
Classifier Systems
Evolving Multi-Agent System with Distributed Elitism

Gilles ENEE
Laboratoire I3S - Les Algorithmes

Bâtiment Euclide - 2000 Route des Lucioles
Sophia-Antipolis 06410 BIOT, France

phone : +33 (0) 4-92-94-27-72
e-mail: enee@i3s.unice.fr

Cathy ESCAZUT
Laboratoire I3S - Les Algorithmes

Bâtiment Euclide - 2000 Route des Lucioles
Sophia-Antipolis 06410 BIOT, France

phone : +33 (0) 4-92-94-27-74
e-mail: escazut@i3s.unice.fr

Abstract-
Classifier systems are rule-based control systems for

the learning of more or less complex tasks. They evolve
in an autonomous way through solution without any ex-
ternal help. The knowledge base (thepopulation) con-
sists of rule sets (theindividuals) randomly generated. The
population evolves due to the use of a genetic algorithm.
Solving complex problems with classifier systems involves
problems to be split into simple ones. These simple prob-
lems need to evolve through the main complex problem,
’co-evolving’ as agents in a multi-agent system. Two
different conceptual approaches are used here. First is
Elitism that is inspired by Darwin, distinct agents evolving
always keeping alive their best members. Second isDis-
tributed Elitismwhich is a logical enhancement of Elitism
where agents knowledge is distributed to make the whole
evolve through solution. The two concepts have shown in-
teresting experimental results but are still very different
in use. Mixing them seems to be a fairly good solution.

Keyword list : Genetic Algorithm, Classifier System,
Multi-Agent System, Genetics Based Machine Learning,
Knowledge Sharing.

1 Introduction

Solving complex problems with classical algorithms has
shown its limits. In our work, the solutions space of
complex problems is explored thanks to genetic algorithm
[Goldberg, 1989]. Genetic algorithms are not dedicated to
machine learning. Then [Holland, 1992] has introducedClas-
sifier Systemswhich are an extension of genetic algorithm as
it is described in the next sections. These systems are special-
ized in learning. But even with these tools, we are obliged to
split complex problems into simple ones [Bull, 1995]. These
simple problems are considered as agents co-evolving in a
multi-agent system. But we still encounter difficulties to an-
swer to complex problems due to the actual lack of general
conceptual approach. In this paper, we will first describe
Pittsburgh-style classifier systems and multi-agent systems.
Section 3 will present our experiments. In that section, we
will first explain the traffic signal controller we used for the
tests, second will be the Elitism experiment, third will be the

Distributed Elitism experiment, fourth will be the mixed one
and last we show robustness of the chosen classifier system
through three experiments. Finally, last section will attempt
to show new conceptual openings.

2 Multi-Agent System

Before explaining what is a multi-agent system we must first
describe what a genetic algorithm is.

2.1 Genetic Algorithm in Classifier Systems

Genetic algorithms are usually used for function optimiza-
tion. The problem is encoded on a bit ’fragment’ called
chromosome referring to DNA. They work on a population
of chromosomes called individuals. Genetic algorithms use
the implementation of DNA’s manipulators like crossover and
mutation on this population. They implement natural selec-
tion of good solutions based upon Darwin’s model. The ini-
tial set of chromosomes is randomly initialized over a ternary
alphabet

�
0, 1, #✁ where ’#’ is a wildcard matching for a 1 or

a 0. Crossover consists in randomly taking two chromosomes
(parents) and crossing them at a random position exchanging
part of their fragments giving two children. For example, let
us describe a crossover between individuals 0011 and 1100.
If we suppose that the crossover site is situated on the mid-
dle of the chromosome, the two children 0000 and 1111 are
obtained.

Mutation consists in changing a bit value into one of the
two other possible values of the alphabet. Mutation and
crossover are applied with a probability of occurring. Genetic
algorithms are also used in machine learning system.

