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ABSTRACT 

To overcome the detrimental effects of liquid environments on MEMS resonator performance, 

the in-fluid vibration of a novel disk resonator supported by two electrothermally-driven legs is 

investigated through analytical modeling and the effects of the system’s geometric/material 

parameters on the dynamic response are explored. The “all-shear interaction device (ASID)” is 

based on engaging the surrounding fluid primarily through shearing action. The theory comprises 

a continuous-system, multi-modal model and a single-degree-of-freedom model, the latter 

yielding simple formulas for the fundamental-mode resonant characteristics that often furnish 

excellent estimates to the results based on the more general model. Comparisons between 

theoretical predictions and previously published liquid-phase quality factor (Q) data (silicon 

devices in heptane) show that the theoretical results capture the observed trends and also give 

very good quantitative estimates, particularly for the highest-Q devices. Moreover, the highest Q 

value measured in the earlier study (304) corresponded to a specimen whose disk radius-to-

thickness ratio was 2.5, a value that compares well with the optimal value of 2.3 predicted by the 

present model. The insight furnished by the proposed theory is expected to lead to further 

improvements in ASID design to achieve unprecedented levels of performance for a wide variety 

of liquid-phase resonator applications.    

 

Index Terms – Liquid-phase MEMS resonators, quality factor, resonant frequency, disk 

microresonators, analytical modeling, vibrations. 

 

 

 



I. INTRODUCTION 

Resonant devices based on micro/nanoelectromechanical systems (MEMS/ NEMS) span 

a broad spectrum of important applications, including chemical detection [1-7], biosensing [2-4, 

6-10], rheological measurement [11-14], and energy harvesting [15-17]. However, many of these 

applications require liquid-phase operation, which poses significant challenges due to the drastic 

reduction in resonant frequency (fres) and quality factor (Q) that is typically caused by the 

liquid’s inertia and viscous energy dissipation [18-21]. Therefore, to overcome such challenges 

many investigators of MEMS/NEMS resonators for viscous fluid applications have focused on 

the use of unconventional vibration modes or novel device geometries. For example, to minimize 

coupling of the vibrating device with the surrounding viscous medium, researchers have 

explored the use of microcantilever structures vibrating in alternative modes, including higher 

modes of transverse (out-of-plane) flexure [8, 19, 22-24], in-plane flexure [25-33], axial defor-

mation [25, 34, 35], and torsion [19, 22, 24, 26, 36-38]. Others have approached the problem by 

implementing cantilevers with embedded microfluidics [39] or in partial contact with the liquid 

[40]. Examples of novel geometries involving non-cantilever designs include a bridge beam 

supporting two half-disks [41], a trampoline structure vibrating in-plane [42], and a suspended 

plate that is in contact with liquid on one face only [43]. 

Another recent example of a novel disk-type microresonator for liquid-phase 

applications, introduced by Rahafrooz and Pourkamali [44, 45], is shown in Fig. 1a. The device 

is actuated electrothermally via two tangentially oriented legs, resulting in in-plane rotational 

oscillations of the disk as indicated schematically in Fig. 1b. The legs also serve as the motion-

detection component since their axial strain results in a change in electrical resistance via the 

piezoresistive effect. (The reader is referred to [46] and [47] for more details regarding device 



fabrication and the actuation/detection schemes.) This design differs from the previously 

mentioned devices in that virtually all of the surfaces of the device (disk and legs) move in a 

tangential direction, i.e., the device engages the surrounding liquid through shearing action only, 

which is expected to be a more efficient means of fluid-solid interaction [44, 45]. For this reason, 

we have referred to such a device as an “all-shear interaction device,” or “ASID” [48-50]. 

Experimental data in [44, 45] have demonstrated proof-of-concept for the ASID design, as evi- 

 

                    (a)           (b) 

Fig. 1: (a) Silicon-based disk MEMS resonator driven harmonically by imposed 

electrothermal axial strain in the legs [44, 45]; (b) Idealized model of the resonator 

depicting the concept of an “all-shear interaction device,” or ASID [48-50]. 

denced by unprecedented levels of quality factor for a fully-immersed, liquid-phase device: 

Q≈300 in water [44] and in heptane [45]. Another potential advantage of the ASID in sensing 

applications is the potentially large functionalized surface area afforded by the disk.   

