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On the values of logarithmic residues along curves

Delphine Pol

September 28, 2015

Abstract

We consider the germ of a reduced curve, possibly reducible. F.Delgado de la Mata proved
that such a curve is Gorenstein if and only if its semigroup of values is symmetrical. We extend
here this symmetry property to any fractional ideal of a Gorenstein curve. We then focus on
the set of values of the module of logarithmic residues along plane curves, which determines the
values of the Jacobian ideal thanks to our symmetry Theorem. Moreover, we give the relation
with Kähler differentials, which are used in the analytic classification of plane branches. We also
study the behaviour of logarithmic residues in an equisingular deformation of a plane curve.

1 Introduction

Let (D, 0) be the germ of a reduced hypersurface in (Cn, 0) defined by f ∈ C{x} := C {x1, . . . , xn}
and with ring OD = C{x}/(f). In his fundamental paper [Sai80], K.Saito introduces the notions of
logarithmic vector fields, logarithmic differential forms and their residues. A logarithmic differential
form is a meromorphic form with simple poles along (D, 0) such that its differential has also simple
poles along (D, 0). A logarithmic q-form ω may be written as:

gω =
df

f
∧ ξ + η

where g ∈ C{x} does not induce a zero divisor in OD, ξ is a holomorphic (q − 1)-form and η is a
holomorphic q-form. Then, the logarithmic residue resq(ω) of ω is defined as the coefficient of df

f ,
that is to say:

resq(ω) =
ξ

g
∈ Ωq−1

D ⊗OD Q(OD)

with Ωq−1
D the module of Kähler differentials on D and Q(OD) the total ring of fractions of OD. We

denote by RD the module of logarithmic residues of logarithmic 1-forms.

In [GS14], M.Granger and M.Schulze prove that the dual over OD of the Jacobian ideal is
RD. If moreover (D, 0) is free, that is to say, if the module of logarithmic differential 1-forms
is free, the converse also holds: the dual of RD is the Jacobian ideal. They use this duality to
prove a characterization of normal crossing divisors in terms of logarithmic residues: if the module
RD is equal to the module of weakly holomorphic functions on D then D is normal crossing in
codimension 1, and the converse implication was already proved in [Sai80].

The purpose of this paper is to investigate the module of logarithmic residues along plane curves.
Plane curves are always free divisors, and they are the only singular free divisors with isolated
singularities. Indeed, A.G.Aleksandrov proves in [Ale88, §2] that the singular locus of a singular free
divisor is of codimension 2 in the ambient space. We will also study the case of complete intersection
curves, for which a notion of multi-residues has been introduced by A.G.Aleksandrov and A.Tsikh
in [AT01].
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Let (D, 0) be the germ of a reduced Gorenstein curve in (Cm, 0). In particular, (D, 0) may
be a plane curve or a complete intersection curve. A parametrization of (D, 0) is given by the
normalization of the local ring OD, and induces a map val : Q(OD) → (Z ∪ (∞))p called the value
map, which associates to a fraction g ∈ Q(OD) the p-uple of the valuations of g along each irreducible
components of (D, 0). For a fractional ideal I ⊂ Q(OD), we denote by val(I) the set of values of the
non-zero divisors of I.

We first show in section 2 that the values of the Jacobian ideal and the values of the module
of logarithmic residues determine each other. The statement is easy for irreducible curves (see
Remark 2.10):

v ∈ val(RD) ⇐⇒ c− v − 1 /∈ val(JD)

where c ∈ N is the conductor of the curve, i.e. c = min {c ∈ N; c+ N ⊆ val(OD)}. It is a generaliza-
tion of the well-known symmetry of the semigroup for Gorenstein curves (see for example [Kun70]).
Nevertheless, the semigroup of a reducible curve also satisfies a certain symmetry property which
has been proved by F.Delgado de la Mata in [DdlM88]. The statement of this symmetry needs more
notations and the proof is more difficult than in the irreducible case.

We prove here that there is also a symmetry between the values of the module of logarithmic
residues and the values of the Jacobian ideal, which is in fact satisfied by any fractional ideal and
its dual. Whereas the symmetry is immediate for irreducible curves, the proof of this generalization
of Delgado’s Theorem is much more subtle. It leads to the main result of this section, namely
Theorem 2.4, which generalizes to any Gorenstein curve and any fractional ideal the Theorem 2.4
of [Pol15].

In section 3, we give some properties of the set of values of the module of logarithmic residues
and of the Jacobian ideal for plane curves. We show how to determine the set of values of the
logarithmic residues of a reunion of branches of D from the set val(RD). We also prove that the
modules of logarithmic vector fields of the branches determine the set of values of the zero divisors
of JD. Moreover, we give the relation between the Jacobian ideal and the Kähler differentials:

val(JD) = γ + val(Ω1
D)− 1

with 1 = (1, . . . , 1) and γ ∈ Np the conductor of the curve, that is to say the minimal γ ∈ Np such
that γ+Np ⊆ val(OD). The set of values of Kähler differentials is a major ingredient used in [HH11]
and [HHH15] to study the problem of the analytic classification of plane curves with one or two
branches.

A.G.Aleksandrov and A.Tsikh develop in [AT01] the theory of multi-logarithmic differential forms
and multi-residues along reduced complete intersections. Since our symmetry Theorem is true for
any Gorenstein curve, it is in particular true for complete intersections. We mention in section 3.4
several properties of reduced complete intersection curves which generalize the properties of plane
curves.

The last section is devoted to the study of the behaviour of logarithmic residues in an equisingular
deformation of a plane curve. In particular, we define a stratification by the values of the logarithmic
residues, which is the same thanks to section 3 as the stratification by Kähler differentials. We prove
that this stratification is finite and constructible, but it does not satisfy the frontier condition.

Acknowledgments. The author is grateful to Michel Granger for many helpful discussions on
the subject and his suggestion to use the result of Ragni Piene in the proof of Proposition 3.30, and
to Pedro González-Pérez and Patrick Popescu-Pampu for pointing out the papers of A.Hefez and
M.E. Hernandes on the analytic classification of plane curves.
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2 The symmetry of values

This section is devoted to the main Theorem 2.4, which is a generalization of the symmetry
Theorem 2.8 of [DdlM88]. The statement is true for any fractional ideal of Q(OD), so that it is in
particular true for the Jacobian ideal and the module of logarithmic residues, which are studied in
part 3 and 4.

We first introduce some definitions and notations inspired by [DdlM88], and then give the state-
ment of the theorem. We give here a detailed proof of this theorem, and then a consequence on the
Poincaré series associated to a fractional ideal of a Gorenstein curve (see Proposition 2.25).

2.1 Preliminaries

We recall here some results and notations of [DdlM88].
Let (D, 0) ⊂ (Cm, 0) be the germ of a reduced analytic curve, with p irreducible components

D1, . . . , Dp. The ring ODi of the branch Di is a one-dimensional integral domain, so that its nor-
malization O

D̃i
is isomorphic to C {ti} (see for example [dJP00, Corollary 4.4.10]). By the split-

ting of normalization (see [dJP00, Theorem 1.5.20]), the ring O
D̃

of the normalization of D is
O
D̃

=
⊕p

i=1 C {ti}. Moreover, the total rings of fraction of OD and O
D̃

are equal. We denote it by
Q(OD). We then have :

Q(O
D̃

) = Q(OD) =

p⊕
i=1

C {ti}
[

1

ti

]
The normalization of Di gives a parametrization of the branch Di, which is denoted by

ϕi : C {ti} → Di

ti 7→ (xi,1(ti), . . . , xi,m(ti))

Definition 2.1. Let g ∈ Q(OD). We define the valuation of g along the branch Di as the order in
ti of g ◦ ϕi(ti). We denote it by vali(g) ∈ Z ∪ {∞}, with the convention vali(0) =∞.

We then define the value of g by val(g) = (val1(g), . . . , valp(g)) ∈ (Z ∪ {∞})p.

Definition 2.2. Let I ⊂ Q(OD) be a OD-module. It is called a fractional ideal if it is of finite type
over OD and if it contains a non-zero divisor of Q(OD).

For a fractional ideal I, we define val(I) = {val(g); g ∈ I non-zero divisor} ⊂ Zp. We also set
val(I) = {val(g); g ∈ I} ⊂ (Z ∪ {∞})p.

Remark 2.3. We will prove in part 3 that the set val(I) determines the set val(I) (see Proposi-
tion 3.7).

Let I ⊂ Q(OD) be a fractional ideal. We denote by I∨ the dual of I, which is by definition
I∨ = HomOD(I,OD). Let g ∈ I be a non-zero divisor. The morphism given by

ϕ ∈ HomOD(I,OD) 7→ ϕ(g)

g
∈ Q(OD)

induces an isomorphism between HomOD(I,OD) and {h ∈ Q(OD);hI ⊆ OD} (see [dJP00, Proof of
Lemma 1.5.14]). We can therefore consider I∨ as a subset of Q(OD).

We define the conductor ideal of the curve by CD := AnnOD(O
D̃
/OD). It is a fractional ideal

of Q(OD). Moreover, it is also an ideal in O
D̃
, so that there exists γ = (γ1, . . . , γp) ∈ Np, called
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the conductor, such that CD = tγO
D̃
, where for α ∈ Zp, we set tα =

(
tα1
1 , . . . , t

αp
p

)
. By definition,

CD = O∨
D̃
.

