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THE SYMMETRIC STRUCTURE OF GREEN-NAGHDI TYPE
EQUATIONS *

DENA KAZERANIT

Abstract. The notion of symmetry classically defined for hyperbolic systems of conservation laws
is extended to the case of evolution equations of conservative form for which the flux function can be
an operator. We explain how such a symmetrization can work from a general point of view using an
extension of the classical Godunov structure. We then apply it to the Green—Naghdi type equations
which are a dispersive extension of the hyperbolic shallow-water equations. In fact, in the case of these
equations, the general Godunov structure of the system is obtained from its Hamiltonian structure.

Key words. Symmetric systems, conservation law, strict convexity, variational derivative, Green—
Naghdi equations.

AMS subject classifications. 35Q35, 35L65, 37L50,70S10.

1. Introduction

Incompressible Euler equations and water waves problem model free surface incom-
pressible fluids under the influence of the gravity. The complexity of these systems leads
to consider averaged geophysical models to describe coastal oceanic flows. We focus on
a particular type of these reduced models called the Green—Naghdi type model [I3],
which writes

Ay () + 0y (hu?) 4 8, (gh? /2 + ah?h) = 0. '

The unknown h represents the fluid height and is assumed to be positive, while u is
the averaged horizontal velocity. Moreover, the material derivative () is defined by

() =0;()+u0z(), « is a positive real number and g is the gravity constant.
If =0, system (1.1)) is hyperbolic and equivalent to the Saint-Venant equations

(and to the barotropic Euler equations). System (1.1) with a#0 is different from
the Saint-Venant system by the dispersive term 0, ah27i>. It has been rigorously

derived for =3 from the water wave problem for irrotational flows by Li [19] and
by Alvarez and Lannes [I]. In [I5], Tonescu derived the same system by a variational
method considering the Lagrangian formulation of the irrotational incompressible Euler
equations. In [4], the authors obtain for a:i by a different but a formal method
without any hypothesis on the irrotationality of the fluid.

It is worth remarking that admits the following conservation law (see for
instance [9] [10]),

where the energy E is defined by
E=gh?/24hu®/2+ah?(0,u)?/2, (1.3)
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2 Symmetric structure of Green—Naghdi equations

and p by

p=gh*/2+ah’h. (1.4)

Contrary to the case of hyperbolic systems, the energy E and the pressure p are not
functions of the unknown but smooth operators acting on the space of functions the
unknown belongs to.

The aim of this paper is to extend the notion of symmetry classically defined for
hyperbolic systems, to more general type of equations, including the Green—Naghdi
model . We first recall the definition of symmetrizability for hyperbolic systems
and its relation with the existence of a convex entropy.

1.1. Symmetric structure of hyperbolic systems of conservation laws Let
us provide a brief review on the symmetrization of hyperbolic systems of conservation
laws. We consider the system

OU +0,F(U)=0 (1.5)

where the flux F:RY RN, N >1, is a smooth function. We only consider in the sequel
smooth solutions U :RT x R —RY.

The hyperbolic system (1.5) is called symmetrizable if there exists a change of
variable U — @Q such that equivalent to

Ap(Q)0:Q+ A1(Q)0,Q =0, (1.6)

where Ap(Q) is a symmetric positive definite matrix and A;(Q) is a symmetric one.
Moreover, a pair of smooth functions (E,P) from RY to R such that V#E(U)
positive definite is an entropy pair for system (|1.5]) if any solution U to (|1.5)) satisfies

HhEU)+0,P(U)=0, (1.7)
or equivalently if
(VuF(U)"'VyEU)=VyP(U). (1.8)

Using Poincaré’s theorem [5], the latter condition, which is nothing but an integrability
condition, is equivalent to the symmetry condition

V2E(U)VF(U)=(V2EWU)VF(U))".

The following classical proposition illustrates how the notions of entropy and sym-
metry are related. We also provide the associated proof in order to compare it to the
generalized case of the next section.

ProposiTION 1.1. [12, [6, (21, [20, [3] Let us assume that the hyperbolic system
admits an entropy pair (E,P). Then, it is symmetrizable under any change of variable
U~V under the form

AO(V)é‘tV +A1(V)8IV =0,
where

Ao(V)=(VyvU)TVEEWU) VyU and A, (V) =(VyU)I'VEEU) VyF(U)VyU. (1.9)
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Proof. Considering a change of variable U — V| System becomes
VvUOV +VyF(U)VyUO,V =0. (1.10)
We now apply (VyU)TVZE(U) to the left-hand side and obtain
(VyU)TVEEU) VyU 8,V +(VyU)'VEEU) VyF(U) VyU 9,V =0.  (1.11)

The symmetric matrix Ao(V)=(VyU)TVEE(U) VyU is positive definite due to the
strict convexity of the entropy. Therefore, we just need to prove the symmetry of
V#E(U) VyF(U). To do so, we consider the change of variable U — @ where @ is the
entropy variable, i.e.

Q=VyEU). (1.12)

This change of variable is valid since F is strictly convex. As a consequence, the Legendre
transform E* of E defined by

E*(Q)=Q-(VvE) 1 (Q)-E((VuE) (Q)), (1.13)
satisfies
U=VoE*(Q). (1.14)
Let us now define the scalar function P by
P(Q)=Q-F(U(Q))~P(U(Q)). (1.15)
Then, we use relation to get
VoP(Q)=F(U). (1.16)
Hence,
VEE(U) VuF(U)=V{EU) VHP(Q) VuQ=VEE(U) Vi P(Q) VHEU)

is symmetric. O

Gathering (1.14]) and (1.16)), we remark that (1.5]) is equivalent to
K (VQE" (@) +0; (VoP(Q)) =0.

