@ =1 @ =1

1 —\)2(141) 1 O\ 2(1 M) 11
(1-=X (1-))
S /a WdEgg()\) + /a (1 = 2)2( eI dEg44(N)

1
- / (14072050 1 (14 272050201 4 ()
1 a
S [ w0 = ol
where the third inequality comes from the fact that 1£=1 ~ cl5 (see Lemma B.1 in [17]).

Let j > log,(n) +1 and g € L*(C;(B)). One has d(C;,,(B), B) 2 2/r (cf Lemma 4.9). The second identity in (46)
provides

M+l 2 > 2
(b, 9)] < Z TQ(NIC-Z—m) 1:—7‘2 Zak (1:—7‘2) Z NG ’< L1=1) A1+t+m(I+P)"Pl+kflg>’
k=0

— >1

M+1

2 \" o L4t+m I+k—1
S Z r2(M+1 m) Z <1 +r2> ; WHA(.J* Dz |AH™ (I + PY1 PR gl 2 )
>1

M+1 k[ r? 3
Sl 2 T Z ( ) SO DAt (L 4 pyIPHRlg)2, o
=0 =1
M+1 oo 2 k [ r? e,cﬁr: 2
SIAlzgll (T + P)gllze Y r*O=M=2m S (1 T r2) 2 (i e
m=0 k=0 =1

1
M+1

k 00 _C4jT2 2
e l+k
S ANz llgllze E: 2 Za’“ ( 2) ( 3011 )
+t+m
L+r — (I + k) )

M+1 %)

k
1
SlAlnglols Y AL S ()
’ ’rnZ:O 1+ r2 k=0 1+7 (4r2)trms

MA1 o(thm)+1
r 1
S HAHT22H9||L2 g m(l +T2(1 —1))"2
0 (4 T ) 2

m=

S 277 Allgz g e

9—je
S pglol
where we used the estimate (GUE) for the forth line. O
Proposition 4.12. Let M € N and € > 0. Then E;uad (Tr) C Hy,, Ml (Tr) N H?(Tt) and
)
Gl oSGl VG € By (Tr)
BZ2,M+3 quad, 3
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Proof: Let G € E;uad’%(Tr‘). We set
F(,l)=VI+1Pd"G
By definition of H;uad.é (Tr), one has that F € T}(I'). Moreover, Proposition 1.32 yields that A~2d*G € L%(G)
and therefore F' € T3(I") with the L?-boundedness of Littlewood-Paley functionals.

Thus, according to Lemma 4.7, there exist a scalar sequence (\;);en € £1(N) and a sequence of T -atoms (A;)en
such that

F =Y M\A; in 73 (") and in TZ(T)

and

SN S Pl = G a2,

d,l.
iEN ‘2

Choose 1 as in Lemma 4.9. Using Lemma 2.3, since A~3d*G € L3(I),
1
AT2d"G Zﬂn,%F(.,l)

+oo
= Z )\Z‘T(n_é (Az)
=0

where the sum converges in L?(I'). Recall that dA~1d* = Idp> (7). Moreover, dA~7% is bounded from L3(T) to

L?(Tr) (see Proposition 1.32). Then
—+o0

_1
G =Y NdA72m, 1(A;) (47)
i=0
where the sum converges in L?(Tt). According to Lemma 4.11, dA_%ﬂ']M’% (A;) are (BZ2, M + 3, €)-molecules and
then (47) would provide a (BZ2, M + %, €)-representation of f if the convergence held in L'(T"). By uniqueness of
the limit, it remains to prove that > )\idA’%ﬂ .1 (4;) converges in L. Indeed,

27{-% LI(T)<Z|>\|
€N
< +00
where the first line comes from Corollary 2.12 and the second one because (\;);en € £*(N). O

4.5 Proof of Theorems 1.36, 1.38 and 1.39

Proof: (Theorem 1.36)
Let 3 >0, M e N N (dTE, +00) and € > 0. Propositions 4.1 and 4.10 yield the continuous embeddings
H}BZLM,S(F) NL*T) C Equad 5(T) C H}BZ2,M,5(F) NL*(T).

However, Theorem 1.34 states that Hpy, 5 (T) = Hpyo «(r)- Thus, we deduce

H}Bm M, e( ) NL*(T ) uad B(F) = H11322,M,E(F) N LQ(F) (48)
with equivalent norms. In particular, Equad 5(T) Cc LY(T).