We also introduce the following notations, which are analogous to the notations of [DdlM88].
Let M ⊆ Zp and v ∈ Zp. For i ∈ {1, . . . , p}, we define:

∆i(v,M ) = {α ∈M ; αi = vi and ∀j 6= i, αj > vj}

and ∆(v,M ) =
⋃p
i=1 ∆i(v,M ). For a fractional ideal I ⊂ Q(OD), we write ∆(v, I) instead of

∆(v, val(I)). We consider the product order on Zp, so that for α, β ∈ Zp, α 6 β means that for all
i ∈ {1, . . . , p}, αi 6 βi and inf(α, β) =

(
min(α1, β1), . . . ,min(αp, βp)

)
.

We set α− 1 = (α1 − 1, . . . , αp − 1).

We can now state the main Theorem of this section, which generalizes [Pol15, Theorem 2.4]:

Theorem 2.4. Let D be the germ of a reduced curve with ring OD. Then, OD is a Gorenstein
ring if and only if for all fractional ideal I ⊂ Q(OD) and for all v ∈ Zp the following property is
satisfied:

v ∈ val(I∨) ⇐⇒ ∆(γ − v − 1, I) = ∅ (1)

We notice that if we suppose the condition (1) satisfied for all fractional ideals I ⊂ Q(OD), it is
in particular satisfied by the ring OD, whose dual is O∨D = OD, so that we recognize Theorem 2.8 of
[DdlM88]. Therefore, the curve is indeed a Gorenstein curve, which proves one of the implications
of Theorem 2.4.

Remark 2.5. It is not sufficient to check if (1) is satisfied for one fractional ideal I to prove that
the curve is Gorenstein. Indeed, by definition, for every curve, the equivalence (1) is satisfied by
I = O

D̃
and I∨ = CD.

2.2 Proof of Theorem 2.4

From now on, we assume that OD is a Gorenstein ring. For example, D can be a plane curve or
a complete intersection curve. We recall here a property of Gorenstein curves:

Proposition 2.6 ([Eis95, Theorem 21.21], [dJP00, lemma 5.2.8]). Let I ⊂ Q(OD) be a frac-
tional ideal of a Gorenstein curve. Then it is a maximal Cohen-Macaulay module over OD and:

• The dual I∨ of I is also a fractional ideal, and I∨∨ = I.

• If I ⊂ J are fractional ideals, J∨ ⊆ I∨ and moreover, dimC J/I = dimC I
∨/J∨.

In particular, for a Gorenstein curve, C ∨D = O
D̃
, so that for all α ∈ Zp,

(
tαO

D̃

)∨
= t−αCD =

tγ−αO
D̃
.

The following proposition comes from the definition of a fractional ideal, and will be very useful:

Proposition 2.7. Let I be a fractional ideal. Then there exist ν and λ in Zp such that

tνO
D̃
⊆ I ⊆ tλO

D̃
(2)

In particular, it implies that ν + Np ⊆ val(I) ⊆ λ+ Np. Moreover, we can replace in (2.7) λ by
any element of Zp lower than λ, and ν by any greater element of Zp.

For a Gorenstein curve, by Proposition 2.6, we have the following sequence of inclusions:

tγ−λO
D̃
⊆ I∨ ⊆ tγ−νO

D̃
(3)

Let I ⊂ Q(OD) be a fractional ideal. We first prove the implication ⇒ of (1).
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Proposition 2.8. Let v ∈ Zp. Then:

v ∈ val(I∨)⇒ ∆(γ − v − 1, I) = ∅

Proof. Let v = (v1, . . . , vp) ∈ val(I∨), and g ∈ I∨ with v = val(g). We assume ∆(γ− v− 1, I) 6= ∅.
For the sake of simplicity, we may assume that ∆1(γ − v− 1, I) 6= ∅, which means that there exists
h ∈ I with val(h) = (γ1− v1− 1, w2, . . . , wp) ∈ I and for all j > 2, wj > γj − vj − 1. Since gh ∈ OD,
we have (γ1− 1, w2 + v2, . . . , wp + vp) ∈ val(OD), with wj + vj > γj . Therefore, ∆1(γ − 1,OD) 6= ∅.

Nevertheless, from Corollary 1.9 of [DdlM88], ∆(γ− 1,OD) = ∅, which leads to a contradiction.
Therefore, ∆(γ − v − 1, I) = ∅. �

Notation 2.9. We set V = {v ∈ Zp; ∆(γ − v − 1, I) = ∅}.

The set V contains the values of I∨, but a priori it may be bigger. In particular, it is not obvious
that V is the set of values of a OD-module. Our purpose here is to prove that V is indeed equal to
val(I∨).

Remark 2.10. For irreducible curves, the statement of Theorem 2.4 can be rephrased as follows:
for all v ∈ Z, v ∈ val(I∨) if and only if γ − v − 1 /∈ val(I), which is a generalization of the Theorem
of E.Kunz (see [Kun70]). The proof is easy for irreducible curves. Indeed, we have:

dimC I
∨/tγ−λC {t} = Card

(
val(I∨) ∩ (γ − λ+ N)c

)
dimC t

λC {t} /I = Card
(
(λ+ N) ∩ (val(I))c

)
Since by Proposition 2.6, dimC I

ν/tγ−λC {t} = dimC t
λC {t} /I, we have the result.

The proof for a reducible curve is also based on a dimension argument, but which is much more
subtle than in the irreducible case. First of all, we need the following properties, which should be
compared with 1.1.2 and 1.1.3 in [DdlM88].

Proposition 2.11. For a fractional ideal I ⊂ Q(OD), if v, v′ ∈ val(I), then inf(v, v′) ∈ val(I).
Similarly, if v, v′ ∈ val(I), then inf(v, v′) ∈ val(I).

Remark 2.12. If v ∈ val(I) and v′ ∈ val(I), then inf(v, v′) ∈ val(I).

Proposition 2.13. Let v 6= v′ ∈ val(I). If there exists i ∈ {1, . . . , p} such that vi = v′i, then there
exists v′′ ∈ val(I) such that:

1. v′′i > vi

2. v′′j > min(vj , v
′
j)

3. If moreover vj 6= v′j, then v
′′
j = min(vj , v

′
j)

The proposition 2.11 is a consequence of the fact that the valuation of a general linear combination
of two elements is the lowest one. The proposition 2.13 comes from the fact that a convenient linear
combination will increase the valuation on the component Di, but we cannot say what happens on
the other components where the equality holds.
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2.2.1 Dimension and values

Let v ∈ Zp. We set Iv = {g ∈ I; val(g) > v} and `(v, I) = dimC I/Iv. Then `(v, I) <∞.
We denote by (e1, . . . , ep) the canonical basis of Zp. ForM⊆ Zp and v ∈ Zp, let

Λi(v,M) = {α ∈M ; αi = vi and α > v}

We then have (see [DdlM88, Proposition 1.11]):

Proposition 2.14. For all v ∈ Zp, `(v+ ei, I)− `(v, I) ∈ {0, 1} and `(v+ ei, I) = `(v, I) + 1 if and
only if Λi(v, val(I)) 6= ∅.

Thanks to this proposition we can compute some dimensions from the set of values:

Corollary 2.15. Let ν, λ ∈ Zp such that ν + Np ⊆ val(I) ⊆ λ + Np (see Proposition 2.7). Let
(α(j))06j6M+1 be a finite sequence of elements of Zp satisfying:

• α(0) = λ and α(M+1) = ν

• For all j ∈ {0, . . . ,M}, there exists i(j) ∈ {1, . . . , p} such that α(j+1) = α(j) + ei(j)

Then:
dimC I/t

νO
D̃

= `(ν, I) = Card
{
j ∈ {0, . . . ,M}; Λi(j)(α

(j), val(I)) 6= ∅
}

(4)

2.2.2 Preliminary steps

We recall that V = {v ∈ Zp; ∆(γ − v − 1, I) = ∅}, and this set contains val(I∨). The purpose
of this section is to show that if the inclusion val(I∨) ⊆ V is strict, then it has some combinatorial
and numerical consequences. We then prove that it leads to a contradiction, which finishes the proof
of Theorem 2.4.

First step
We first show that if V 6= val(I∨), then there is an element w ∈ V \val(I∨) which satisfies some

properties which will be used in the next steps.
Let us assume that V 6= val(I∨), and let w(0) ∈ V \val(I∨) be "an intruder". By Proposition 2.7,

there exist λ, ν ∈ Zp satisfying ν+Np ⊆ val(I) ⊆ λ+Np and γ−ν 6 w(0) 6 γ−λ. For the remaining
of the proof, we fix such λ, ν.

The following Proposition gives an essential property of w(0):

Proposition 2.16. There exists j ∈ {1, . . . , p} such that Λj(w
(0), val(I∨)) = ∅. Moreover, the

corresponding coordinate satisfies w(0)
j < γj − λj.

Proof. If for all i ∈ {1, . . . , p}, Λi(w
(0), val(I∨)) 6= ∅, then for all i ∈ {1, . . . , p} there exists

α(i) ∈ val(I∨) such that α(i)
i = w

(0)
i and α

(i)
j > w

(0)
j . As a consequence, by Proposition 2.11,

inf(α(1), . . . , α(p)) = w(0) ∈ val(I∨), which is a contradiction. It gives the existence of a j ∈ {1, . . . , p}
such that Λj(w

(0), val(I∨)) = ∅. It is immediate to see that w(0)
j < γj − λj since if w(0)

j = γj − λj ,
then γ − λ ∈ Λj(w

(0), val(I∨)), which contradicts the emptiness. �

Second step
For the sake of simplicity, we assume that Λp(w

(0), val(I∨)) = ∅. The Corollary 2.15 together
with a convenient finite sequence (α(j)) can be used to compute the dimension of the quotient
I∨/tγ−λO

D̃
. We define a number `′ as the cardinality of the set obtained by replacing val(I∨) by V

in (4). This number may a priori depend on the chosen sequence (α(j)).