In other words, system admits a so-called Godunov structure [12]. Note that such
a structure can be used to deduce the existence of an entropy pair since it implies the
symmetry of V§E(U) VyF(U), and thus the integrability of (VuF(U) VyE().
REMARK 1.1. Let us consider a system of the form which admits an entropy pair
(E,P). Assume that there exists a decomposition of the unknown U = (Uy,Us) such that
the application ¢— Vy, E(U1,¢) is invertible. Then, the change of variable

U~V =(U,Vy,E(U,Us))

is particularly interesting since Ag(V') is block diagonal (this is a direct consequence of
the expression (L.9) of Ag(V')). Indeed, this can be useful to deduce equivalent normal
forms of system (1.5) when studying for instance parabolic regularizations [T7].
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In the case of the Saint-Venant equations, with U= (h,hu) and E = gh?/2+ hu?/2,
let us compare two symmetric forms. If we consider the entropy variable Q =Vy E(U) =
(gh—u?/2,u), one has

Ap(Q)0:Q+ A1(Q)0,Q =0,

where

_1(1 1 U gh+u?
AO(Q)_E (u thruQ) and AI(Q)_E (gh+u2 Sghu+u3)'

On the other hand, using the change of variable U—V =(h,V, E(U))=(h,u), the
Saint- Venant equations become

Ao(V)OLV +A1(V)0,V =0,

with
0 u gh
Ao(V)= (g h) and A (V)= (g , fm> .

The notion of symmetrizability is crucial to be useful to prove the local well-
posedness of hyperbolic systems (see [3] for instance) as well as the stability of constant
solutions of hyperbolic systems with dissipative terms [14} 24 [I'7, 23]. Let us now recall
some properties of the Green—Naghdi equations.

1.2. Hamiltonian structure of the Green—Naghdi equations
Following Li [19], let us consider the unknown U = (h,m) defined by

m=Ly(u) =hu— o (h*u,) (1.17)

x
The change of variable (h,u)+ (h,m) is valid since the Sturm-Liouville operator L, is
an isomorphism from H*(R) to H*~2(R), for s>2, due to the fact that h is positively
bounded by below!. Let us also mention that the variable m has been used in [10] to
define the generalized velocity k= %".

We illustrate in the following proposition the Hamiltonian structure of the Green—
Naghdi equations inherited from the structure of incompressible Euler equations with a
free surface. To state this result, we adopt classical notations of variational derivatives
and second variations (see for instance [11], 22]).

PROPOSITION 1.2. [19] Let h>0 be a real constant. System is equivalent to

wU=JU)H;(U), (1.18)
where

U= (h,m)=(h,Lp(u)),

H,;(h,u):/gh(h—E)/2+hu2/2+ah3(uz)2/2, (1.19)
R

_ !Operator £}, is a diffeomorphism from H*+2(R) to H*(R) if h is close_enough to a constant state
h for the norm H" with n>2. This assumption is considered in Section while symmetrizing the
Green—Naghdi equations.
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and

__( 0 8(h0)
JU)== (haw 8I(m())+maz> ' (1.20)

More precisely, we have for all test functions (¢,)

Jw) (i) = (hazaswi?%) +maw> ‘ (1.21)

By classical calculations, we have
My (U) = (0,u),
with
J:ghfgﬁ/27u2/27;ah2(ugﬂ)2. (1.22)

The variable o has been used in [9] for the canonical representation of the Green—Naghdi
equations.
The function Hj, is the integral of the relative energy

Ej, =gh(h—h)/2+hu?/2+ah®(u,)?/2, (1.23)

which, following the same calculations as those which lead to (1.2)), satisfies the conser-
vation law

O E5, + 0. (u(E7, +p)) =0, (1.24)

where p is given by . The first consequence is the conservation of the Hamilto-
nian Hj, over time by integration in space?. This important property can also be ob-
tained using the Hamiltonian structure of the system and the fact that J(U) is
a skew-symmetric operator acting on the space of vector-valued functions whose second
component converges to 0 at infinity. Hence,

%H(U(t)):/R(SH(U)-6tU:/R(5’H(U)~j(U)6H(U):0.

1.3. General idea The generalization of the notion of symmetrizability to dis-
persive perturbations of hyperbolic systems has been studied by several authors. For
instance, Gavrilyuk and Gouin in [8] (see also [2]) investigate the symmetric structure
of Euler-Korteweg models and some p-systems. Similar ideas can be partially adapted
to some generalized p-systems like bubbly fluid equations and to modified Lagrangian
Green—Naghdi [1].

These generalizations are investigated with the hope of extending the results on
hyperbolic systems to their dispersive perturbations. In the very recent work [I8], we use
the generalized symmetric structure presented in this work (more precisely in Section
to prove the asymptotic stability of constant solutions of the Green—Naghdi equations
with viscosity. Let us note that the symmetric structure presented here for Green—
Naghdi equations holds only in a small enough neighborhood of constant solutions, this

2Tt has been shown in [T9}[16] that the Green-Naghdi equations endowed with the unknown (h— h,u)
are well-posed in C ([0,7);H*(R) x H*+1(R)) for some T'>0 and s > 2. Hence, u is a continuous function
vanishing at infinity using the Sobolev embedding theorem.
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is to say that we consider the symmetrizability as a local notion. As we can see in
[18], this is not an obstacle to prove the stability of equilibriums since the solution of
the viscous Green—Naghdi equations remains close to equilibriums for initial data close
enough to these solutions.