While the experimental data presented in [44] and [45] are encouraging, the theoretical 

modeling included in those studies was limited to (undamped, in-vacuum) finite-element modal 

analyses. (The results of the simulations, i.e., the calculated mode shapes, were primarily used to 

confirm the hypothesis that shear is the dominant mode of interaction between the device and the 



surrounding medium.) Therefore, in order to provide a more detailed and more general 

theoretical basis for the performance of the promising resonator design of [44] and [45], the 

purpose of the present paper is to perform analytical modeling with the aim of achieving a 

detailed theoretical understanding of how the various system parameters influence the ASID’s 

dynamic response, including resonant characteristics. More specifically, the following objectives 

will be achieved in the present analytical investigation of an ASID resonator in a viscous fluid:  

(1) A one-dimensional continuum model of a harmonically driven ASID will be derived and 

an explicit analytical solution (including multiple mode contributions) will be obtained. 

This model will incorporate the distributed nature of the leg mass, leg flexibility, 

actuation strain, and fluid resistance on the legs, as well as the inertia of the disk and the 

distributed fluid resistance on the disk. 

(2) A simple single-degree-of-freedom (SDOF) model, based on neglecting the leg mass and 

fluid resistance on the legs, will be derived and solved for both the forced- and free-

vibration cases. The latter case will result in simple, closed-form, approximate formulas 

for the in-liquid resonant characteristics of the device. 

(3) The theoretical models of (1) and (2) will be employed to relate the dynamic response of 

the ASID to the geometric, material, and actuation parameters of the device, to provide 

guidelines for achieving optimal device geometries for maximizing Q and minimizing the 

fluid-induced decrease in fres, and to investigate the range of applicability of the SDOF-

based approximate formulas.  

(4) The theoretical results of the present modeling effort will be validated by comparison 

with the existing Q data for ASID operation in heptane [45].   



While the results to be presented herein are applicable to any liquid-phase application of an 

ASID microresonator, we emphasize that, within the specific context of MEMS sensing 

applications, significant improvements in resonant characteristics (Q and fres) correspond to 

enhancements in sensor performance metrics such as mass or chemical sensitivity and limit of 

detection (e.g., [31, 51, 52]).  

 

II. ANALYTICAL MODELING OF ASID 

An idealized model of the physical device (the ASID) of Fig. 1a is shown in Fig. 1b. Also 

shown in Fig. 1b are the geometric and material parameters characterizing the idealized system. 

These include the disk radius a, the length L and width b of the legs, the device thickness h, the 

density  and Young’s modulus E of the device material, and the density f  and viscosity η of 

the surrounding fluid. The primary purpose of the present section is to mathematically formulate 

and solve the problem governing the in-fluid vibrations of the ASID when excited by harmonic 

electrothermal strains imposed on the two legs. Of ultimate interest is to understand how the 

resonant characteristics of the device, i.e., the resonant frequencies and quality factors associated 

with the various in-plane rotational modes, depend on the geometric and material parameters of 

the system. This will be achieved by employing a “continuous-system” or “distributed-

parameter” modeling approach in Sect. II-A in which the distributed nature of the leg properties 

and the fluid resistance on the legs is considered. In addition a simple SDOF lumped-parameter 

model, in which the legs are treated as massless springs with no fluid resistance, is presented in 

Sect. II-B in an effort to obtain simple analytical expressions for the harmonic response and 

eigenproperties of the fundamental in-plane rotational mode. 

 



A. CONTINUOUS-SYSTEM (DISTRIBUTED-PARAMETER) MODEL 

The assumptions upon which the continuous-system model is based are the following: (1) 

the disk is rigid and has a solid circular geometry (i.e., the central hole of Fig 1a is neglected); 

(2) the supporting legs are elastic and treated as continuous axial members (i.e., bending and 

twisting are neglected); (3) each leg is fixed at one end and tangentially attached to the disk at 

the other end as shown in Fig. 1b; (4) the disk rotation is small; (5) the local fluid resistance 

(shear stress) on any surface of the device is approximated as that corresponding to the classical 

solution of Stokes’s second problem for a harmonic, in-plane, translational oscillation of an 

infinite plane in a viscous fluid [53]; and (6) the legs are subjected to identical, electrothermally-

induced, harmonic eigenstrains, *( )t , which are uniform throughout the legs (Fig. 1b): 

*
0( ) i tt e   ,                                                      (1) 

in which 0  is the amplitude of the imposed eigenstrain. In terms of the temperature change in 

the legs, 0 T CTE    , where T  is the temperature change amplitude and CTE denotes the 

coefficient of thermal expansion. Note that the imposed eigenstrain is a stress-free strain, while 

the total leg strain is the superposition of the eigenstrain and the elastic leg strain, the latter being 

associated with an axial stress in the legs.  