In order to compute dimC I
∨/tγ−λO

D̃
, we consider a sequence (α(j))06j6n0 with n0 =

∑p
i=1 νi−λi

satisfying:
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• α(0) = γ − ν and α(n0) = γ − λ

• for all j ∈ {0, . . . n0 − 1}, there exists i(j) ∈ {1, . . . , p} such that α(j+1) = α(j) + ei(j)

• there exists j0 ∈ {0, . . . , n0 − 1} such that α(j0) = w(0) and α(j0+1) = w(0) + ep

The existence of such a sequence follows from Proposition 2.16. Moreover, this sequence satisfies
the required properties of Corollary 2.15.

For example, when p = 2, we can choose a sequence α as follows:

val1

val2

w(0)

α(0)

γ − ν

α(n0)

γ − λ

Figure 1

Remark 2.17. In [Pol15] we choose a sort of "canonical" sequence, but in order to be less technical,
we impose less conditions on α.

From Corollary 2.15, we have:

dimC I
∨/tγ−λO

D̃
= Card

{
j ∈ {0, . . . , n0 − 1} ; Λi(j)(α

(j), val(I∨)) 6= ∅
}

(5)

We want to compare this dimension with the number `′ previously announced:

`′ = Card
{
j ∈ {0, . . . , n0 − 1} ; Λi(j)(α

(j),V ) 6= ∅
}

(6)

Lemma 2.18. For the sequence α defined above, we have:

`′ > 1 + dimC I
∨/tγ−λO

D̃
(7)

Proof. It is clear that Λi(j)(α
(j), val(I∨)) 6= ∅ ⇒ Λi(j)(α

(j),V ) 6= ∅. Moreover, since there exists
j0 such that α(j0) = w(0) and α(j0+1) = α(j0) + ep, Λp(α

(j0),V ) 6= ∅, but the assumptions on w(0)

implies Λp(α
(j0), val(I∨)) = ∅. Hence the inequality. �

From now on, our sequence α is fixed.

Third step
The purpose of this third step is to compare this number `′ to dimC I/t

νO
D̃
.

For i ∈ {0, . . . , n0} we set β(i) = γ − α(n0−i). The sequence β satisfies the properties of Corol-
lary 2.15, so that it can be used to compute the dimension dimC I/t

νO
D̃
.

For the sequence α of Figure 1, we represent the sequence β on the following diagram, where
v(0) = γ − w(0) − 1:

7



val1

val2

v(0)

β(0)

λ

ν

β(n0)

Figure 2

The following proposition gives a relation between `′ and dimC I/t
νO

D̃
:

Proposition 2.19. With the above notations we have:

dimC I/t
νO

D̃
6

p∑
i=1

(νi − λi) − `′

To prove this proposition, we need the following lemma:

Lemma 2.20. Let w ∈ Zp and i ∈ {1, . . . , p}. Then:

Λi(w,V ) 6= ∅⇒ Λi(γ − w − ei, val(I)) = ∅

Proof. Let w′ ∈ Λi(w,V ). By the definition of V , we have ∆(γ − w′ − 1, val(I)) = ∅. Moreover,
(γ−w′−ei)i = γi−wi−1 and for j 6= i, (γ−w′−ei)j = γj−w′j 6 γj−wj . Thus Λi(γ−w′−ei, val(I)) =
∆i(γ − w′ − 1, val(I)) = ∅. �

Proof of Proposition 2.19. We first notice that the two sequences α(j) and β(j) has the same
number of terms, namely n0 + 1 =

∑p
i=1(νi − λi) + 1.

By Corollary 2.15, we have:

dimC I/t
νO

D̃
= Card

{
j ∈ {0, . . . , n0 − 1} ; Λi(n0−j−1)(β

(j), val(I)) 6= ∅
}

(8)

We notice that for all j ∈ {0, . . . , n0 − 1}, γ − α(j) − ei(j) = γ − α(j+1) = β(n0−(j+1)).
Therefore, by the previous Lemma, if Λi(α

(j),V ) 6= ∅ then Λi
(
β(n0−(j+1)), val(I)

)
= ∅. We

then obtain the result by comparing (8) and (6). �

2.2.3 End of the proof of Theorem 2.4

We can now finish the proof of Theorem 2.4.

The inclusion val(I∨) ⊆ V is given by Proposition 2.8. It remains to prove that this inclusion
cannot be strict.

The Proposition 2.19 gives:

dimC I/t
νO

D̃
6

p∑
i=1

(νi − λi) − `′

8



Moreover, since
∑p

i=1 (νi − λi) = dimC t
λO

D̃
/tνO

D̃
= dimC t

λO
D̃
/I + dimC I/t

νO
D̃
, we have by

Proposition 2.6:

dimC I
∨/tγ−λO

D̃
=

p∑
i=1

(νi − λi) − dimC I/t
νO

D̃

Hence the inequality:
`′ 6 dimC I

∨/tγ−λO
D̃

(9)

However, by Lemma 2.18, if V 6= val(I∨), then `′ > 1 + dimC I
∨/tγ−λO

D̃
, which contradicts (9).

Therefore, we have V = val(I∨), that is to say: v ∈ val(I∨) ⇐⇒ ∆(γ − v − 1, I) = ∅. �

Remark 2.21. Another consequence of the equality V = val(I∨) is that the number `′ is equal to
the dimension of I∨/tγ−λO

D̃
. Therefore, the inequality in Proposition 2.19 is in fact an equality.

Moreover, since for all w ∈ Zp, there exist λ′, ν ′ ∈ Zp such that γ − λ′ +Np ⊆ val(I∨) ⊆ γ − ν ′ +Np
and γ − ν ′ 6 w 6 γ − λ′, it also has the following consequence:

Λi(w, val(I∨)) 6= ∅ ⇐⇒ Λi(γ − w − ei, val(I)) = ∅ (10)

2.3 Poincaré series of a fractional ideal

This section follows a suggestion of Antonio Campillo. Let (D = D1 ∪ · · · ∪Dp, 0) be the germ
of a reduced reducible curve, and I ⊂ Q(OD) be a fractional ideal.

The following definitions are inspired by [CDGZ03]. We recall that Iv = {g ∈ I; val(g) > v}.
We consider the set of formal Laurent series L = Z[[t−1

1 , . . . , t−1
p , t1, . . . , tp]]. This set is not a

ring, but it is a Z[t−1
1 , . . . , t−1

p , t1, . . . , tp]-module.
We set:

LI(t1, . . . , tp) =
∑
v∈Zp

cI(v)tv (11)

with cI(v) = dimC Iv/Iv+1 and

PI(t) = LI(t)

p∏
i=1

(ti − 1) (12)

Remark 2.22. In [CDGZ03], the authors study the case I = OD with D a plane curve. They prove

that POD is in fact a polynomial, and for plane curves with at least two components,
POD(t)

t1 · · · tp − 1
is

the Alexander polynomial of the curve (see [CDGZ03, Theorem 1]).

Our purpose here is to deduce from Theorem 2.4 a relation between PI(t) and PI∨(t).
The following lemma is a direct consequence of the definition (12) of PI :

Lemma 2.23. We define for v ∈ Zp,

αI(v) =
∑

J⊆{1,...,p}

(−1)Card(Jc)cI(v − eJ) (13)

where we denote for J = {j1, · · · , jk}, eJ = ej1 + · · ·+ ejk . Then

PI(t) =
∑
v∈Zp

αI(v)tv

We use the previous lemma to prove the following property:

Lemma 2.24. The formal Laurent series PI(t) is a polynomial.
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Proof. Let λ, ν ∈ Zp be such that ν + Np ⊆ val(I) ⊆ λ+ Np. The only possibly non-zero αI(v) are
those such that λ 6 v 6 ν. Indeed, let us assume for example that vp < λp or vp > νp. We can then
prove thanks to Corollary 2.15 that for all J ⊂ {1, . . . , p} such that p /∈ J , cI(v−eJ∪{p}) = cI(v−eJ).
By the definition (13), it gives us the result. �

The symmetry of Theorem 2.4 has the following consequence:

Proposition 2.25. With the same notations,

PI∨(t) = (−1)p+1 tγ PI

(
1

t1
, . . . ,

1

tp

)
(14)

Proof. The property (14) is in fact equivalent to the following property:

∀v ∈ Zp, αI∨(v) = (−1)p+1αI(γ − v) (15)

This property is obvious if v /∈ {ω ∈ Zp; γ − ν 6 w 6 γ − λ} since both αI∨(v) and αI(γ − v)
are zero.

By (13), it is sufficient to prove that for all v ∈ Zp, cI∨(v) = p− cI(γ − v − 1). We have:

cI∨(v) = Card{i ∈ {1, . . . , p} ; Λi(v + e1 + · · ·+ ei−1, val(I∨)) 6= ∅}

cI(γ − v − 1) = Card{i ∈ {1, . . . , p} ; Λi(γ − v − e1 − · · · − ei, val(I)) 6= ∅}

The result follows from the equivalence (10). �

3 On the structure of the set of values of logarithmic residues

In this part we give several properties of the module of logarithmic residues along plane curves
or complete intersection curves. We first recall some definitions. We then study the structure of the
set of values of logarithmic residues along plane curves, and give the relation with the set of values of
Kähler differentials, which is used in the analytic classification of branches proposed in [HH11], and
[HHH15] for two branches. We extend some of these properties to the set of values of multi-residues
along complete intersection curves.