In this paper, we consider general systems written under the following conservative
form

OuU +08,F(U)=0. (1.25)

The unknown U is supposed to belong to C([0,T);A) for some T >0 where A is a
Banach subspace of continuous functions of L2(R,RY) converging to 0 at infinity. We
also assume that the derivative of all elements of A belongs to A. Let us note that F' is
not anymore a function of RV but a smooth application defined from A to A. This is
actually the case for the Green—Naghdi equations. As we will see in Subsection the
Green—Naghdi equations under the Hamiltonian variable (h,m) fits the abstract form
with no loss of derivatives through F'.

For sake of simplicity, we mainly consider the one-dimensional problem . We
provide some generalizations of the previous notions used in the hyperbolic case, sym-
metrizability, Godunov structure, and relate it, in the case of Green—-Naghdi equations,
to the existence of a Hamiltonian structure. The extension of the results of the next
section to the multi-dimensional case will be addressed at the end of the next section.
Section [3]is devoted to the particular case of the Green—Naghdi equations.

2. Weak symmetric structure

The aim of this part is to provide a sufficient condition for the symmetrizability of
System under any variable. First, we provide an adapted notion of symmetriz-
ability and define the Legendre transform of a variational function. Then, we will see
how a convenient strictly convex function can lead to the symmetrizability.

The notion of symmetry we consider here is based on the L2 scalar product, and not
on the scalar product of RV. More precisely, an operator F : A C L?(R,RY) —L?(R,R"Y)
is said to be symmetric if

[oFw)=[ Forv vovea

and positive definite if, for all ¢ € A\{0}, [ ¢-Fo>0.

DEFINITION 2.1. (Weak symmetrizability) System (1.25)) is called weakly sym-
metrizable if there exists a change of variable U—V such that (1.25) is equivalent
to

Ao(V)OV+A1(V)0,(V)=0, (2.1)
where Ag(V') is a symmetric positive definite operator and A1(V) is a symmetric one.
DEFINITION 2.2. (Legendre transform) Let Q2 be an open conver subset of a Banach

space ACIL2(R,RY) and consider a smooth application E:Q—IL'(R) together with the
variational function H:Q—R defined by

HU) = /R B(U).
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Assume that there exists an open set Q* of a Banach space BCIL?(R,RY) such that the
application

Q—Q*
OuH:
v {U»—)cSU?-l(U)

s a diffeomorphism. The Legendre transform H* of H is defined on Q* by

H(Q)= /R Q- (6uH) (@)~ E((6uH) " (@)). (2.2)

Let us note that the Legendre transform H* of a function H satisfying the assump-
tions of Definition also satisfies the assumptions of the definition. Moreover, basic
computations show that the Legendre transform of H* is nothing but H. In other words,

H™*="H.

We now state one of the fundamental properties of the Legendre transform of a strictly
convex variational function (i.e. a function with a definite positive second variation).
Let us remark here that contrary to the finite dimensional case, the variational derivative
of a smooth strictly convex function is not necessarily a diffeomorphism. Therefore, we
still need to assume in the sequel that its variational derivative defines a diffeomorphism
as in Definition 2.21
PrROPOSITION 2.3. The Legendre transform H* of a strictly convex function H which
satisfies the assumptions of Definition[2.3 is strictly convez.

Proof. Considering the expression of the Legendre transform, we remark that

QM (Q)=(0vH) ™ (Q)-
In other words,
Q=0uH({U) = U=35H*(Q).

Hence, the definite positivity of the second variation of H implies the definite positivity
of the second variation of H*. More precisely, we have

St H(U) = DuQ(U),

and
TaH* (Q)=DqU(Q).
Therefore,
SEHU) = (3RH(Q)
0

The following theorem provides the connection between the convexity of H and the
existence of a general Godunov structure (this notion has been introduced in [9] and is
recalled in the following statement).

THEOREM 2.4. We use the same notations and assumptions as in Definition [2.3
Assume that H is strictly convex on Q. If

SEH(U)Dy F(U) is symmetric, (2.3)
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then system (1.25)) admits a general Godunov structure: there exists a change of vari-
able U Q defined on Q and a function R, together with R(Q):fRR(Q), such that

system 18 equivalent to
9 (6QH"(Q))+0x (6qR(Q)) =0, (2.4)

as long as the solution U remains in €.
Proof. Let us first consider the change of variable U — @ defined by

Q=0uH(U). (2.5)
or equivalently by
U=doH*(Q). (2.6)

Considering the fact that 62 H(U)Dy F(U) is symmetric on the open convex set €, there
exists, by Poincaré’s theorem [5], a differentiable application A': Q — R such that

DUN(U)(;&:/RéUH(U).DUF(Um Vo e A. (2.7)

We now define the function R by
R(Q)= [ @-FUQ)-NU(Q). (2.8)
We differentiate and take the action on a test function ¢. This leads to
DaR(Q¥= | PU(Q)-4+Q: DuF(U)DaU() - DuN (W) DoU ().
Then, we have by (2.5),
DR(Q)w= | F(U(@)- v+ H(U)- DuF(U)DoU(w) ~ DuN(U)DoU ().
Finally, using (2.7), we find
DaR(Q= [ PU(Q)-v.

or equivalently

IQR(Q)=F(U(Q))- (2.9)

Considering system ([1.25)) together with (2.6 and (2.9)), we obtain (2.4)). O
The general Godunov structure (2.4]) directly implies the weak symmetrizability of

system ([1.25)) with respect to the unknown @, since it lets us write the system under

SHoHN(Q)0Q+05R(Q)0,Q=0.