2.2 Pittsburgh-style Classifier Systems

Classifier systems are genetics based machine learning sys-
tems. They only use genetic based operators to find problem
solution. They are made of sets (individuals) of rules (chro-
mosomes), the whole consists in a population. Classifier sys-
tems exist in two forms : Michigan-style ones and Pittsburgh-
style ones. In the first one, one individual is a single rule, in
the second one, one individual is a set of rules. Let us detail
Pittsburgh-style classifiers [Smith, 1980], since it is the ap-
proach we have chosen. The basic cycle of such a classifier



system is the following one :
Initialize(Pop);
While(conditions not satisfied)
{

Evaluate(Pop);
GA(Pop);

}

The population is a set of individuals, each individual be-
ing a set of rules. Rules encode the problem as aproduction
rule i.e with a condition part and an action part. The final
population should contain many individuals representing the
solution to execute the task to be learnt. The evaluation con-
sists in steps during which each individual of the population
will be evaluated many times to measure its performance to
accomplish the asked task. The performance gives a reward
to the individual in the form of strength. This strength will
be used by the genetic algorithm and is essential to the se-
lection. The more there are trials, the more the strength is
relevant. Once the evaluation done, individuals need to be
evolved. This is done by the genetic algorithm. The highly
fit individuals (best strength) should ’reproduce’ each other
because the random selection is made following a scheme
that favors the more fit members. Then crossover and mu-
tation mechanisms are applied to recombine individuals. A
new population is thus created, containing a higher propor-
tion of the characteristics possessed by the good members of
the previous population. Each passing through the loop cor-
responds to ageneration.

2.3 Multi-agent Classifier System

Complex problems need to be split into simple ones
[Bull and Fogarty, 1994], expecting these simple problems
might be coordinated to answer the main one. This is what
we do in a multi-agent system. An agent, in our work, is a
classifier system that must solve a simple problem. Thus a
multi-agent system is a system composed of agents (classifier
systems) that solve together the complex problem.

3 Experiments

Let us now describe the application of our multi-agent classi-
fier system.

3.1 Adaptation to a traffic signal

To implement our system, we have chosen the traffic
signal controller which is a good example of homo-
geneous environment [Bull, Carse and Fogarty, 1995],
[Mikami and Kakazu, 1993] and
[Mikami and Kakazu, 1994]. This problem has been
widely treated in related areas [Escazut and Forgarty, 1997]
and [Montana and Czerwinski, 1996]. Each agent manages
one junction, the aim is to control a map of crossroads that
implies cooperation between junctions.

The grid map we used is a 3✂ 3 one. A junction is made
with four roads at each cardinal point (North, East, South,

Figure 1: The Simulator.

West). Each road has a traffic light which colors are opposed
vertically and horizontally. The traffic light is green or red.
There is also two sensors giving informations on incoming
cars. The nearest one of the traffic light is detecting if a car is
waiting at the crossroad, the other one detects a car approach-
ing (see figure 1). Cars have a constant speed or are waiting
for the signal to turn green (no speed), in other words, there
is no acceleration. Each road has a traffic flow which is the
probability that a car may appear on it. The number of cars
by road is limited to 10. The controller shall decide whether
the signal must change or not. A cycle is the time between
each decision of the controller. Each cycle starts with the
execution of the action dictated by the controller. Then, ve-
hicles that can move forward, achieve a one-step move. A
vehicle that crosses the junction can go straight or turn left or
right using a turning probability of 10%. When a car turns,
cutting the opposed road, there is no collision. Roads are
’double-sided’. Roads of junctions that are connected to an
other junction only receive cars from that neighbour junction
i.e. cars cannot be created on that road.

The main problem is to control a 3✂ 3 grid map of junc-
tions. Then according to our choices, we say that the multi-
agent system is the map and that an agent is attributed to a
junction. Thus we have here nine agents. Now let us see how
an agent will rule the junction in our particular case.