3.1 Preliminaries on logarithmic residues

We recall here some definitions and results about logarithmic vector fields, logarithmic differential
forms and their residues, which can be found in [Sai80].

Let us consider a reduced hypersurface germ (D, 0) ⊂ (Cn, 0) defined by f ∈ C {x1, . . . , xn}.
We denote by Θn the module of germs of holomorphic vector fields on (Cn, 0), and C{x} =
C {x1, . . . , xn}.

Definition 3.1. A germ of vector field δ ∈ Θn is called logarithmic along D if δ(f) = αf with
α ∈ C{x}. We denote by Der(− logD) the module of logarithmic vector fields along (D, 0).

A germ of meromorphic q-form ω ∈ 1
fΩq with simple poles along D is called logarithmic if fdω

is holomorphic. We denote by Ωq(logD) the module of logarithmic q-forms on (D, 0).

Moreover, these two modules are reflexive and each is the dual C{x}-module of the other (see
[Sai80, Lemma 1.6]).

Definition 3.2. If Der(− logD) (or equivalently Ω1(logD)) is a free C{x}-module, we call (D, 0)
a germ of free divisor.
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In particular, plane curves are free divisors (see [Sai80, 1.7]).

Proposition 3.3 (Saito criterion). The germ (D, 0) is a free divisor at 0 if and only if there
exists (δ1, . . . , δn) in Der(− logD) such that δj =

∑
aij∂xi with det ((aij)16i,j6n) = uf , where u is

invertible.

To define the notion of logarithmic residues, we need the following characterization of logarithmic
differential forms:

Proposition 3.4. A meromorphic q-form ω with simple poles along D is logarithmic if and only
if there exist g ∈ C{x}, which does not induce a zero divisor in OD = C{x}/(f), a holomorphic
(q − 1)-form ξ and a holomorphic q-form η such that:

gω =
df

f
∧ ξ + η (16)

Definition 3.5. The residue resq(ω) of ω ∈ Ωq(logD) is defined by

resq(ω) :=
ξ

g
∈ Q(OD)⊗OD Ωq−1

D

where ξ and g are given by (16), and Ωq−1
D =

Ωq−1
Cn

df ∧ Ωq−2
Cn + fΩq−1

Cn
is the module of Kähler differentials

on D.

If q = 1, we write res(ω) instead of res1(ω). We define RD :=
{

res(ω);ω ∈ Ω1(logD)
}
⊆ Q(OD),

and we call RD the module of logarithmic residues of D. In particular, RD is a finite type OD-
module. Moreover, we have the inclusion O

D̃
⊆ RD (see [Sai80, Lemma 2.8]).

We denote by JD ⊆ OD the Jacobian ideal of D, that is to say the ideal of OD generated by
the partial derivatives of f .

The following result gives the relation between the module of logarithmic residues and the Jaco-
bian ideal:

Proposition 3.6 ([GS14, Proposition 3.4]). Let (D, 0) be the germ of a reduced divisor. Then
J ∨

D = RD. If moreover D is free, R∨D = JD.

3.2 Some basic properties of the values of logarithmic residues

We give here some properties of the set of values of logarithmic residues and of the Jacobian
ideal of plane curves.

Since plane curves are free divisors, the module Der(− logD) is free. Let us assume that δi =
αi∂x + βi∂y, i = 1, 2 is a basis of Der(− logD). Then by duality, a basis of Ω1(logD) is:

ω1 =
β2dx− α2dy

f

ω2 =
−β1dx+ α1dy

f

If g = c1 · f ′x + c2 · f ′y with c1, c2 ∈ C induces a non zero divisor in OD, then the module of

residues is generated by res(ω1) =
c1 · β2 − c2 · α2

g
and res(ω2) =

−c1 · β1 + c2α1

g
. Thus, the module

of logarithmic residues can be generated by two elements.
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Let D = D1 ∪ · · · ∪Dp be the germ of a reduced plane curve defined by f = f1 · · · fp where for
all i ∈ {1, . . . , p}, fi is irreducible. We first want to prove that the negative values of RD determine
all the values of RD. Since we will need a similar result for the Jacobian ideal, we state it for an
arbitrary fractional ideal.

We recall that for g ∈ Q(OD), vali(g) =∞ means that the restriction of g on Di is zero.
The following proposition shows that the values of the zero divisors are determined by the faces

of the negative quadrant with origin ν.

Proposition 3.7. Let I ⊂ Q(OD) be a fractional ideal and let ν ∈ Zp be such that tνO
D̃
⊆ val(I).

The values of the zero divisors of I are determined by

MI =

p⋃
q=1

⋃
σ∈Sq

{
w ∈ val(I);∀i ∈ {1, . . . , q} , wσ(i) = νσ(i)

}
where Sq is the group of permutations of q elements. More precisely, the values of the zero divisors
are exactly the values obtained by replacing for v ∈MI the coordinates which satisfies vj = νj by ∞.

Proof. Let g ∈ I be a zero divisor. Then by Proposition 2.11, inf(val(g), ν) ∈ val(I). It is then
obvious that inf(val(g), ν) ∈MI .

Conversely, let v ∈MI . There exists q ∈ {1, . . . , p} and σ ∈ Sq such that for all i ∈ {1, . . . , p},
vi = νi. Let h ∈ I be such that val(h) = v. Since tνO

D̃
⊆ I, there exists g ∈ I satisfying for all

i ∈ {1, . . . , q}, g|Dσ(i) = h|Dσ(i) and for all j /∈ σ ({1, . . . , q}), valj(g) > vj . Then h − g is a zero
divisor whose value satisfies for i ∈ {1, . . . , q}, valσ(i)(h − g) = ∞ and for all j /∈ σ ({1, . . . , q}),
valj(h− g) = vj . �

Corollary 3.8. Let I ⊂ Q(OD) be a fractional ideal and ν ∈ Zp. Assume that ν +Np ⊆ val(I). Let
v ∈ Zp. Then

v ∈ val(I) ⇐⇒ inf(v, ν) ∈ val(I)

In particular, it means that the set

val(I) ∩ {v ∈ Zp; v 6 ν}

determines the set val(I).

Proof. The implication ⇒ comes from Proposition 2.11. For the implication ⇐, let v ∈ Zp be such
that inf(v, ν) ∈ val(I). If v 6 ν, then v = inf(v, ν) ∈ val(I). If there exists j such that vj > νj ,
then inf(v, ν) ∈MI where MI is defined in Proposition 3.7. Therefore, since tνO

D̃
⊆ I, there exists

a zero divisor g ∈ I, q ∈ {1, . . . , p} and σ ∈ Sq which satisfy for all i ∈ {1, . . . , q}, valσ(i)(g) =∞ if
vσ(i) = νσ(i) and for all j /∈ σ ({1, . . . , q}), valj(g) = vj < νi. Let w = max(v, ν). Then w ∈ val(I)
and v = inf(w, val(g)) ∈ val(I). �

Remark 3.9. By Propositions 3.7 and 3.8, the set val(I) ∩ {v ∈ Zp; v 6 ν} also determines val(I).

The inclusion O
D̃
⊆ RD gives the following corollary:

Corollary 3.10. The set of values of RD is determined by the set

{v ∈ val(RD); v 6 0}

More precisely, we have:

val(RD) = {v ∈ val(RD); v 6 0} ∪ {v ∈ Z; inf(v, 0) ∈ val(RD)}
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Let us determine the values of RD which come from the branches or union of branches.

Proposition 3.11. Let q ∈ {1, . . . , p} and D′ = Di1 ∪ · · · ∪ Diq be the union of q branches of D.
Then

Ω1(logD′) ⊆ Ω1(logD)

Moreover, v ∈
{
w ∈ val(RD);∀j ∈ {1, . . . , q} , vij = 0

}
if and only if there exists a logarithmic

1-form ω ∈ Ω1 (logD′) such that for all j /∈ {i1, . . . , iq}, valj(res(ω)) = vj, and for all j ∈ {1, . . . , q},
valij (res(ω)) =∞.

Proof. For the first part of the statement, we set F1 the equation of D′. Let ω be a logarithmic
1-form along D′. Then, F1ω and F1dω are holomorphic, so that fω and fdω are holomorphic.

The second part of the statement comes from this inclusion and Proposition 3.7. �

In particular, the logarithmic residues of the irreducible components satisfy the following prop-
erty:

Corollary 3.12. We have the following inclusion:

RD1 ⊕ · · · ⊕RDp ↪→ RD

Therefore, val1(RD1)× · · · × valp(RDp) ⊆ val(RD).

Remark 3.13. If D = D1 ∪D2 is a plane curve satisfying RD = RD1 ⊕RD2 , then by [Sch13], it is
a splayed divisor, and in fact it is even a normal crossing plane curve.

We now study the set of values of the dual of RD, namely, the Jacobian ideal JD. We show
that the modules of logarithmic vector fields Der(− logDi) for i ∈ {1, . . . , p} give informations on
the structure of the set of values of the Jacobian ideal.