The solution to Stokes’s second problem implies that the fluid shear stress, τ, acting on a 

harmonically translating rigid planar surface may be expressed as a linear combination of the 

velocity, D , and acceleration, D , of the surface, where D  is the displacement of the surface 

and dots denote differentiation with respect to time t: 

 f fm D c D     ,                             (2) 

where  



 ,
2 2

f f
f fm c

   


    (3a,b) 

are the effective fluid mass and damping coefficients per unit area, respectively, and ω is the 

oscillation frequency of the surface. Employing assumption 5, the local fluid resistance at an 

arbitrary surface point of the ASID is approximated using the analog of Eq. (2) obtained by 

replacing D with the displacement magnitude of the surface point. Thus, D r  at any point on 

the disk surface, where r is the radial coordinate and θ the total disk rotation (measured from the 

position of zero leg strain). The extension of Eq. (2) for the shear stress at any point on the disk 

surface therefore becomes  

 
2

f r
r

 
  


   
 
   , (4) 

where ω is the actuation frequency and, thus, the steady-state oscillation frequency of the disk. 

An appropriate integration of Eq. (4) over the top and bottom (i.e., the circular areas) of the disk 

surface yields the resultant resisting torque due to the fluid in contact with these two surfaces:  

 4 1

2
f

T BT a
 

  


    
 
   . (5) 

The resisting torque on the lateral surface of the disk is obtained by multiplying the (uniform) 

shear stress on that surface, i.e., Eq. (4) evaluated at r=a, by the area of the lateral surface:  

 3 1
2

2
f

LT a h
 

  


    
 
  . (6) 

In addition the inertial torque associated with the disk mass, which opposes the rotational 

acceleration of the disk, is given by 

 
4

2I

a h
T

   . (7) 



In what follows a moment balance involving the fluid resistance torques and inertial torque, 

given by Eqs. (5)-(7) and shown in Fig. 2, will be incorporated into a boundary condition for the 

boundary value problem (BVP) governing the axial vibration of either leg.  

Shifting the focus to the elastic deformation of an individual leg, an equilibrium analysis 

of an infinitesimal element of length dx  may be performed (e.g., [54]), resulting in a differential 

equation governing the vibrating leg in the presence of the fluid: 

        2 , 2 , ( , ) 0f fbh m b h u x t c b h u x t bh x t             , (8) 

	

	

Fig. 2: Free-body diagram of vibrating disk showing inertial torque (TI), total fluid 

resistance torque on the top and bottom faces (TT+B), fluid resistance torque on the lateral 

surface (TL), and forces exerted by the legs on the disk (F).   

in which ( , )u x t  and ( , )x t  are the axial displacement and axial stress in the leg and the prime 

notation indicates differentiation with respect to x. The terms involving fm  and fc  account for 

the fluid resistance on the legs and have been introduced via a direct application of the Stokes 

result of Eq. (2). Note that the response quantity, ( , )u x t , represents the total axial displacement, 

i.e., the superposition of the imposed (stress-free) electrothermal displacement and any elastic 

displacement that arises due to the dynamics of the problem. The axial stress is related to the 

elastic strain through Hooke’s law; thus,  



 
  
 (x,t)  E  (x,t)  *(t)   E u (x,t) 

0
eit   , (9) 

where ( , )x t  is the total axial strain in the leg. Substituting Eq. (9) into Eq. (8) leads to the 

following equation governing the axial displacement of the leg in a viscous fluid when excited 

by a uniform eigenstrain: 

          2 , 2 , , 0f fbh m b h u x t c b h u x t Ebhu x t            . (10) 

The equation of motion (10) must be accompanied by two boundary conditions reflecting 

the physical conditions at the ends of the leg. The fixed condition at x=0 is given by  

 (0, ) 0u t   , (11) 

while at x=L the disk exerts an axial force, F , on the leg. This second boundary condition may 

be written in terms of the axial stress at x=L as ( , ) /L t F bh   or, using Eq. (9), as a condition 

on the displacement gradient at the disk-leg junction: 