There are four input roads per junction and each road has
two sensors returning true or false. Thus, the condition part
of a rule has two bits by road representing the state of the two
sensors on it and a bit to represent the traffic light on the north
road that gives the color of other signals. So the condition
part of a rule is made of nine bits. The action part consists in
changing whether or not the traffic light which is represented



using one bit. For instance, the rule 11 00 11 00 1:1 says that
when there is no cars on the East-West roads (xx 00 xx 00 x:x)
and there is a North-South important flow (11 xx 11 xx x:x)
and when the vertical traffic lights are red (xx xx xx xx 1:x)
then the controller must change the state of the traffic lights
(xx xx xx xx x:1). Figure 2 represents an individual where A
is the Arriving sensor and J the Junction sensor of the indi-
cated road.

Rule nRule 1 Rule i

A A A AJ J JJ
North
Red

Light

North East South West

Action

Figure 2: An Individual.

At eachtic (i.e. time interval), a car should advance or
wait. A cycle corresponds to 5 tics. Each cycle an individ-
ual takes a decision, choosing randomly one rule among the
matching rules. Each junction is ruled by an agent also called
population. The evaluation of populations is made measuring
the performance of all individuals filling it. Each individual✄
is evaluated regarding its performance on its junction. At the
end of an evaluation,✄ is given a strength which is the fluc-
tuation between the average delay obtained at the end of the
first generation by the whole of the individuals and the one
obtained by✄ for the current generation. Strength is given
using this function :

☎✝✆✟✞✝✠☛✡ ☞✍✌✏✎✒✑✓✆✕✔✝✌✗✖✙✘✛✚✢✜✤✣✦✥★✧✪✩✬✫✤✭ ✮✙✯✱✰✳✲ ✎✴✎✵✑✶✆✕✌ ✷✙✑✶✸✺✹✼✻✽✾✠☛✎✒✿❀✌ ❁❂✡✼✑✓✎✵✹✝✔✤✑ ✷✙✑✶✸✺✹✼✻❄❃
❅❇❆❉❈❋❊✼●✒❍ ■❑❏▼▲✵❊✝◆P❖✕▲ ◗✦▲✒❘❙◆❯❚ is the mean of the average de-

lays the 900 individuals (i.e. 9 junctions of 100 indi-
viduals) have obtained at the end of the first generation
upon their junction.❅❲❱❨❳✍❊❩❊❩▲✒❬❭❍ ◗❪▲❩❘❙◆P❚ is the average delay the evaluated in-
dividual has obtained at the end of the current genera-
tion upon its junction.

The ❆❉❈❋❊✼●✒❍ ■❑❏▼▲✵❊✝◆P❖✕▲ ◗✦▲✒❘❙◆❯❚ is the reference performance for
the next generations. Figures 3 shows how an individual will
be rewarded when it is evaluated comparing its performance
to the mean of the first average delays obtained by the 900
individuals. First generation mean values proposed here are
20, 30 or 50 tics. The starting mean strength is 0.7 for the
900 individuals. We use▲✒❫P❴ function as a delay minimization
function. It allows an important enough slope to strengthen
or to weaken an evaluated individual. Thus, the more delay
decreases through generations, the more strength increases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

S
tr

en
gt

h

Average Delay

Strength Function of Classifier Systems (Based upon the mean of the first average delays = 20, 30, 50 tics)

20 tics
30 tics
50 tics

strength first value

Figure 3: Strength Function.

The parameters of our experiment for the genetic algo-
rithm are :❅ Mutation probability : 0.01❅ Crossover probability : 0.6❅ Crossover : single point❅ Selection method : Roulette wheel

A population is composed of 20 individuals, each of them be-
ing the concatenation of 15 randomly initialized rules. Indi-
viduals performance is averaged after 100 evaluations. Three
different flows for roads have been chosen. High flow repre-
sents 9 cars per 60 tics, medium flow corresponds to 6 cars per
60 tics, low flow corresponds to 3 cars per 60 tics arriving on
a road. The results we present here are averaged over 20 runs
with different random seed values. In order to have a global
vision of the performance of the whole multi-agent system,
the curves we present in the next experiments gives each gen-
eration the mean of the average delays for all the 9 agents. In
the same way, we always give a reference curve which is the
result of an experiment without any enhancement.