Proposition 3.14. Let v ∈ Zp. With the notation of Proposition 3.7, v ∈MJD
if and only if there

exists D′ = Di1 ∪ · · · ∪Diq and δ ∈ Der(− logD′) = Der(− logDi1) ∩ · · · ∩Der(− logDiq) such that
for j /∈ {i1, . . . , iq}, valj(δ(fj)) = vj −

∑
i 6=j valj(fi). In particular, the set of zero divisors of JD

are determined by the family of modules
⋂
i∈I Der(− logDi) for I ⊂ {1, . . . , p}.

Proof. We first notice that for all g ∈JD, there exists δ ∈ Θ2 such that δ(f) = g in OD. Moreover,
δ(f) induces in O

D̃
=
∏p
i=1 O

D̃i
the element:

δ(f) = (f2 · · · fpδ(f1), . . . , f1 · · · fp−1δ(fp))

By Proposition 3.7, v ∈MJD
if and only if there is δ ∈ Θ2 such that

val(δ(f)) = (∞, . . . ,∞, vk, . . . , vp)

which is equivalent to:

∀i ∈ {1, . . . , k − 1}, δ(fi) ∈ (fi) and ∀i ∈ {k, . . . , p}, vali(δ(f)) = vi

Hence the result. �
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3.3 The relation with Kähler differentials

We give here the relation between logarithmic residues and Kähler differentials. More precisely,
we show that the values of the Jacobian ideal can be obtained from the values of the Kähler differ-
entials, and the relation with the values of logarithmic residues comes from Theorem 2.4.

We first recall the definition of the module of Kähler differentials:

Ω1
D =

Ω1
C1

OC2df + fΩ1
C2

Definition 3.15. Let D = D1∪· · ·∪Dp be a plane curve germ with irreducible components Di, and
ϕi(ti) = (xi(ti), yi(ti)) be a parametrization of Di. Let ω = adx + bdy ∈ Ω1

D. We denote by ϕ∗i (ω)
the 1-form defined on Di by:

ϕ∗i (ω) =
(
a ◦ ϕi(ti)x′i(ti) + b ◦ ϕi(ti)y′i(ti)

)
dti

We denote ϕ∗(ω) =
(
ϕ∗1(ω), . . . , ϕ∗p(ω)

)
.

We then define the valuation of ω along Di by:

vali(ω) = vali (ϕ∗i (ω)) = vali
(
a ◦ ϕi(ti)x′i(ti) + b ◦ ϕi(ti)y′i(ti)

)
+ 1

The value of ω is then val(ω) = (val1(ω), . . . , valp(ω)).

Proposition 3.16. We have the following equality: val(JD) = γ+val(Ω1
D)−1. To be more precise,

there exists g ∈ CD of value γ such that JD = g · ϕ
∗(Ω1

D)
dt , where we denote by ϕ∗(Ω1

D)
dt the fractional

ideal of O
D̃

generated by (x′1(t1), . . . , x′p(tp)) and (y′1(t1), . . . , y′p(tp)).

To prove this equality, we need the following propositions:

Proposition 3.17 ([DdlM87, Theorem 2.7]). Let f = f1 · · · fp be a reduced equation of a plane
curve germ. We assume that for all i ∈ {1, . . . , p}, fi is irreducible. We denote by Di the branch
defined by fi, and by ci its conductor. The conductor of D is given by

γ =

(
c1 +

p∑
i=2

val1(fi), . . . , cp +

p−1∑
i=1

valp(fi)

)

Lemma 3.18. Let D = D1 ∪ · · · ∪ Dp be a plane curve germ defined by a reduced equation f ∈
C{x, y}. Then:

val(f ′x) = γ + val(y)− 1

val(f ′y) = γ + val(x)− 1

Proof. If f is irreducible, the result is given by Teissier’s lemma (see [CNP11, lemma 2.3]). If f is
reducible, we use Proposition 3.17, the equality valj

(
∂f
∂x

)
=
∑

i 6=j valj(fi)+valj

(
∂fj
∂x

)
and Teissier’s

lemma to obtain the result. �

Proof of Proposition 3.16. For lack of reference, we give here the proof. Let i ∈ {1, . . . , p}.
Then, since ϕi is a parametrization of Di, we have f ′x(ϕi(ti)) ·x′i(ti) + f ′y(ϕi(ti)) · y′i(ti) = 0. We first
assume that x′i(ti) · y′i(ti) 6= 0. Then, there exists gi(ti) ∈ C {ti} such that

f ′x(ϕi(ti))

y′(ti)
= −

f ′y(ϕi(ti))

x′(ti)
= gi(ti)
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By lemma 3.18 we have vali(f
′
x) = γi + vali(y) − 1, so that vali(gi) = γi. Since γ is the conductor,

there exists g̃ ∈ C{x, y} such that for all i ∈ {1, . . . , p}, gi(ti) = g̃(ϕi(ti)), which gives us the result.
If for example x′i(ti) = 0, then y′i(ti) 6= 0 and f ′y(ti) = 0. We set again gi(ti) = f ′x(ϕi(ti))

y′(ti)
, which

is of valuation γi. The relation f ′y(ti) = gi(ti) · x′i(ti) is of course true. The end of the proof is the
same as for the case x′i(ti) · y′i(ti) 6= 0. �

Corollary 3.19. We have the following equivalence:

v ∈ val(RD) ⇐⇒ ∆(−v, val(Ω1
D)) = ∅

Moreover, RD =
1

g
·
(
ϕ∗(Ω1

D)

dt

)∨
Proof. It is a consequence of both Proposition 3.16 and Theorem 2.4. �

Remark 3.20. The latter corollary gives also the relation between meromorphic regular forms as
defined in [Bar78] and Kähler differentials. Indeed, by [Ale90, §4], the module RD of logarithmic
residues is isomorphic to the module of regular meromorphic forms ωD, which can be defined as

ωD = Ext1
OS

(
Ω1
D,Ω

2
S

)
. In particular, ωD '

1

g
·
(
ϕ∗(Ω1

D)

dt

)∨
.

Remark 3.21. Another consequence of Proposition 3.16 is the following inclusion:

γ +
(
val(OD)\{0}

)
− 1 ⊆ val(JD)

Indeed, if h ∈ mOD, with m the maximal ideal of OD, then val(dh) = val(h), which gives us the
inclusion val(OD)\ {0} ⊆ val(Ω1

D).

We mention here the relation between logarithmic forms and the torsion of Kähler differentials.
It leads to a determination of the dimension of the torsion of Ω1

D when D is a plane curve which is
slightly different from the proofs of O.Zariski (see [Zar66]) and R.Michler (see [Mic95]).

We first assume that (D, 0) is a germ of reduced hypersurface of (Cn, 0). The following property
has been proved by A.G.Aleksandrov:

Proposition 3.22 ([Ale05, 3.1]). For all 1 6 q 6 n, the following map:

Ωq(logD)
df
f ∧ Ωq−1

Cn + Ωq
Cn
→ Tors(Ωq

D)

[ω] 7→ [fω]

is an isomorphism of OD-modules.

Proof. It is a consequence of the characterization (16) of logarithmic forms. �

Corollary 3.23. The map resq induces an isomorphism of OD-modules:

resq(Ωq(logD)

Ωq−1
D

' Tors(Ωq
D)
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Proof. We have the following exact sequences:

0→ Ωq
Cn → Ωq(logD)→ resq (Ωq(logD))→ 0

0→ Ωq
Cn →

df

f
∧ Ωq−1

Cn + Ωq
Cn

resq−−→ Ωq−1
D → 0

Therefore, resq(Ωq(logD)

Ωq−1
D

' Ωq(logD)
df
f
∧Ωq−1

Cn +ΩqCn
' Tors(Ωq

D). �

Corollary 3.24. Let (D, 0) ⊆ (C2, 0) be a plane curve germ. We denote by τ = dimC OD/JD the

Tjurina number. Then
RD

OD
' Tors(Ω1

D) and dimC Tors(Ω1
D) = τ .

Proof. We use Propositions 2.6 and 3.6 to prove that dimC RD/OD = dimC OD/JD = τ . �

3.4 Complete intersection curves

This section is devoted to the study of complete intersection curves, which are a particular case
of Gorenstein curves.

We begin with the definition of multi-logarithmic forms along a reduced complete intersection
C defined by a regular sequence (h1, . . . , hk) in (Cm, 0) given in [Ale12]. We then focus on the case
of complete intersection curves for which we have natural extensions of several results of the plane
curve case.

Definition 3.25 ([Ale12]). Let ω ∈ 1
h1...hk

Ωq with q ∈ N. Then ω is called a multi-logarithmic
differential q-form along the complete intersection C if

∀i ∈ {1, . . . , k} , dhi ∧ ω ∈
k∑
j=1

1

ĥj
Ωq+1

We denote by Ωq(logC) the C{x}-module of multi-logarithmic q-forms along C.

To simplify the notations, we set Ω̃q :=
k∑
j=1

1

ĥj
Ωq.

If k = 1, the definition of multi-logarithmic forms coincides with the definition of logarithmic
forms 3.1.