 
0( , ) i tF

u L t
Ebh

e     . (12) 

Writing the rotational dynamic equilibrium equation for the free-body diagram of the disk shown 

in Fig. 2 enables one to express the force F in terms of the disk rotation θ. Rearranging this 

equation and relating the disk rotation to the end displacement of the leg via the kinematic 

relation, ( ) ( , ) /t u L t a  , leads to 

    2
2 2 2 2

2 22 2
1 1 , ,

4
1f fh h

F ha u L t u L t
a h a h

    
  

                
       

   . (13) 

Placing Eq. (13) into Eq. (12) results in the explicit statement of the second boundary condition: 

   
2

2 2 2 2 0

2 22 2
1 1 , 1 , ( )

4
, tf ifa h h

u L t u L t u L t
Eb a

e
h a h

    
  


                 

       
   . (14) 



Equations (10), (11), and (14) constitute the BVP for the continuous-system model. Note that the 

actuation strain driving the system appears in the BVP only on the right-hand side of the second 

boundary condition, Eq. (14). Also note that the terms in Eq. (14) that are proportional to  ,u L t 	

and  ,u L t 	are frequency-dependent and correspond, respectively, to the portions of the end 

force due to (a) the rotational inertia of the disk and that of the fluid dragged by the disk and (b) 

the viscous torque exerted by the fluid on the disk. (See Fig. 2.)       

For convenience the governing boundary value problem may be written in terms of a 

normalized axial displacement, /u u L , dependent on dimensionless axial and time 

coordinates,	 /x L   and 0t t . The reference frequency 0  has been chosen as the in-

vacuum fundamental axial frequency of a single leg of density   and Young’s modulus E: 

0 / / 2  E L   .     (15) 

Letting primes and dots now denote differentiation with respect to   and t , the BVP becomes  

     
3/2 2

0 0

1 2 1 1
( , ) 1 ( , ) 1 1 ( , ) 0 ,

2 4
u t L L u t L L u t

b b
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 

                  
    (16) 

 (0 , ) 0  ,u t    (17a) 
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in which the following dimensionless quantities have been defined: 

2 2 3
0 0 0/  ,   /  ,     /  ,   /  ,    / / / .   fa a h b b h L L h L L h E h            (18a-e) 



Parameter 0L  is a “characteristic material length” which incorporates all of the model’s material 

properties. Its normalized counterpart, 0L , is the only material-dependent parameter appearing in 

the BVP described by Eqs. (16) and (17a,b).  

One may easily show that the steady-state solution to the BVP due to the specified 

harmonic eigenstrain in the legs has the form  

0( , ) ( ) i tu t U e     ,                (19) 

where 
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  (20a,b) 

Output signals of possible interest are the disk rotation,  , which is identical to the average axial 

strain, avg , in each leg, and the local axial strain at the supports, sup . These signals are easily 

derived from the solution for the leg displacement. Convenient normalized forms of these output 

quantities are given by 
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L a L a
   

  
               (21a,b) 

The mechanical signal given by Eq. (21a) corresponds to the overall electrical resistance in the 

legs and is thus the relevant output quantity for the device shown in Fig. 1a, whose motion 

detection scheme was based on the variations in the electrical resistance due to the piezoresistive 

effect [45]. On the other hand, the local strain signal represented by Eq. (21b) corresponds to the 

local electrical resistance whose changes would be monitored if the detection scheme were based 

on a piezoresistive Wheatstone bridge being employed near the support [30].  



B. SINGLE-DEGREE-OF-FREEDOM (LUMPED-PARAMETER) MODEL 

As a special case of the continuous-system model described in Section II-A, the resonator 

may be modeled as a single-degree-of-freedom (SDOF) system if the legs are assumed to behave 

as massless elastic springs experiencing no fluid resistance while all other assumptions of the 

previous section remain unchanged. With the normalized disk rotation, ( )t  , being the only 

degree-of-freedom in this case, the SDOF equation of motion governing the model response may 

be deduced directly from Eq. (17b) by noting that the total strain in the legs is uniform in this 

case, i.e., 0( , ) ( ) / ( )u t a t L t      . Making this substitution into Eq. (17b) yields 