Let us now prove that the completion of Equad_ ﬁ(F) in L! exists. To that purpose, it is enough (see Proposition

2.2 in [2]) to check that, for all Cauchy sequences (fn)n in B}, .4 3(T) that converges to 0 in L'(T), f, — 0 for the

-2, , morm. Equivalent norms in (48) implies that (f,,), is a Cauchy sequence in Hy,, s .(T') that converges
quaa, I )

(r
(r

to 0 in L'(T'). Since Hpy,. 5 (T) is complete, it follows that f,, — g for some g € Hpy, 5, (T), but then also for
the L'-norm, which entails that ¢ = 0. Thus, f,, — 0 for the norm HéZn,I\/[,e( ) and so for the norm ||.|| s
(the norms being equivalent on E},,; 5(T)).

Therefore, the completion Hy,, 4 5(T) of E}, 4 5(T) exists and is defined by

Hquad 5(I) = {f € F| there exists (fy), Cauchy sequence in E;uad_ﬂ(l“) such that f, — f in L*(T")}.

The fact that H_,,4 3(T) = Hp 4, 37 (T) is then a straightforward consequence of (48) and the fact that the space
Hp 7 are(T) N LA(T) is dense in Hp . 5 (D). a
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Proof: (Theorem 1.38)
Let M € NN (%" — %, +00) and € > 0. Propositions 4.3 and 4.12 yield the continuous embeddings

HEZZMJF%VE(TF) N H(Tr) C E;uad_é(Tp) C HgZMH%yE(TF) N H(Tr),

from which we deduce the equality of the two spaces, with equivalent norms.

Since H}9221N[+%76(Tp) is dense in H;%ZQ,MJr%,e(TF) C LY(Tr) and is included in H]13221M+%76(TF)HH2(1"), it follows
that H11322,M+§,5(TF) is the completion in L*(7Tr) of H11322,M+§,6(TF) N H?(T') and thus also of E;uad’% (Tt) with

the same arguments than those used in the proof of Theorem 1.36.
Moreover, notice that if ' € H?(1r),

Fe€E ,45Ir) < A 2d"F € E},,,4 5(T).

Indeed, the implication A~2d*F € Eyaap(T) = F € E},,q4 5(Tr) is obvious, and the converse is due to Propo-
sition 1.32. As said in Theorem 1.36, the spaces Eéuadﬁ(l") are all equivalent once 5 > 0; and so are the spaces
E}yaa.p(Tr). Consequently, for all 3 > 0, the completion of Ej, ., 5(Tr) in L*(Tr) exists and is the same as the
one of E! (Tr). a

1
quad, 3

Proof: (Theorem 1.39)

Just use Proposition 4.2 instead of Proposition 4.1 (in the proof of Theorem 1.36), and Proposition 4.4 instead of
Proposition 4.3 (in the proof of Theorem 1.38). O

Let us state and prove now item b) of Remark 1.41. We first introduce E% Zr.r.c(I') defined by

Ebzenne(T) == {f e L*(I), Z Aja; is a molecular (BZ,, M, ¢)-representation of f and the sum converges in L*(T") }

Jj=0

and outfitted with the norm

BZkK,M,e

1 £l 51 = inf {Z [Adl, Z \ja; is a molecular (BZ,, M, ¢)-representation of f and the sum converges in L*(T") } .

ieN j=0

In the same way, we define E}S’Z2 M4l €(Tp) by
M3,

E

oo
1
;22,M+%,E(TF) = {f € H*(Tr), Z Ajaj is a mol. (BZ2, M + > ¢)-representation of f and the sum converges in L*(Tt) }

Jj=0

and we equipped it with the norm

oo
1
1/l g = inf E [Ail, E Aja; is a mol. (BZa, M + =, €)-representation of f and the sum converges in L*(Tt) 5 .
BZr,M+% e ppre = 2

Corollary 4.13. Let T’ be a weighted graph satisfying (DV) and (LB).
(i) If k € {1,2}, e € (0,400) and M € N*N (%", +00), then
EEZIQ,I\/[,C(F) = HéZﬁ,M,E(F) N L2(F) = E;uad,l(r)

with equivalent norms. As a consequence, the completion of Ehy,. y (T) in L'(T) exists and is equal to H' (') =
HEZI{,I\/[,C(F)'

(ii) If e € (0,+00) and M € NN (L — 1 400), then

El (Tr) = H?:

2 1
BZ2,M+1 e BZQ,]M-;—%,E(TF) NLAT) = Equad,% (Tr)

with equivalent morms. As a consequence, the completion of E11322,M,5(TF) in LY(Trv) exists and is equal to

HY(Ty) = HEZQ,I\/[+%,6(TF)'
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(iii) If the Markov kernel p(x,y) satisfies the pointwise gaussian bound (UE), then M can be choosen arbitrarily in N*
in (i) and in N in ().