3.2 Elitism

Inspired by works made by [De Jong, 1975] on Genetic Al-
gorithms, the aim of the Elitism is to keep the best individuals
deleting the worst ones in order to strengthen reinforcement.

To implement Elitism, the❵ best individuals of the last
generation are to be placed in the new generation. They re-
place the❵ worst individuals. The remaining individuals are
created as usually, i.e applying crossover and mutation oper-
ators.

In this experiment, North flow is high, South flow is
medium and East-West flows are low. Roads that are con-
nected have an empty flow because cars come from the
neighbor junctions. We have chosen different percentages
of Elitism. So ❵ is dependent of this percentage. We have
tested the multi-agent classifier system with different values
for ❵ : 3 (15% of the size of an agent, i.e 15% of 20), 6
(30%), 10 (50%) and 12 (60%). Reference curve corresponds



0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay

Generations

Comparison between average delays : Elitism (Pop 20, Rules 15, 20 Exp, 3x3 Junc)

Reference (No Elitism)
15 % of an Agent
30 % of an Agent
50 % of an Agent
60 % of an Agent

Figure 4: Elitism.

to the results obtained with the system without Elitism. Fig-
ure 4 shows experiment results.

We can see that the simple evolution (reference) does not
learn quickly the solution to the main problem. We notice the
quick and relatively efficient convergence of Elitism. Toward
generation 10, the 30%, 50% and 60% curves have converged
to a stable average delay of about 4.2 tics and then decreased
slowly to an average delay of about 1.9 tics at generation 50
for a car to wait before crossing junction. Differences be-
tween 30%, 50% and 60% curves are slight. The 15% curve
has more difficulties to converge. It seems that a 50% rate of
Elitism on population is here the best rate to enhance classi-
fier systems convergence. This curve shows a gain of almost
96% on the first average delay. The 60% rate is too high and
its curve is higher than 50% one. Now that we have seen the
already proved efficiency of Elitism, we should extend that
method.

3.3 Distributed Elitism

Pittsburgh-style classifier systems can be enhanced like
Michigan-style one with some features. Elitism is a good
approach that we can apply to a multi-agent Pittsburgh-style
system. In an homogeneous environment, where agents learn
locally a similar problem, we should share knowledge. Dis-
tributed Elitism consists in exchanging the best individuals
between these identical agents, trying to reinforce the whole
as quickly as possible, through a pool that will receive for
transit those individuals. We conceive Distributed Elitism
equally sharing individuals between agents. Distribution is
made after the evaluation of whole population :
Initialize(Pop);
While(conditions not satisfied)
{

Evaluate(Pop);
Distributed_Elitism(Pop);
GA(Pop);

}

The distribution of the best individuals of each agent is
made through a pool classifier. This pool is not a classifier
system so it does not evolve. The pool is filled with the best

individuals of each agent. To have a better sharing of the
pool, the global strength of each agent is used to know how
many individuals an agent will pool. The more it has a high
strength, the more it will place individuals in the pool :❛❝❜ ❞✾❡✴❡✵✸❢✑✓✞❨✘❄❞✾❡✴❡✒✸ ☞❣✠✐❤❩✑ ✯✛❥ ☞❧❦☛❁❂✔✤✑✓✆✕✌♥♠❥ ☞❧❦☛❁✳✸❢✸❢♠❅❇♦q♣ r✙s✝s✝❘❙▲❩t is the number of individuals pooled.❅❇r✙s✝s✝❘ ✉★❈❋✈❯▲ is the size of the pool.❅❇✇①✉ is a function that calculates the Global Strength of

an agent or more.❅❇■❑❖▼▲✒❬❭❍ is the considered agent.❅❇■②❘✐❘ represents all the agents to get the whole strength
of our multi-agent system.