Let us now state in the following theorem, other consequences of a general Godunov

structure for system ((1.25)).

THEOREM 2.5. We use the same notations and assumptions as in Definition [2.3
Assume that H* is strictly convexr on Q*. Then, the general Godunov system (2.4)) is
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weakly symmetrizable for any change of variable Q—V . More precisely, it is written
under the form

Ao(V)atV+A1(V)83;V =0,

where the symmetric operators are given by

Ao(V)
Ay (V)

(DyU)T§3H(U)Dy U, (2.10)
(DyU)T 62 H(U)Dy F(U)Dy U, (2.11)

with U=38oH*(Q), F(U)=00R(Q), and H the Legendre transform of H*.
Proof. Setting U=0oH*(Q) and F(U)=3doR(Q(U)), system writes

U+ 0,F(U)=0. (2.12)
We now consider the change of variable U~V and write (2.12)) under

Then, we denote by H the Legendre transform of H* and take the left side action of
(DyU)T §3H(U) on (2.13). This leads to

(DyU)T 62 H(U)Dy U,V + (DyU) 6% H(U)Dy F(U)Dy U,V =0. (2.14)

Hence, the theorem is proved if we show that 6%H (U)Dy F(U) is symmetric. To do so,
let us differentiate the following application

N ()= [ QW)-FO)-RQW)),
R
and find
DuN ()= [ (FU)=5R(Q)- DuQo+Q-DuPWU)s VoeA
On the other hand, 6gR(Q)=F(U) and Q=75yH(U). Therefore,
DUN(U)¢>:/R6U’H(U)-DUF(U)¢ Voe A

The symmetry of the operator 63H (U)Dy F(U) is just a consequence of the integrability
of p— [ ouH(U)-DyF(U)¢. O

Let us gather the two previous results in the following corollary.
COROLLARY 2.6. We use the same notations and assumptions as in Definition [2.3
Assume that H is strictly convex on ). The three following statements are equivalent:
1. System owns a general Godunov structure using the Legendre transform H*
of H.
2. The operator 03 H(U)Dy F(U) is symmetric.
8. System (1.25)) is weakly symmetrizable under any change of variable Uw—V with the
e:cpressz'ons and for symmetric operators. One can see that these relations
are very similar to the case of hyperbolic systems. It remains to check whether or not
one can add to these statements the existence of a conservation law.
PROPOSITION 2.7. Assume any of the three statements of Corollary[2.6. Assume also
that there exists a pair of functions (E,R) which defines H(U)= [ E(U) and R(Q)=
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Jr R(Q) describing the general Godunov form (2.4) of system (1.25)). Then, the solution
U to system (1.25)) satisfies

/ (0 E(U)+0,N(U)) =0, (2.15)
R

where

Proof. We take the left action of Dy E(U) on (1.25) and find
DyE(U)0,U+DyE(U)Dy F(U)0,U =0. (2.16)

We then take the integral on R and use the definition of the variational derivative to
get

/RDUE(U)@U+6U’H(U) Dy F(U)9,U =0. (2.17)
On the other hand, as done in the proof of Theorem we have
/R DuN(U)p= /R SUH(U)-DyF(U)é Yoe A (2.18)
Therefore,
/]R DyN(U)d,U = /R SuH(U)- Dy (U0, U, (2.19)

Hence, we can write (2.17) as

/ Dy E(U),U + Dy N(U)d,U =0, (2.20)
R

which provides (2.15)). O

Let us remark that contrary to the case of hyperbolic systems, the reciprocal of

Proposition is false since (2.18) and (2.19) are not any more equivalent. Indeed,
duH(U) as well as the components of Dy N(U) depend not only on U but also on its

derivatives.

Let us also remark that the notion of symmetry introduced for corresponds
to the symmetry for the L2 scalar product and is a weak notion while the symmetry of
hyperbolic system is a strong one. This is due to the fact that the assertion

/gb.}"w:/]-"z/;'qﬁ V¢, test functions, (2.21)
R R

does not imply
. Fp=F-¢ Vo, test functions. (2.22)

Therefore, the weak symmetry of the system does not lead to a conservation law but to
an equality of the form (2.15)). However, as we can see in [I§], this definition is strong
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enough to allow us to generalize the hyperbolic techniques to the Green-Naghdi equa-
tions. In fact, if we considered a stronger definition like the one deduced in for the
symmetric operator and a stronger condition such as the symmetry of D E(U)Dy F(U)
for Theorem we would obtain a conservation law in addition to similar theorems.
However, less equations would be covered (i.e. the result would be less general). More-
over, the strong symmetry of D% E(U)Dy F(U) is more tedious to be checked than the
weak symmetry of 63H (U)Dy F(U). We end this section by two remarks. The first one
is about an interesting change of variable (similarly to Remark while the second
deals with the multi-dimensional case.