Then we have the following characterization which should be compared with [Sai80, 1.1]:

Theorem 3.26 ([Ale12, §3, Theorem 1]). Let ω ∈ 1
h1···hkΩq, with q > k. Then ω ∈ Ωq(logC)

if and only if there exist a holomorphic function g ∈ C{x} which does not induce a zero-divisor in
OC , a holomorphic differential form ξ ∈ Ωq−k and a meromorphic q-form η ∈ Ω̃q such that:

gω = ξ ∧ dh1 ∧ · · · ∧ dhk
h1 · · ·hk

+ η (17)

Definition 3.27. Let ω ∈ Ωq(logC), q > k. Let us assume that g, ξ, η satisfy the properties of
Theorem 3.26. Then the multi-residue of ω is:

resqC(ω) :=
ξ

g
∈ Q(OC)⊗OC Ωq−k

C = Q(O
C̃

)⊗O
C̃

Ωq−k
C̃

We define Rq−k
C := resqC(Ωq(logC)). In particular, if q = k, reskC(ω) ∈ Q(OC), and we denote

RC := reskC
(
Ωk(logC)

)
.
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It is proved in [Ale12] that for ω ∈ Ωq(logC) the multi-residue resqC(ω) is well-defined with
respect to the choices of ξ, g and η in (17).

Proposition 3.28 ([Sch13, Proposition 4.1]). Let JC ⊆ OC be the Jacobian ideal, that is to
say the ideal of OC generated by the k × k minors of the Jacobian matrix. Then:

J ∨
C = RC

Remark 3.29. In a forthcoming paper, we will give a more direct proof of this duality, which does
not rely on the isomorphism between the module of logarithmic multi-residues and the module of
regular meromorphic forms given in [AT01, Theorem 3.1].

From now on, we assume that C is a reduced complete intersection curve defined by a regular
sequence (h1, . . . , hm−1).

We recall that CC denotes the conductor ideal of C. The following proposition is a generalization
of Proposition 3.16.

Proposition 3.30. Let C = C1∪· · ·∪Cp be a reduced complete intersection curve defined by a regular
sequence (h1, . . . , hm−1). Then there exists g ∈ CC with val(g) = γ such that JC = g · ϕ

∗(Ω1
C)

dt . In
particular, val(JC) = γ + val(Ω1

C)− 1.

Proof. Let ϕi(ti) = (xi,1(ti), . . . , xi,m(ti)) be a parametrization of Ci. Let Ji denote the k × k
minor of Jac(h1, . . . , hm−1) obtained by removing the column i. Let i ∈ {1, . . . , p}. Then, for all
j ∈ {1, . . . ,m− 1} we have hj ◦ ϕi(ti) = 0, thus:(

Jac(h1, . . . , hk) ◦ ϕi(ti)
)(
x′i,1(ti), . . . , x

′
i,m(ti)

)t
=
(
0, . . . , 0

)t
We multiply on the left by the adjoint of the matrix obtained by removing the last column of

Jac(h1, . . . , hk) ◦ ϕi(ti), which gives the needed relations: for all j ∈ {1, . . . ,m− 1},(
Jm ◦ ϕi(ti)

)
· x′i,j(ti) + (−1)m−(j−1)

(
Jj ◦ ϕi(ti)

)
· x′i,m(ti) = 0

We assume for example that x′i,m(ti) 6= 0.

By setting gi(ti) =
Jm ◦ ϕi(ti)
x′i,m(ti)

one obtains for all ` ∈ {1, . . . ,m},

gi(ti) · x′i,`(ti) = (−1)m−`J` ◦ ϕi(ti) (18)

It remains to prove that vali(g) = γi.
Let us denote by ΠC the ramification ideal of the curve C, which is the O

C̃
-module generated by(

x′i,1(t1), . . . , x′i,p(tp)
)

16i6m

By [Pie79, Corollary 1, Proposition 1], one has:

CCΠC = JCO
C̃

Thus, we have the equality inf(val(ΠC)) + γ = inf(val(JC)).
The equalities (18) imply that for all i ∈ {1, . . . , p}, and j ∈ {1, . . . ,m} we have vali(Jj) =

inf(vali(JC)) if and only if vali(x
′
i,j) = inf(vali(ΠC)).

Therefore, if j is such that vali(Jj) = inf(vali(JC)), then vali(Jj) = γi + vali(x
′
i,j), which gives

us vali(gi) = γi. �
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Definition 3.31. Let ω =
∑
ajdxj ∈ Ω1

C . We set

vali(ω) = vali(ϕ
∗
i (ω)) = 1 + vali

 m∑
j=1

(aj ◦ ϕi)(ti) · x′i,j(ti)


Corollary 3.32. The values of JC and Ω1

C satisfy:

val(JC) = γ + val(Ω1
C)− (1, . . . , 1)

Moreover, with the notation of part 2, for all v ∈ Zp, we have the following equivalence:

v ∈ val(RC) ⇐⇒ ∆(−v, val(Ω1
C)) = ∅

and RC =
1

g
·
(
ϕ∗(Ω1

C)

dt

)∨
, where g is given by Proposition 3.30.

Proof. The statement for JC is a direct consequence of Proposition 3.30. The second statement
is a consequence of the symmetry Theorem 2.4 together with Proposition 3.28. �

Remark 3.33. As for plane curves, the isomorphism between multi-residues and regular meromor-
phic differential forms given in [AT01] gives the relation between regular meromorphic forms and
Kähler differentials.

4 Equisingular deformations of plane curves and the stratification
by logarithmic residues

The purpose of this last section is to study the behaviour of the values of logarithmic residues
in an equisingular deformation of a plane curve. By the results of part 3, the stratification by the
values of logarithmic residues is the same as the stratification by the values of Kähler differentials
which is an essential ingredient of the analytic classification of plane curves described in [HH11] and
[HHH15] respectively for irreducible curves and for reducible curves with two branches. They prove
that in a stratum of the stratification by the values of Kähler differentials, the analytic classification
can be expressed in terms of a normal parametrization of the curve. The analytic equivalence is
then represented by the group action of the roots of the unity of a certain order determined by
val(Ω1

D) (see [HH11, Theorem 2.1]). We end this section with several algorithms which can be used
to compute the set of values of RD, inspired by [BGM88] and [HH07].

We first recall some results on equisingular and admissible deformations, and we then study some
properties of the stratification by the values of logarithmic residues.

Let D be a plane curve defined in a neighbourhood U of the origin of C2 by a reduced equation
f ∈ OC2(U). We consider a deformation F of f with base space (S, 0) = (Ck, 0) with ring OS . It
means that F (x, y, s) ∈ OC2⊗̂OS satisfies F (x, y, 0) = f(x, y). Let X = U × S, OX = OC2⊗̂OS ,
W = F−1(0) ⊆ U × S. We assume F (0, 0, s) = 0 for all s. For s ∈ S, we set Ds = W ∩

(
C2 × {s}

)
and mS,s the maximal ideal of OS,s, and Fs = F (., s). In particular, D0 = D and F0 = f .

4.1 Equisingular and admissible deformations of plane curves

The following numbers are classical invariants of plane curves:

Definition 4.1. Let D be a reduced plane curve defined by f ∈ C{x, y}.

• The Milnor number is µ = C{x, y}/(f ′x, f ′y)

18



• The Tjurina number is τ = C{x, y}/(f ′x, f ′y, f)

• The delta-invariant is δ = dimC O
D̃
/OD

The following proposition gives the relation between µ and δ:

Proposition 4.2 ([Mil68]). We have the following relation:

µ = 2δ − p+ 1

where p is the number of irreducible components of (D, 0).

Let us assume that F is an equisingular deformation of f (i.e. for all s ∈ S, µ(Fs) = µ(f)). From
the equisingularity Theorem for plane curves (see [Tei77, §3.7]), it implies that a parametrization ϕ
of (D, 0) gives rise to a deformation ϕs of the parametrization. We denote by valDs(g) the value of
g ∈ Q(ODs) along Ds. Another consequence of the equisingularity Theorem for plane curves is:

Corollary 4.3. With the same notations, if F is an equisingular deformation of f :

1. All fibers Ds have the same conductor γ.

2. Let x(t, s) = (x1(t1, s), . . . , xp(tp, s)), y(t, s) = (y1(t1, s), . . . , yp(tp, s)) be a parametrization
of Ds. For all s ∈ S,

inf
(
valDs(x(t, s)), valDs(y(t, s))

)
= inf

(
valD(x(t, 0)), valD(y(t, 0))

)
= (m(1), . . . ,m(p))

where m(j) is the multiplicity of the component Dj of D.

Proof.

1. It comes from Theorem 3.17, since by the equisingularity Theorem (see [Tei77, §3.7, (10)]),
the conductors and the intersection multiplicities (Di.Dj) = vali(fj) do not depend on s.

2. For all j ∈ {1, . . . , p}, inf
(
valDs,j (xj(tj , s), yj(tj , s))

)
is the multiplicity of Ds,j , which does

not depend on s by the equisingularity Theorem. �

The following proposition will be used in the next section, since it gives a common denominator
for the logarithmic residues with interesting properties.

Proposition 4.4. There exists α, β ∈ C such that for all s in a neighbourhood of 0, val(αF ′x(s) +
βF ′y(s)) = γ +

(
m(1), . . . ,m(p)

)
− 1. In particular, αF ′x(s) + βF ′y(s) induces a non zero divisor in

OD whose value does not depend on s.

Proof. One can prove that thanks to the equisingularity Theorem, there exists a linear change of
coordinates (u, v) such that for all s in a neighbourhood of 0 ∈ S, valDs(u) =

(
m(1), . . . ,m(p)

)
. The

conclusion follows from Corollary 4.3 and Lemma 3.18. �

We want now to understand the behaviour of a generating family of the module of residues.