Once the pool is filled with the best individuals of all
agents, these individuals have to be distributed only once,
replacing the worst individuals of each agent. The redistri-
bution is ordered : the worst agents take the best individuals
from the pool classifier and the best agents take the ’worst of
the best’ individuals from the pool. To know how many indi-
viduals will be taken by an agent, we use also an equal share
method based upon the strength where the worst the strength
is, the greatest the number of taken individuals is :

❛✱❜ ③❂✹✤④P✑✓✆✱✘ ❞✾❡✵❡✵✸ ☞⑤✠✐❤❩✑ ✯ ❦ ❥ ☞❧❦☛❁⑥✸❢✸⑦♠❣⑧ ❥ ☞❧❦☛❁❂✔✤✑✓✆✕✌♥♠✗♠❥ ☞❧❦☛❁✳✸✺✸⑦♠ ✯ ❦☛❛✱❜ ❁✬✔✤✑✶✆✕✌✗✿★⑧⑩⑨✶♠❅❇♦q♣ ❶②◆▼❷✟▲✵❬ is the number of individuals taken from the
pool.❅❇♦q♣ ■❑❖▼▲✒❬❭❍♥● is the number of agents of our multi-agent
system.

In this experiment, North flow is high, South flow is
medium and East-West flows are low. Roads that are con-
nected have an empty flow because cars come from the neigh-
bor junctions. We compare an alone evolution (reference)
and different percentages of the whole population using dis-
tributed elitism. The different sizes of the pool, that reflect
these percentages, are : 27 (15% the whole population, i.e
3 ✂ 3 ✂ 20), 54 (30%) and 90 (50%). Figure 5 shows the av-
erage delays that cars wait on the map to cross junctions.

Distributed Elitism gives good results indicating that each
junction is efficient and that the whole map is also very ef-
ficient at the end of the learning. Toward generation 15, the
3 curves have converged to a stable average delay of about 3
tics and converge slowly to an average delay of 1.1 at gen-
eration 50. The best curve is 30% of Distributed Elitism. In
term of convergence, it is more efficient than simple Elitism.
The gain is about 98% on the first average delay. But it needs
3 generations more to converge to less than 4.2 tics. So why
should we not mix the both methods ?



0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay

Generations

Comparison between average delays : Distributed Elitism (Pop 20, Rules 15, 20 Exp, 3x3 Junc)

Reference (No Elitism nor Distributed Elitism)
15 % of Population
30 % of Population
50 % of Population

Figure 5: Distributed Elitism.

3.4 Mixed experiment

The efficiency of both methods in their domain have been
shown (quick convergence for Elitism and better convergence
for Distributed Elitism). We have made a last experiment to
see if combining these two methods can more improve the
results.

The implementation of the combined methods is simple
because Elitism and Distributed Elitism are separated in the
algorithm :
Initialize(Pop);
While(conditions not satisfied)
{

Evaluate(Pop);
Distributed_Elitism(Pop);
GA(Pop); /* Elitism */

}

Thus in this experiment, Elitism is performed within each
independent agent, and Distributed Elitism is applied be-
tween all the agents of the system. So the mechanism favor-
ing the best individual is applied at both levels of our multi-
agent system. The reference curve used in this experiment is

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay

Generations

Comparisons between average delays : Best vs. Mixed (Pop 20, Rules 15, 20 Exp, 3x3 Junc)

Reference (No Elitism nor Distributed Elitism)
Distributed Elitism 30%

Elitism 50%
30 % of Distributed Elitism and 50 % of Elitism

Figure 6: Mixed experiment.

free of any form of elitism. Figure 6 also represents the best
Elitism curve (50% of the population of an agent) and the best
Distributed Elitism curve (30% of the whole population). The
fourth curve displays the average delay vs. the generations for

the system using both Elitism at 50% and Distributed Elitism
at a 30% rate.

Results are impressive because we should think that fur-
ther gain was nearly impossible. On the fifth generation, av-
erage delay is about 3.4 tics, better than the best Elitism. And
as final result at generation 50, we have an average delay of
0.47 tic. It is a gain of more than 99% from the first aver-
age delay. To figure out this results and to test robustness,
we have made three more experiments. Traffic flows on each
roads are changed at regular intervals to verify that there is
no convergence toward a local optimum and that our mixed
solution is a good one.