REMARK 2.1. Let us consider system with a variational function H such that
82 HWU)DyF(U) is a symmetric operator. Assume that there exists a decomposition of
the unknown U = (Uy,Us) such that the application ¢ — Sy, H(Uy,¢) is invertible. Then,
the change of variable

U (V1,V2) = (Uy,0u,H(U1,U2)) (2.23)

is very interesting since it leads to a block diagonal structure of the matrixz operator

Ao(V) defined by (2.10). Using this expression, we have

All A12
AO(V) <A21 A22)

where

At =068, H(U) + 68,0, H(U) Dv,Us+(Dv,Uz)" 83,15, H(U ) + (Dv,Us) 67, H(U) Dy, Us
AP =63,u, H(U) Dv,Us+(Dv,Us)" 63, H(U) Dy, Us,

At = (A1) = (Dv,U2)" 68,0, H(U) + (Dv,Uz) " 65, H(U) Dy, Us,

AP =(Dv,Us)" 63, H(U) Dy, Us.

Therefore, Ag(V') is block diagonal since
A =(AF)" =(Dy,U2)" 8,05, H(U) +(Dy, Ua)" 6, H(U) Dy, U =0
This is due to the fact that (2.23) implies that

(Dv,Ua)" 88,0, H(U) + (Dv,Us) " 67, H(U) Dv,Us

(DVQUz) Dy, Va+(Dv,Us)" Dy, Vo Dy, Us
(Dv,U2)" Dy, Vo Dv,Ur +(Dy,Us)" Dy, Va Dy, Us
(Dv,Us)" (Dy,Va Dy, Uy + Dy, Va Dy, Us)

( )

Dy,Uz)" Dy, Vo=0

REMARK 2.2. Let us consider the multi-dimensional version of system (|1.25))
atU+Za Fy(U)=0. (2.24)
i=1

One can easily extend the previous results. Consider a variational function H(U)=
fRE(U) which admits a Legendre transform, as in Definition . Then the following
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three statements are equivalent:

1. The operators 63 H(U)Dy F;(U) are symmetric for all i € {1,---,n}.

2. System admits a general Godunov structure. i.e. there exist functions R; and
the associated R;(Q) = [p Ri(Q) such that system 15 equivalent to

n

0:(0oH"(Q))+_ 0, (5oRi(Q)) =0.

i=1

8. System (2.24)) is symmetrizable under any change of variable UV i.e. it is equiv-
alent to

A(V)OV +_ Ai(V)0,, V =0,
i=1
where the symmetric positive definite operator Ag(V') is given by
Ao(V)=(DvU)" 6t H(U) Dy U, (2.25)
and the symmetric operators A;(V') by
A;(V)=(DyvU)" g H(U)Dy Fy(U) Dy U. (2.26)

Moreover, if one of these statements is satisfied, the solution to system (1.25|) satisfies

/R BEU)+ 20, (Q: Fi(U) ~ Ri(Q)) =0.

3. Application to Green—Naghdi type equations

3.1. Symmetrization of the Green—Naghdi system

In this part, we are going to apply the result of the previous section to the Green—
Naghdi type system (T.1)) around constant solutions (h,h), with h >0 and 7 € R. First,
we show that system (1.1]) is of the form under convenient variables.
PROPOSITION 3.1. Let s>2 be an integer and set A=H?*(R)x H*~1(R). Then, using
the variable

U=(nw)
with n=h—h and w=Ly(u) —ha, system (1)) is of the form (1.25) where F: A— A

is differentiable. -
Proof. We denote Lj,(u) by m and hu by m. Let us first prove that system (|1.1))
can be written as

94 2 (b)) =0
gfv"' ag( u) p s . (3.1)

This is a consequence of the Hamiltonian structure ((1.18)) of the system. Indeed, devel-

oping the first line of (1.18)) we find easily the first equation of (3.1)). Then, we develop
the second equation of ([1.18)) to get

Orm~+ h0,o + 0z (mu) +mo,u=0,
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where o is given by (1.22). Now, using the expression ((1.22)) of o together with the fact
that m = L (u), we find the second equation of (3.1). One can deduce

_ (n+h)L;  (w+m)— hi
FU)= ((w+m)£h1(w+m) —Za(n+ﬁ)3(%m£g1(w+m))2+ 9(n+h)?—4h? —mu)

Let us now check the properties of F. Assuming that h € H*(R) + h is positively bounded
by below, L}, is a diffeomorphism from H**1(R) + 4 to H*~1(R) + ha. This together with
the fact that H*~!(R) is an algebra for s>2 ensures that F is an application from A
to A. For instance, let us consider the first component of F(U). Since w e H*~1(R), we
obtain that £; ' (w-+m) belongs to H*+!(R)+a and thus, to H*(R)+a. On the other
hand, n+h €H*(R)+h. Hence, the product is in H*(R)+hu. A similar logic can be
applied to get a similar result on the second component of F.
The differentiability of F' is due to the fact that it is a composition of differentiable
applications. 0

We are now going to see that system satisfies the assumptions of theorems
and 2.5 and Corollary [2.6] presented in Section
PROPOSITION 3.2. Let us consider a constant solution V = (h,u) with h>0. Then,
there exists a neighborhood in H*(R) x H**1(R) of V, such that as long as the solu-
tion V = (h,u) remains in this neighborhood, system 18 symmetrizable under any
change of variable defined on this neighborhood. In other words, (1.1) is locally weakly
symmetrizable around constant solutions.

Proof. Let us prove that system admits a general Godunov structure of the
form using the function

—h u—=a)? oz?’u$2
H;W(U):/Rgh(l; h | M 5 Yy h(2 r

Let us first remark that Hj ;(U) is strictly convex in a small neighborhood? of U =

U(V'). The explicit representation formula of the second variation of H;, ; is provided
in Appendix [Al For all test functions ¢1,¢s, one has *

[, (2) s (2) -
/R(g—3ah(ux)2)(¢1)2+<£hé(—u¢1+3a6x(h2ux¢1))+£hé(¢2))2.