  0 0 3 2 3 2

2 2 1 2 2 16 16
1 1 1  i tb L b L

LL LL e
a a a a

   
   

                 
   . (22) 

Note that Eq. (22) can also be obtained independently by considering dynamic equilibrium of all 

moments acting on the disk of Fig. 2, where the forces due to the legs are now given by 

( / )( )F bhE L a . The steady-state solution of Eq. (22) is given by  

   0
i tt e   ,    (23) 

where 01  is the complex amplitude of ( )t  	due to the imposed eigenstrain:   
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 . (24) 

One may also consider the free-vibration response of the SDOF model by setting the 

right-hand side of Eq. (22) to zero and interpreting the frequency parameter   appearing on the 

left-hand side as 1 , defined as the normalized form of the in-fluid natural frequency ( 1 ) of 

the SDOF system, i.e., 1 1 0/   . (Subscript “1” denotes the first in-plane rotational mode 

of the device.) Assuming that 1  is insensitive to the damping term, the stiffness and frequency-



dependent mass coefficients in Eq. (22) result in the following frequency equation governing the 

unknown natural frequency parameter, 1 : 

    1 0 1
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16 bL
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a a
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
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
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
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While Eq. (25) may easily be solved numerically for arbitrary values of the system 

parameters, we instead seek an analytical solution. Recognizing that the coefficient on the 

second term in Eq. (25) will be very small in many cases of practical interest (since 0 1L   for 

micro-scale devices in most fluids), a truncated Taylor’s series expansion of 1  in powers of 

this coefficient leads to the following approximate analytical formula for the in-fluid natural 

frequency parameter: 
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 . (26) 

The form of Eq. (26) clearly indicates that the second term within the brackets represents the 

relative decrease in natural frequency caused by the fluid (relative to the in-vacuum case): 
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The quality factor, Q, associated with viscous dissipation in the fluid, is defined in terms 

of the viscous damping ratio,  , while from elementary vibration theory the latter may be 

related to the coefficients of the equation of motion (22) [54]. Evaluating those coefficients at the 

frequency given by Eq. (26) and neglecting higher-order terms results in the following estimate 

for Q based on the SDOF model:  
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where the “1” subscripts have been used to indicate that this result corresponds to the first mode 

of the resonator. The form of Eq. (28) permits a straightforward analysis of the effects that 

scaling of the device will have on Q. For example, if all dimensions of the ASID are increased 

(decreased) uniformly by a scaling factor α, the SDOF model predicts that the mode-1 quality 

factor will increase (decrease) by a factor of  . Similarly, if only the device thickness is 

increased (decreased) by a factor α while all other system parameters are held fixed, Eq. (28) 

implies that Q will increase (decrease), but the factor by which Q will change will depend not 

only on α but also on the disk radius. Both of these observations concerning scaling effects are 

consistent with the fact that the loss mechanism considered is essentially a surface effect; thus, 

any increase (decrease) in the volume-to-surface ratio of the device is expected to increase 

(decrease) Q. 

A comparison of Eqs. (27) and (28) implies that the SDOF-based estimates for the fluid-

induced relative decrease in natural frequency and the quality factor obey the following simple 

relationship, so that knowing one of these quantities permits the calculation of the other: 

 1

1 1

Δ 1

2Q




  . (29) 

Eq. (28) implies the existence of a relative maximum value for 1Q  with respect to disk size at the 

theoretically optimal value of 2a  : 
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which, by Eq. (29), corresponds to a relative minimum in frequency drop: 
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The results presented by the authors in [49] show that, for a wide range of disk sizes, the 

SDOF free-vibration results given by Eqs. (26)-(28) are capable of providing excellent 

approximations to the resonant characteristics of the SDOF model (i.e., resonant frequency, 

vacuum-to-fluid drop in resonant frequency, and Q-factor at resonance) when driven 

harmonically. Therefore, in the next section these analytical results will be compared with the 

results of the more accurate continuous model of Sect. II-A to examine their range of 

applicability in the present context. As the forced-vibration resonant response is expected to 

reflect the underlying eigenproperties of the system in many cases, the approximate analytical 

results for mode 1 [Eqs. (26)-(31)] are expected to yield reasonable estimates of the 

corresponding resonant characteristics of the harmonically driven continuous model over 

appropriate ranges of system parameters. This will be explored in detail in the next section, as 

will be comparisons of experimental quality factor data and the theoretical predictions for Q.  