3.5 Changing flow : Robustness

To test the robustness of our multi-agent classifier systems us-
ing the mixed solution, we have done two more experiments
during which flows change every 10 generations. In the first
test, we will show how the system reacts when faced to a low
traffic progressively becoming a very high one. The second
experiment is the opposite : the system has to learn how to
manage with a very high traffic progressively becoming a low
one. The notion of very high flow is represented by a proba-
bility of 0.5 for a car to appear on a road at each tic. In other
words, with this probability there is every expectation that 30
cars will arrive in 60 tics. On both experiments, flows are
randomly set for the ten last generations, i.e. from generation
40 to 50.

The aim of the first experiment is to show that incremental
difficulty is not too tough to handle. At the beginning, all
incoming flows are low, then they increase to very high :❅ from generation 0 to 9 flows are low ones❅ from generation 10 to 19 flows are medium ones❅ from generation 20 to 29 flows are high ones❅ from generation 30 to 39 flows are very high ones.

Figure 7 represents the reference curve with no Elitism nor
Distributed Elitism, and the mixed solution one. The refer-
ence experiment seems to have no problems with the chang-
ing flows. But the global behavior of the system is not suit-
able since at generation 50 the delay is about 20. Considering
the mixed solution test, we can notice that at each change
of flow the system has to recover from the new flow diffi-
culty. But in all cases, it has the expected behavior since it
converges quickly even with a sharp difficulty at generation
30 when flows become very high ones. Each 10 generations,
production rules that are needed to handle a harder problem
are available in the population and are quickly used to lower
the average delay. Then, random flows present no difficulties
at all to the system, since all cases have already been learnt.
Thus, we can say the population keeps enough diversity in
order to ensure the robustness of the system.

Let us now detail the second experiment. Here, the system
has to learn how to manage with very high flows progres-
sively becoming low ones. Figure 8 represents the reference



0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay

Generations

Comparisons between average delays : Changing traffic flow => Easy to Jam (Pop 20, Rules 15, 20 Exp, 3x3 Junc)

Reference (No Elitism nor Distributed Elitism)
30 % of Distributed Elitism and 50 % of Elitism

Figure 7: Changing flow from easy to very high.

plot with no Elitism nor Distributed Elitism, and the mixed
solution one. We can notice that with this test, the reference
system has more difficulties to manage the changing of flows
that in the previous experiment. But globally, the average
delay is the same (about 20). But, considering the mixed so-
lution plot, it is very impressive to see that when the difficulty
is higher, the system learns even faster to handle the map of
junctions. With a difficulty lowering each 10 generations, it
is able to handle at a very good rate the average delay. We
can deduce from this experiment that rules needed to handle
easier flow problems are contained in the population of the
harder one.

5

10

15

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay

Generations

Comparisons between average delays : Changing traffic flow (Pop 20, Rules 15, 20 Exp, 3x3 Junc)

Reference (No Elitism nor Distributed Elitism)
30 % of Distributed Elitism and 50 % of Elitism Jam

Figure 8: Changing flow from very high to easy.

A third experiment has been done : during 50 genera-
tions, flows are randomly set and change every 5 generations.
Experiment is shown on figure 9. Reference curve uses no
Elitism nor Distributed Elitism. It converges slowly as before
toward an average delay of 20 encountering slight difficulties
each 5 generations. Mixed solution curve learns quickly with
a little stop on generation 5 at the first changing flow. This test
, we noticed that our system is robust since the average delay
is about 0.57 tics at the end of the experiment. After gener-
ation 15, when the classifier system has learnt, the variation
of the average delay is only of 0.2 tics each 5 generations
while flows change. Those experiments have shown the good
reactivity of the classifier system using a mixed Distributed

Elitism and Elitism solution : Robustness is shown.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay

Generations

Comparisons between average delays : Changing traffic flow (Pop 20, Rules 15, 20 Exp, 3x3 Junc)

Reference (No Elitism nor Distributed Elitism)
30 % of Distributed Elitism and 50 % of Elitism

Figure 9: Changing flow each five generations.