Proof: The proof consists in noticing, as the proofs show, that the (BZ,, M,¢) (resp. (BZ2, M + %, €)) representation

of f € E},4q1(T) (resp. F € E;uad,%(TF)) constructed in Proposition 4.10 (resp. 4.12) also converges in L?(T")

(resp. L2(1r)).
Therefore, we proved in Propositions 4.10 and 4.12 that
E;uad,l(l—‘) c E}azﬁ,M,e(F) c H}an,M,e(F) NL*()
and
E;uad_é(Tr) C EgZQWI%E(TF) C HgZMH%yE(TF) N L*(Ty).
We end then the proof as in Theorems 1.36, 1.38 and 1.39. 0

A A covering lemma
Lemma A.1. Let B a ball of radius r € N* and o > 1. There exists a collection of pairwise disjoint balls (B;)ic1, of

radius r such that
U BicaBc | 3B

i€l i€l

Proof: 1t is a classical fact and we provide a proof for completeness. Let B be a ball of radius r and of center x(. Let
(Bi)ier, be a set of disjoint balls included in aB and of radius r. Assume that (B;);er, is maximal, that is, for
every ball By of radius r, either By is not included in aB, or there exist i € I, such that Bg N B; # (). Let us
prove that

aBc | ] 3B (49)

i€l,
Let x € aB and let us prove that the ball B(xz,2r) intersects one of the B;’s. Assume the opposite. There exists
a path xg,21,...,2,_1,2 joining zy to x and of length n = d(x,x¢) < ar. Then the balls B(:cmax{oyn,r},r) is
included in B(x,2r) and in aB, that is the set (B;);cz, is not maximal. By contradiction, there exists i € I, such
that B(z,2r) N B; # 0, that implies x € 3B;. O

Corollary A.2. There exist M € N and C > 0 such that for all balls B of radius r and all j > 1, there exists a
covering (B;)icr; of C;(B) such that

(i) each ball B; is of radius r,
(i) the covering is included in Cj := Cj_1(B) U C;(B) U Cj1(B) (with the convention Co(B) = 0), that is

UBZ'CCVJ'

i€l
(iii) each point is covered by at most M balls B;.
(iv) the number of balls #1I; is bounded by C27(do+1)

Proof: Let B be a ball of radius r and j > 1. Notice that (iv) is a consequence of the three first points. Indeed,

1 .
#1; = V@B ; V(27B)

1 )

<—— N V(23

~ V(2/B) ; ( )
974 (do+1)

S 5erey V(Bi)
oDy

. 1 .
< M2ildotl) ___—__y/(9it2p
- V(2iB) ( )

< 9ildo+1)
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where the second line is a consequence of (i) and (ii), the third one holds thanks to Proposition 1.5, and the forth
one is due to (i) and (iii).
Let us now prove the first three conclusions of the corollary.

Assume that r € {1,2}. Then the collection of balls (B(z,7)).ec,(p) satisfies (i), (ii) and (iii). Indeed, only (iii)
for » = 2 is not obvious, but is a consequence of the uniform local finiteness of T'.

Assume now that r > 3. Let s € [£, 2] NN. By Lemma A.1 (with o = 27712), there exists a collection (B;)ier,,
of balls of radius s such that
U Bic2t'BC 3B
i€ly i€l
We set
Ij = {’L € l,, 331 n C](B) #+ @}

and then B; = géz Let us check that the collection of balls (B;);ez, satisfies the conclusions of the corollary. (i)
is a consequence of the construction. (ii) is true since

U Bic{zel, d(x,C;(B)) < 2s}.
i€l;

For the point (iii), define for « € T,
I, ={i€l;,B(z,s)N B; # 0}.

Since all B; are disjoints, one has then

> V(Bi) < V(x,r+s) < V(x,6s).

i€ly

However, notice that B(z,6s) C V(12B;) for all i € I,,. Hence, with the doubling property,

V(x,65) = Z V(12B;) > Z V(z,6s)

i€l i€l,

and therefore, #1, < 1. O

B Exponential decay of some functions

Lemma B.1. For all m € [0,400), there exists Cy,,c > 0 such that for allt > 0 and k € N, one has
m k
1+k t k
- — <C, — .
(1+t) (1+t) = eXp( 01+t)

1 1+t
t) e RY 1——
o) ere o (1-137)

Proof: First check that the function

satisfies 0 < ¢(t) < 1 for all ¢ > 0 and tl_i}m ©(t) = e~ < 1. Then there exists ¢ > 0 such that ¢(t) € (0,e7°) for

all ¢ > 0. From here, one has

T+k\™/ ¢t \F E\"/ t \F
— — ) < (14— —
1+t 1+t 1+t 14+t

m k
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