Now, considering the fact that g —3ah(u,)? is bounded positively by below for (h,u)
close enough to V3 (therefore, for U close enough to U), the strict convexity of Hiu
on the small neighborhood of U is concluded. We can formulate this conclusion as
following:

There exists a neighborhood in H*(R) x H*~(R) of U = (0,0) such that as long as
the solution U = (n,w) is in this neighborhood, 5(2]7-[,;771 is positive definite. In particular,
we have on U,

82 My, o (U) = (g ﬁ?ll)' (3.2)

Whe classical norm of H*(R) x H*~1(R).

-

_1 _1 _1
4£h 2 is the symmetric operator such that £, > oL, 2 :l:;l. The existence of this operator is

guaranteed by the symmetry definite positivity of 6;1.
5for the classical norm of H*(R) x H5*1(R).
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Let us also remark that §°H;, ;(U) is an isomorphism from H*(R) x H*~*(R) to H*(R) x
H+1(R) if U is close enough to U. Hence, the variational derivative OHp 4 defines
a diffeomorphism on a small enough neighborhood of the equilibrium U. This is a
consequence of the inverse function theorem considering the injectivity of dHy, ;(U) for
U close to U.

We now consider the Legendre transform ’Hiﬂ which is defined by

H;:l,ﬁ(Q) :/ Q-U-Ej 5, (3.3)
R
where
Efq= gh(h; h) | bl 5 O 4l (ur)?
and
Q="06uHs,a(U). (3.4)

One can check that Q= (o,u—u), with o =gh—gh/2—u*/2+u*/2— 2ah*(u,)?. This
leads to the following expression for H} _

W2 hlu—1u)2 B
@)= [ LB g2 Santhu .

We just now need to remark that there exists a function R of @ such that
FU)=6qR(Q)-

We can get to this equality setting

B2 2 o .
R(Q) = / gu ( . ) —abPu(uy)? —hio —ha (u—a) +gh’a/2.  (3.5)
R
Hence, the system is equivalent on a small enough neighborhood of V' to

01 (005 4(Q)) +0. (3gR(Q)) =0. (3.6)

Now, using Theorem we can conclude the weak symmetrizability of the system
under any change of variable around constant solutions. O

Let us remark that the quantity Ej, ; introduced in the proof of Proposition
is actually an energy for the system. Indeed, we can check that the solution of (|1.1)
satisfies

3tE;l7ﬁ+ar (uEﬁ’ﬂﬁL(ufﬂ)p) =0. (3.7

where p is defined by ([1.4]).
Proposition [3:2] together with Theorem [2.5| implies the symmetrizability of the sys-
tem under any variable around constant solutions. We now provide in the two following

propositions some explicit symmetric forms of system (|1.1)).
PrROPOSITION 3.3. The Green—Naghdi type system (1.1) can be written under the sym-

metric form

Ao(Q)9:Q+A1(Q)0:(Q)

0, (3.8)
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where Q= (o,u—u) is defined by and
Ao(Q)= (3.9)

1 u+30¢h2u18
( g—3ah(ug)? ( ) §73ah(uz)2
h2u, u(u+3ah?(ug)dy 2 u()+3ahuy0:()
Ty 300 (ot 0) fnt S — 300, (W, a0 )

and
A1(Q)= (3.10)
24 3ah’u 20z
g—SaZ(um)Q ) 5 5 9 h+u9—3(zh(u1;)2
2 :
ht sty — 300 (G5 gz 0) Shuct HE5nun — ad, (hus () — auds (1°0: )
h2u2ux+3ah4u(u1)261()
—3a0. < )

x g—3ah(uz)?

Proof. This is a consequence of the general Godunov structure of the system.
We just need to set Ao(Q) =M} (Q) and A1(Q)=d3R(Q) to get the result. O
Let us remark that the operators Ag(Q) and A;(Q) defined by and are
second order differential operators.
PRrROPOSITION 3.4. The Green—Naghdi type system is symmetric under the un-
known V = (h,u) of the form

Ag(V)OLV +A:1(V)0,(V)=0, (3.11)
with
—3ah(uz)? 0
Ao(V)Z(g ao (<) Eh>’ (3.12)
and
_ (gu—3ahu(u,)? gh—3ah?(u,)?
A(V)= (gh3ah2(um)2 hu+2ad, (h*u,) — ah®u, 0, — aud, (h30,()) ) (3.13)

Proof. This proposition is just a consequence of Theorem and Proposition [3.2
In fact, we check that the change of variable U — V such that

U= (n,w),
V=n,0uHp4(U)),

leads to V = (h—h,u—1) which is nothing but V within a constant. This fact is true
since 8, Hy, 7(U) = L, *(m)—1u. This change of variable is valid by the properties of the
Sturm—Liouville operator £, while h is positively bounded by below. Hence, the system
is symmetric with

Ao(V)=(DyU)" 63 Hj, (U)Dy U,
and
AL (V)=(DyU)" 6t M, o(U)Vu F(U)DyU.

Basic computations (similar to those presented in Appendix [A]) show that their analytic

expressions are given by (3.12)) and (3.13)). O
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Let us remark that similarly to Proposition[3.3] the operators Ao(V) and A; (V) are

second order differential operators. However, the analytic expressions of these operators
are much simpler than the expressions of Ay(Q) and A;(Q) in Proposition In fact,
as explained in Remark the symmetric positive definite operator of Proposition
is diagonal.
REMARK 3.1. A similar structure to (but non symmetric) is used in [16] to study
the linearized Green—Naghdi system in order to prove the local well-posedness. Let us
now apply Proposition to the Green—Naghdi type equations to get a conserved
quantity. According to this proposition, as long as the solution U remains close U, it
satisfies

/8tE;lvﬁ(U)+8xN(U):O, (3.14)
R
where

N(U)=Q-F(U)-R(U),

with
h? —h?