4 Conclusion and further works

This work on multi-agent classifier systems has shown that
simplest solutions can be good ones. There is a lot of work to
do after this, because generalization of classifiers is far away.
We think that there is a way to explore in order to extend
conceptual approaches of complex problems to solve them
with classifier systems.

It seems that in an homogeneous environment, Distributed
Elitism mixed with Elitism is both efficient and robust, now
we shall integrate it to classifier systems for learning in such
an environment. We shall use a classifier system to rule per-
centages of Distributed Elitism and Elitism. That classifier
will allow to set rates without knowledge of the best ones for
the problem it will handle.

Heterogeneous systems are not as easy to generalize be-
cause agents have different goals to achieve, but they are cor-
related to solve a single complex problem. Sensors of agents
are different and indicate different measures that pooled to-
gether and evaluated, give an answer to the problem. These
systems need to exchange information between agents intro-
ducing the notion of communication and language. They can-
not exchange individuals as in an homogeneous environment,
disabling the Elitism solution as we present it. Evolution
as Artificial-Life of such a communication is a big interest
point. Pitssburgh-style classifier systems are interesting and
efficient but they need ’evolutions’ as Michigan-style classi-
fier systems did. Putting them in an heterogeneous situation
and studying their comportment while communicating should
be a good answer to rule more and more complex problems.

References

[Bull, 1995] Bull, L. (1995). Artificial Symbiology: Evolu-
tion in cooperative multi-agent environments. Ph.D. The-
sis , University of the West of England, Bristol.

[Bull, Carse and Fogarty, 1995] Bull, L. Carse, B. and Foga-
rty, T.C. (1995).Evolving Multi-Agent Systems. In Genetic



Algorithms in Engineering and Computer Science, Periaux
J. and Winter G., editors.

[Bull and Fogarty, 1994] Bull, L. and Fogarty, T.C. (1994).
Evolving cooperative communicating classifier systems.
In Sebald, A. V. and Fogel, L. J., editors,Proceedings of
the Third Annual Conference on Evolutionnary Program-
ming, pages 308-315.

[De Jong, 1975] De Jong, K.A. (1975). An analysis of the
behavior of a class of genetic adaptive systems. (Doc-
toral dissertation, University of Michigan).Dissertation
Abstracts International 36(10), 5140B. (University Micro-
films No. 76-9381).

[Escazut and Forgarty, 1997] Escazut, C. and Fogarty, T.C.
(1997).Coevolving Classifier Systems to Control Traffic
Signals. In “late breaking papers book”. Genetic Program-
ming 1997 Conference, Koza, John R. (editor).

[Goldberg, 1989] Goldberg, D.E. (1989).Genetic algo-
rithms in search, optimization, and machine learning.
Reading, MA: Addison - Wesley.

[Holland, 1992] Holland, J.H. (1992).Adaptation in Natural
and Artificial Systems.The MIT Press, Cambridge, Mas-
sachusetts.

[Mikami and Kakazu, 1993] Mikami, S. and Kakazu, K.
(1993). Self-organized control of traffic signals through
genetic reinforcement learning. InProceedings of the
IEEE Intelligent Vehicles Symposium, pages 113-118.

[Mikami and Kakazu, 1994] Mikami, S. and Kakazu, K.
(1994). Genetic reinforcement learning for cooperative
traffic signal control. InProceedings of the IEEE World
Congress on Computational Intelligence, pages 223-229.

[Montana and Czerwinski, 1996] Montana, D. J. and Czer-
winski, S. (1996). Evolving control laws for a network of
traffic signals. In Koza, J. R., Goldberg, D. E., Fogel, D.
B., and Riolo, R. L., editors,Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 333-
338. The MIT Press.

[Smith, 1980] Smith, S. (1980).A learning system based on
genetic algorithms.Ph.D. thesis, University of Pittsburgh.