We recall that plane curves are free divisors. Moreover, they are the only free divisors with
isolated singularities, since by [Ale88], the singular locus of a free divisor is of codimension one in the
hypersurface. The equisingularity assumption is not sufficient to obtain a deformation (ρ1(s), ρ2(s))
of a generating family of RD such that (ρ1(s), ρ2(s)) generate RDs : equisingularity is not the "good"
functor of deformation for free divisors. A functor of deformation adapted to free divisors is suggested
by M.Torielli in [Tor13].

The following definition is equivalent to the definition of M.Torielli (see [Tor13, Definition 3.1])
thanks to both [Tor13, Proposition 3.7] and [GLS07, Theorem 1.91]:
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Definition 4.5. Let D be a free divisor defined in a neighbourhood of 0 ∈ Cn by a reduced equation
f . An admissible deformation X of D with base space S is a deformation of D such that the module
OCn×S,0/(F, F

′
x, F

′
y) is a flat OS,0-module.

The following proposition describes an admissible deformation of a plane curve thanks to the
Tjurina number.

Proposition 4.6. Let F be a deformation of f ∈ OC2(U) with base space S such that for all s ∈ S,∑
xj∈Sing(Ds) τxj = τ0 where τ0 is the Tjurina number of D0. Such a deformation is an admissible

deformation.

Proof. We use Theorem 1.81 of [GLS07] for F = p∗
(
OC2×S/(F, F

′
x, F

′
y)
)
with p : C2 × S → S the

canonical epimorphism (which is finite). The map s 7→ dimC Fs/mS,sFs is then constant, thus, F0

is a flat OS,0-module. Since F0 = OC2×S,0/(F, F
′
x, F

′
y), the result follows. �

Proposition 4.7 ([Tor13, Lemma 3.22]). Let F (x, y, s) be an equisingular and admissible defor-
mation of the plane curve defined by f with base space S. Let (δ1, δ2) be a basis of the module of
logarithmic vector fields along D. It induces relations between f, f ′x, f ′y. By flatness, we can extend
them to obtain relative logarithmic vector fields δ̃1, δ̃2 ∈ (ΘU×S/S)/(mSΘU×S/S) of F . Then, for s

in a neighbourhood of 0 ∈ S,
(
δ̃1(s), δ̃2(s)

)
is a basis of Der(− logDs).

Corollary 4.8. If δ̃i = Ai(x, y, s)∂x+Bi(x, y, s)∂y, by the duality between the modules Der(− logD)
and Ω1(logD) we find residues:

res(ω̃1)(s) =
−βA2(s) + αB2(s)

αF ′x(s) + βF ′y(s)

res(ω̃2)(s) =
βA1(s)− αB1(s)

αF ′x(s) + βF ′y(s)

such that they generate the module of residues for all s in a neighbourhood of 0 ∈ S, where α, β ∈ C
are given by Proposition 4.4.

4.2 Properties of the stratification by logarithmic residues

We consider an equisingular deformation F of f with base space (S, 0) ' (Ck, 0) for a k ∈ N.
We denote by Rs the module of logarithmic residues of Ds. The purpose of this section is to study
some properties of the following partition of S:

Definition 4.9. Let F (x, y, s) be an equisingular deformation of a reduced plane curve D defined
by f ∈ C{x, y}, with base space S. The stratification by logarithmic residues is the partition S =⋃

V ⊆Zp SV where s ∈ SV if and only if val(Rs) = V .

The following proposition will be useful to give the relation between the stratification by loga-
rithmic residues and the stratification by the Tjurina number.

Proposition 4.10. Let (D, 0) be a plane curve germ. Then:

dimC RD/OD̃
= τ − δ (19)

Proof. Thanks to Propositions 2.6 and 3.6 we have:

dimC RD/OD̃
= dimC RD/OD − dimC O

D̃
/OD = dimC O∨D/R

∨
D − δ = dimC OD/JD − δ

= τ − δ �
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Proposition 4.11. The stratification by logarithmic residues satisfies the following properties:

1. If s, s′ do not belong to the same stratum of the stratification by τ , they do not belong to the
same stratum for the stratification by logarithmic residues. In other words, the stratification
by logarithmic residues is finer than the stratification by τ .

2. The stratification by logarithmic residues is finite.

Proof. The first claim is a direct consequence of Proposition 4.10, since the equisingularity condition
ensures that δ does not depend on the fiber, and the dimension of the quotient Rs/OD̃s

can be
computed from the values by Corollary 2.15. The second claim comes from both Proposition 4.4,
which gives a lower bound u of the set of values of logarithmic residues which do not depend on s, and
Corollary 3.10. As a consequence, the values of Rs are determined by the values v of Rs satisfying
u 6 v 6 0. �

The hypothesis of D being irreducible was forgotten in [Pol15, Proposition 4.2]:

Proposition 4.12. Each stratum SV of the stratification by logarithmic residues is constructible.
If moreover D is irreducible, then each stratum is locally closed.

Proof. For lack of reference, we suggest a proof. By the appendix by Teissier in [Zar86], the strata
of the stratification by the Tjurina number are locally analytic and locally closed. It is therefore
sufficient to consider the behaviour of logarithmic residues in a τ -constant stratum Sτ . For the sake
of simplicity, we denote S = Sτ .

By Corollary 4.8, for all s, the OS-module Rs is generated by
ρ1(s) =

−βA2(s) + αB2(s)

αF ′x(s) + βF ′y(s)

ρ2(s) =
βA1(s)− αB1(s)

αF ′x(s) + βF ′y(s)

where α, β ∈ C are given by Proposition 4.4. The value of the common denominator αF ′x(s)+βF ′y(s)
does not depend on s, so that it is sufficient to consider the values of the numerators.

We denote by N1 and N2 the numerators of ρ1(s) and ρ2(s). We recall that the values v of
Rs satisfying v 6 0 are sufficient to determine val(Rs), so that it is sufficient to consider the set
{X1, . . . , Xq} :=

{
xiyjNk; val(xiyjNk) 6 u

}
, where u = val(αF ′x(s) + βF ′y(s)).

For all i ∈ {1, . . . , q}, we have Xi =
(∑

j>0 ai,j,1(s)tj1, . . . ,
∑

j>0 ai,j,p(s)t
j
p

)
.

For v ∈ Zp and k ∈ {1, . . . , p} we set Xv
i,k(s) = (ai,0,k(s), . . . , ai,vk,k(s)) ∈ Ovk+1

S . For v ∈ Zp we
define the following matrix Av(s) ∈Mq,`v(OS) with `v =

∑p
j=1(vj + 1):

Av(s) =

(Xv
1,1(s)) . . . (Xv

1,p(s))
...

...
(Xv

q,1(s)) . . . (Xv
q,p(s))


We use the rank of the matrices Av(s) to characterize the property v ∈ val(Rs) for s ∈ S:

v ∈ val(Rs) ⇐⇒ ∀k ∈ {1, . . . , p} , rank
(
Av−1(s)

)
< rank

(
Av−1+ek(s)

)
Indeed, if the conditions of the right-hand side are satisfied, then for all k ∈ {1, . . . , p}, there exists

a linear combination Mk =
∑q

i=1 λi,kXi(s) with λi,k ∈ C such that val(Mk) > v and valk(Mk) = vk.
We use Proposition 2.11 to conclude.

Therefore, for a given V ⊆ Zp for which SV ∩ S 6= ∅ and V := (V + u) ∩ {w ∈ Zp; 0 6 w 6 u}:

21



s ∈ SV ⇐⇒ s ∈
⋂
v∈V

 ⋃
16r6M

V (Fr

(
Av−1(s)

))
∩
⋂

16k6p

(
V
(
Fr(Av−1+ek(s)

)c)
where Fr(A) denotes the ideal generated by the r×r minors of the matrix A andM = min(q, `v+1).
We notice that the elements v /∈ V can not be reached since otherwise the dimension of Rs/ODs

will be strictly greater than τ − δ, which can be proved by an argument similar to the first two steps
of the proof of Theorem 2.4.

Hence the result for reducible curves.

Let us assume now that D is irreducible. In this case, the rank of the matrix increases exactly
by 1 when a valuation is reached. We set V = {v1 < . . . < vL} = (V + u) ∩ {0, . . . , u}. Then:

s ∈ SV ⇐⇒ s ∈
L⋂
`=1

v`−1⋂
j=v`−1+1

(
V (F`(Aj(s)) ∩ (V (F`(Av`)

c )
Therefore the stratum SV is locally closed. �

We recall here the examples of [Pol15] with more details. The first example shows that the
stratification by logarithmic residues may be strictly finer than the stratification by the Tjurina
number, whereas the second shows that the stratification by logarithmic residues does not satisfy
the frontier condition.

Example 4.13. We consider f(x, y) = x5 − y6 and the equisingular deformation of f given by
F (x, y, s1, s2, s3) = x5 − y6 + s1x

2y4 + s2x
3y3 + s3x

3y4. The stratification by τ is composed of
three strata, S20 = {0}, S19 = {(0, 0, s3), s3 6= 0} and S18 = {(s1, s2, s3), (s1, s2) 6= (0, 0)}. The
computation of the values of JDs is quite easy in this case and gives thanks to Theorem 2.4, where
S′18 = {(s1, s2, s3), s1 6= 0} and S′′18 = {(0, s2, s3), s2 6= 0}:

Stratum dimC RDs/OD̃s
negative values

S20 10 −1,−2,−3,−4, −7,−8,−9, −13,−14, −19

S19 9 −1,−2,−3,−4, −7,−8,−9, −13,−14

S′18 8 −1,−2,−3,−4, −7,−8,−9, −14

S′′18 8 −1,−2,−3,−4, −7,−8,−9, −13

The stratum S18 divides into two strata for the values of RDs , therefore, the stratification by
logarithmic residues is strictly finer than the stratification by τ .