R(U):gu( ) —ah3u(uy)? — hio — hi® (u—a) + gh®u/2

given by (3.5). Now, we use the expressions of @, F(U), and R(U) and we find

hu(h—h h2+ hu?
Ny = u( )+<g + hu

3 2 oy, 93 2
3 3 +3ah’(ug) )(u u)+2h u(ug)”.

Since (h—h,u—u) € H*(R) x H**1(R) and s large, we remark that

lim N(U)=0,

r—too

which gives

d
— [ Ej . =0.
dt /]R h,u(U) 0

Hence, we conclude the conservation of the energy integral Hj ,(U) from the general
Godunov structure of the system. Let us note that we could get the conservation of the
energy integral simply by integrating the energy conservation law (3.7).

3.2. Two-dimensional extension Let us fix V = (h,u,7) €R? with h>0 and
consider the 2D Green-Naghdi model

Och+0yhu+0yhv =0, (3.15a)
drhu+ 8, hu® 4y huv + 0, (gh? )2+ ah?h) =0, (3.15Db)
Drhv + dphuw 4 8y hv? 4 8, (gh? /2+ ah®h) =0, (3.15¢)

where h=0,h+ u0gh+v0oyh.
This system is equivalent to

WU + 0, Fy (U)+ 0, Fy(U) =0, (3.16)



Dena Kazerani 17

where U= (h—h,m—ht,n—hv), with (m,n)=Lp(u,v) and Ly (u,v)=h(u,v)—
aV (h*div(u,v)). The transformation (m,n)w (u,v) is well-defined if h is strictly pos-
itively bounded by below. Indeed in this case, £ is an isomorphism acting on the
space

H T (div) = {(u,v) € (H*(R?) + @) x (H*(R?) +o) such that div(u,v) € H*(R?)}.
The fluxes are defined by
hu

Fi(U)= | gh?/2+ hu? —2ah®(div(u,v))? — aud, (RPdiv(u,v)) +ah®div(u,v)v, |,
huv — ad, (h3udiv(u,v))

and
hv

FU)= huv — ady (hPvdiv(u,v))
gh? /24 hv* = 2ah?(div(u,v))? — awd, (h3div(u,v)) + ah3div(u,v)u,

PROPOSITION 3.5. The solution of system (3.15|) satisfies the following conservation
law

O Ey + 0y (uEy + (u—1u)p) + 0y (vEy + (v—1)p) =0. (3.18)
where
Ey =gh(h—h)/2+h(u—a)?/2+h(v—"0)?/2+ah?(u, +v,)?/2, (3.19)
with p given by , Let us consider the space integral Hy of the energy Ey,

My (U)= . Ey(U). (3.20)
Similarly to the one dimensional case, this function is strictly convex as an application
of U while V = (h,u,v) is close enough to the equilibrium V = (h,u,), i.e. 6gHy (U) is
positive definite for U close to U=U(V)=(0,0,0). Let us now consider the change of
variable

U= Q=0uHtyU),

defined around U. Similarly to the 2-dimensional case, this is a diffeomorphism since
SuHy is injective on a small enough neighborhood of U. Moreover, §3Hy (U) is an
isomorphism for all U close to U. The invertibility of dyHy is then just a consequence
of the inverse function theorem. One can check that

gh—gh/2—(u?—2)/2— (v? —02)/2—3ah?(div(u,v))?/2
Q= u—i . (3.21)

We are going to see in the following proposition that the 2-dimensional Green—Naghdi
equation admits a general Godunov structure using the variable Q).
PROPOSITION 3.6. Let s >4. There exists a neighborhood for the norm H* x H*T!(div)
of V such that as long as the solution V of remains in this neighborhood, the
system is equivalent to

(017 (Q)) +02(5qR1(Q)) + 9y (6o R2(Q)) =0, (3.22)
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where Q is defined by (3.21)) and R1 and Ro are two functions defined on a neighborhood

of Q=Q(V)=(gh/2,0,0) (see (3.24) for some explicit representation formulas).
Proof. Let us first remark that the Legendre transform Hj, of the energy integral
Hy; is defined by

Q= [ QU-F(v)
= /]RZ g(h—h)?/24+h(u—1u)?/2+h(v—"0)/2—ah®(div(u,v))? + gahzﬁ(div(u,v))2.