Example 4.14. Let us consider the deformation F (x, y, s1, s2) = x10 + y8 + s1x
5y4 + s2x

3y6 for
s1, s2 in a neighbourhood of 0 so that the deformation is equisingular. It is given in [BGM92], as an
example of the stratification by the b-function not satisfying the frontier condition.

A stratification S =
⋃
α Sα satisfies the frontier condition if for α 6= β, Sα ∩ Sβ 6= ∅ implies

Sα ⊆ Sβ , with Sβ the closure of Sβ .
Contrary to the previous example, this curve is not irreducible. We first give a property of

quasi-homogeneous curves:

Lemma 4.15. Let D be a quasi-homogeneous plane curve germ with p branches. Then:

γ − 1 + (val(OD)\{0}) = val(JD)
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Proof. The inclusion⊆ is given by Remark 3.21. For the other inclusion, we notice that Remark 3.21
implies t2γ−1O

D̃
⊆JD ⊆ CD. We have the following equality:

dimC CD/t
2γ−1O

D̃
= dimC CD/JD + dimC JD/t

2γ−1O
D̃

By Propositions 4.10 and 2.6, we have dimC CD/JD = τ − δ. Since D is quasi-homogeneous,
we have τ = µ so that by Proposition 4.2 we have dimC CD/JD = δ − p + 1. Moreover, since
δ = dimC O

D̃
/OD, we have dimC O

D̃
/CD = 2δ, thus dimC CD/t

2γ−1O
D̃

= 2δ − p. Therefore:

dimC JD/t
2γ−1O

D̃
= δ − 1

Let m be the maximal ideal of OD. Then val(m) = val(OD)\{0} and the quotient m/CD has
dimension δ− 1. If val(JD) 6= γ− 1 + (val(OD)\{0}), by an argument similar to the one of the two
first steps of the proof of Theorem 2.4, we have dimC JD/t

2γ−1O
D̃
> δ−1, which is a contradiction.

Hence the result. �

Let us come back to our example. We notice that F (x, y, s1, 0) is quasi-homogeneous. Therefore,
the previous lemma shows that the values of the Jacobian ideal along the quasi-homogeneous stratum
does not change. Therefore, the quasi-homogeneous stratum is a stratum of the stratification by
logarithmic residues.

Moreover, one can check that there are three strata for the stratification by the Tjurina number:
the quasi-homogeneous stratum S1 defined by s2 = 0 for which τ = 63, the stratum S2 defined by
s1 = 0 and s2 6= 0 for which τ = 54 and the stratum S3 defined by s1s2 6= 0 for which τ = 53.
Therefore, the stratification by logarithmic residues does not satisfy the frontier condition, since there
is a stratum S ⊆ S2 which contains the origin in its closure, but not the whole quasi-homogeneous
stratum.

4.3 Algorithms to compute the logarithmic residues along plane curves with
one or two components

We suggest here several methods which can be used to compute the values of logarithmic residues.
Thanks to the symmetry Theorem 2.4, computing the values of JD is equivalent to the compu-

tation of the values of RD.

4.3.1 Irreducible semi-quasi homogeneous polynomials

This algorithm is useful to study the equisingular deformation of a quasi-homogeneous polynomial
of the form xa − yb, with gcd(a, b) = 1, and is inspired by [BGM88].

We consider the following equation of an irreducible curve, with sij ∈ C and gcd(a, b) = 1:

F (x, y) = xa − yb +
∑

16i<a−1
16j<b−1
ib+ja>ab

sijx
iyj (20)

A parametrization of the curve is given by x(t) = tb + g(t), y(t) = ta + h(t) where g, h ∈ C{t} with
val(g) > b, val(h) > a.

We set for i, j ∈ N2, ρ(i, j) = ib + ja. We define a monomial ordering by: (i, j) < (i′, j′) if and
only if ρ(i, j) < ρ(i′, j′) or

(
ρ(i, j) = ρ(i′, j′) and i < i′

)
. If H =

∑
i,j ai,jx

iyj ∈ C{x, y} is non zero,
we set exp(H) = min ((i, j), ai,j 6= 0) and ρ(H) := ρ(exp(H)).

Polynomials of the form (20) are studied in [BGM88]. The authors give an algorithm to compute
the "escalier" of the curve, which is by definition the complement in N2 of the set

E = {exp(g); g ∈ (F, F ′x, F
′
y) ⊆ C{x, y}}
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More precisely, they give the explicit computation of a finite family (Aj)−16j6K of points of N2

such that E =
⋃K
j=−1Aj + N2, and none of the Aj ’s can be removed. Then it is possible to prove:

Proposition 4.16. We have the following equality:

val(JD) =

K⋃
i=−1

(
ρ(Aj) + val(OD)

)

4.3.2 Irreducible plane curve

In [HH07], an algorithm is proposed to compute the set of values of Kähler differentials of an
irreducible plane curve. By Proposition 3.19, it gives also the values of RD. In fact, one can see that
the algorithm of [BGM88] corresponds to the algorithm of [HH07] by Proposition 3.16. Moreover,
if a generating family of RD is known, the algorithm of [HH07, Theorem 2.4] can be used directly
on this family to compute the values of RD.

4.3.3 Plane curves with two branches

Let D = D1 ∪D2 be a plane curve germ with two irreducible components. We suggest here an
algorithm to compute the set of negative values of RD. It is more technical than in the irreducible
case, and cannot be generalized to plane curves with three or more branches. It can be compared
to the fact that the analytic classification proposed in [HHH15] for two branches is also more com-
plicated than in the irreducible case, and can not be easily extended to plane curves with three or
more branches.

The algorithm in [HH07] is given for irreducible curves, for which the set of valuations is totally
ordered, so that we cannot apply it directly to reducible plane curves. Nevertheless, we can use it if
we consider only one of the components.

First step

First of all, we set g ∈ (f ′x, f
′
y) a non-zero divisor of OD, and we fix it as the common denominator

of all residues of D1, D2 and D, so that we can consider only the numerators to compute the set of
values in each case.

Let i ∈ {1, 2}. We consider only the branch Di. By applying the algorithm of [HH07, Theorem
2.4] we compute a standard basis Gi of ODi . We use it to compute also a standard basis Ri of
RDi , thanks to a generating family of RDi . As in [HH07], a Gi-product is an element of the form∏q
j=1 h

αj
j where hj ∈ Gi, αj ∈ N and q ∈ N.

To determine the missing values, we first compute the projection val1(RD) of val(RD). To
do this, we apply the algorithm of [HH07, Theorem 2.4] to a generating family of RD, but by
considering only the valuation along D1. We deduce a family R of elements of RD such that for all
v1 ∈ val1(RD) ∩ (val1(RD1))c, there exists ρ ∈ R such that val1(ρ) = v1.

Second step

We set M0 = {(0, v2); v2 ∈ val2(RD2) ∩ Z60} and H0 = R2. By Proposition 3.7, it gives all the
values of val(RD) ∩ ({0} × Z60).

Let us assume that for a k ∈ N∗ we have constructed sets Mk−1 and Hk−1 ⊆ RD such that

Mk−1 = {(v1, v2) ∈ val(RD);−k + 1 6 v1 6 0 and v2 6 0}

and for all v2 ∈ val2(Mk−1), there exists ρ ∈ Hk−1 and a G2-product h with val2(h · ρ) = v2 and
val1(h · ρ) > −k + 1.
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Let us compute Mk and Hk. If −k /∈ val1(RD), Mk = Mk−1 and Hk = Hk−1. Otherwise, there
are several cases to consider.

First case: −k ∈ val1(RD) ∩ val1(RD1). By Proposition 2.11, one can see that

Mk ⊇Mk−1 ∪ {(−k, v2), v2 ∈ val2(Mk−1)} (21)

Moreover, by Proposition 2.13, if (−k, v2) ∈ val(RD) with v2 6 0, then v2 ∈ val2(Mk−1). Therefore
the inclusion in (21) is an equality and Hk = Hk−1.

Second case: −k ∈ val1(RD) but −k /∈ val1(RD1). There exists ρ0 ∈ R such that val1(ρ0) = −k.
Let w2 = val2(ρ0). We may assume by Proposition 2.11 that w2 6 0 since 0 ∈ val(RD).

First sub-case: w2 /∈ val2(Mk−1). Thanks to Propositions 2.11 and 2.13, one can check that:

Mk = Mk−1 ∪ {(−k,w2)} ∪ {(−k, v2); v2 ∈ val2(Mk−1) and v2 6 w2}

and Hk = Hk−1 ∪ {ρ0}
Second sub-case: w2 ∈ val2(Mk−1). Thanks to propositions 2.11 and 2.13, one can check

that by a convenient linear combination of ρ0 and elements of form h · ρ with h a G2-product and
ρ ∈ Hk−1, there exists ρ′0 ∈ RD with val(ρ′0) = (−k,w′2) and w′2 /∈ val2(Mk−1). We then recognize
the previous sub-case, and we have Hk = Hk−1 ∪ {ρ′0}.

We can stop when the minimal value −q of val1(RD) is reached. Then, by Proposition 3.10:

val(RD) = Mq ∪ {v ∈ Zp; inf(v, 0) ∈Mq}
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