We know by Definition of the Legendre transform that we have
U=0H}(Q). (3.23)

Let us now consider the variational functions R; and R, defined by

R1(Q) = /R 9 <W) +ha(u? — %) — ahdu(div(u,v))?, (3.24a)

and

R2(Q) Z/Rzg (vh;vh) +ho(v? —0%) — ahPv(div(u,v))?. (3.24b)

We can easily check that

F1(U)=6qR1(Q), (3.25)
Fy(U) =0QR2(Q). (3.26)

Considering (3.23) together with (3.25) and (3.26)) we get the result. O
Now, according to Remark the 2-dimensional Green—Naghdi system (3.15) is

symmetrizable under any change of variable around any constant solution V. Especially,
the general Godunov structure of the system leads directly to the following symmetric
structure under the unknown Q:

Ao(Q)0Q+ A1 (Q)0:Q + A2(Q)9,Q =0, (3.27)
where
Ao(Q)=03Hy(Q), (3.28a)
A1(Q)=65R1(Q), (3.28b)
and
A2(Q) =5 R2(Q). (3.28¢)

Considering the fact that we can recover the physical variable V' = (h,u,v) using the
partial variational derivative of the energy integral, we have the following corollary.
COROLLARY 3.7. The two-dimensional Green—Naghdi equation 18 symmetric
under the physical variable V = (h,u,v) of the form

Ag(V)BV + A1 (V),V + Ay (V)d,V =0. (3.29)
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where
g—3ah(div(u,v))? 0 0
Ag(V)= 0 h—ad,(h?0,) —ad,(h3,)
0 —ady(h38,;) h—ad,(h®d,)

is block diagonal.
Proof. We first consider the change of variable U+ V where

U=(h,m,n),
and
V = ("8 (m,my My (U)) = (hyu— 1,0 —10)
is nothing but V within a constant. This change of variable is valid by the invertibility
of L}, on H*T!(div) since h is positively bounded by below and the physical speed (u,v)
belongs to H**!(div). We then use Remark to find the following expression for the

operators

Ao(V)=(DyU)" 63Hy(U) DyU,

A1 (V)= (DyU)" 63 M (U) Dy Fy(U) DyU,

and
Ay(V)=(DyU)" 63 M (U) Dy Fy(U) Dy U.

Using Remark we could predict the block diagonal structure of Ay(V). O
Let us mention that similarly to the first dimensional case, the conservation over
time of the energy integral Hj can be concluded.

4. Conclusion A generalization of the notion of symmetry classically defined
for hyperbolic systems has been presented. This generalization is mainly based on the
generalization of Godunov systems introduced in [9]. We prove that all general Godunov
systems are symmetrizable under any change of variable. We also see that this structure
leads to a conserved quantity. Then, we check that the one and two dimensional Green—
Naghdi equations are general Godunov systems as long as the solution remains close
enough to equilibriums. Therefore, there are symmetrizable under any change of variable
defined on a small neighborhood of constant solutions. Moreover, the conserved quantity
deduced by the general Godunov structure of the system is nothing but the energy
integral which represents the total physical energy of the system.

Let us also mention that we write the Green—Naghdi equation on a quite simple
structure under the physical variable. This is due to the fact that the physical variable
can be obtained from the Hamiltonian variable by a partial change of variables. In
fact, this leads to a bloc diagonal operator for the symmetric structure. The symmetric
structure of the Green—Naghi equations under the variable (h,u) is also used in [18] to
prove the non linear stability of constant solutions of the system with viscosity.
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Appendix A. Computation of the second variation. In this part, we compute
the second variation with respect to U = (h,m) of

—h u—=a)? a3u$2
HB,U<U>=Agh(2 )| hu—) | abu)?,

Let us first compute the variational derivative with respect to h of Hj, ;(U). In fact,
fixing the function m, we have for all test functions ¢,

Hyo(h+ ) = / By a(h+6.u)
- / By a(hu) + Dy By a(hu)(6) (| 8],
— My () + /}R Dy Ey o (hu)() +o((|])

where limg_¢ O(””f‘l”) =0. Using the definition of Ej, ;, we have

(u—u)?

2

h
Mool o) =Hia b+ [ gho—Gro+ 5

+/ h(u—1u)Dpu(p) + gahQ(uz)ng—kah?’uz@zDhu(qb) +o(||8]]). (1.1)
R

In order to compute Dpu(¢), we consider (1.17) where m is defined. We differentiate
this relation with respect to h and take the action on ¢. We find

0=wue+hDyu(¢) —ady(3h> pus ) — ady (h* 0. (Dpu(9)))-
This leads to
Dru(¢) =L, " (300, (h*uz¢) —ug).
Injecting this into , we get

(u—wu)®
2

A
R

—|—/R %ahQ(um)%ﬂ— (h(u—1) +ah3u$8x) ! (3a(“)x(h2u$¢) —ud) +o([|¢]]).

Hence, we have after an integration by part

(u—1)?
2

z 3
Mol o) =Hi o (b + [ gho—Gros U504 St

+ / (h(u—a) -0, (ah®u,)) £; (300, (h2u, ) —ud) +o( ],
R

or equivalently

(u—1u)®
2

h 3
Hp, a(h+p,m) ZHE@(MUH/RQM— %¢+ o+ §ah2(u$)2¢
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/R +La(u—1) £ (300, (h?upd) — ud) + o(|6]))-

Now considering the fact that £ is symmetric and using another integration by part,
we get

2 52
ot o) =g+ [ (ah=gh/2= 5+ 5= S0t (w)? ) o+ o).

Then, we have

- uw? 3
OnHpa(U)=gh—gh/2— > t3 - iahQ(UI)27

which is nothing but the quantity called ¢ in Section [1.2
Using exactly the same type of computations, we find

(5m’H,-l7ﬂ(U) =U—"U.
On the other hand, we know by the definition of the second variation that

0% Hp, 5(U) = DuyduHy, 4 (U) = (DhU(U ) DmU(U)>

Dpu(U) Dpu(U)
Then, similar computations lead to
52%%1,11 (U) =

<g_3ah(uz)2 _ (u—|—3ah2uzaz) [:}:1 (_u() +3a8m(h2ux())) . (U+3ah2umax) L:hl)
L7 (—u()+3a0, (h2uq())) o .
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