III. RESULTS AND DISCUSSION 

A. FREQUENCY RESPONSE  

The normalized frequency response of the ASID can be obtained by evaluating Eqs. 

(20a,b) (continuous model) or Eq. (24) of the SDOF model over a range of actuation frequencies. 

While the SDOF model considers the disk rotation as the only output of the system (which is 

proportional to the leg strain, assumed to be uniform), the continuous model has been used to 

provide two outputs: the disk rotation (or average leg strain) and the local strain at the supports, 

as described earlier through Eqs. (21a,b). Since the focus of the present work is on the resonant 

characteristics of the ASID, we provide only sample frequency response curves for a specific set 

of system parameters as shown in Fig. 3 where the moduli (i.e., absolute values) of the complex 

functions (1)U  and (0)U   of Eqs. (21a,b) and 0  of Eq. (24) are being evaluated as the 



normalized response quantities. Physically, these response quantities correspond to normalized 

forms of either the disk rotation (average leg strain) amplitude or the local leg strain amplitude at 

the supports. The results displayed in Fig. 3 are based on a 20-μm-thick silicon ASID operating 

in heptane (ρf=679.5 kg/m3, η=0.000386 Pa·s). Properties of silicon are taken as E=130 GPa and 

ρ=2330 kg/m3, where the former value corresponds to the case in which the legs are aligned with 

the <100> direction [45, 55]. These data values yield a normalized characteristic material length 

of 0 /L h =3.2340e-07 which, unless indicated otherwise, will be used in all numerical results to  

	
  (a) 

	
    (b) 

Fig. 3: (a) Theoretical output signals based on continuous model and SDOF model (20-μm-

thick silicon ASID operating in heptane); (b) Zoomed view of signals for mode-1 response 

indicating slight difference between the two models.  
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follow; other specified geometric data will be noted directly on the figures. The continuous- 

model curves of Fig. 3 show that the two output signals have virtually identical responses in 

mode 1, while they tend to differ significantly in higher modes, with the local strain signal being 

stronger. As mentioned earlier in Section II-A, the disk rotation signal represents the average 

strain in the legs; thus, if the legs are excited in a mode other than the fundamental mode, some 

portions of the legs move in opposite directions, resulting in a smaller average strain in the leg. 

Moreover, the smaller value of disk rotation in the higher modes suggests that the boundary 

condition at the leg-disk junction is approaching a fixed condition; i.e., the disk inertia is limiting 

the disk rotation at higher driving frequencies. A comparison of the mode-1 results of the 

continuous and SDOF models shows that they are indistinguishable in Fig. 3a, while the zoomed 

view provided in Fig. 3b shows that the two models yield slightly different results. Nevertheless, 

for the case considered in Fig. 3 the SDOF model gives excellent approximations to the resonant 

frequency (0.3% high) and resonant peak amplitude (3% high). 

B. RESONANT CHARACTERISTICS 

The resonant frequencies of the system, defined as the exciting frequencies causing 

relative maxima in the plots of a response quantity versus the exciting frequency, can be 

extracted from the response curves generated by the continuous model or, for mode 1, by the 

SDOF model. Similarly, the corresponding quality factors may be extracted from the frequency 

response functions by employing the -3 dB bandwidth method [56] at each resonant peak. 

However, in what follows we focus only on the mode-1 resonant characteristics of the ASID as 

that mode is the most easily excited by the actuation method considered. In the results to be 

presented in what follows we shall denote the mode-1 resonant frequency as ωres and mode-1 



quality factor as Q. In addition to examining how the resonant characteristics depend on the 

system parameters, we will also compare the (forced-vibration) continuous-model results with 

the analytical expressions for the eigenproperties (free-vibration results) of the SDOF model. In 

all cases to be examined the disk rotation (average leg strain) signal [Eq. (21a)] will be employed 

as the continuous-model response quantity from which resonant characteristics are extracted, 

while all SDOF estimates of the resonant quantities will be based on the analytical expressions 

for the mode-1 natural frequency and quality factor [Eqs. (26)-(28)].    

Figure 4 shows the dependence of the normalized mode-1 resonant frequency of the 

ASID on the normalized disk radius for a 20-μm-thick silicon device in heptane. Leg geometry 

values are fixed as indicated in the figure. Results extracted from the continuous model solution 

are shown in addition to those based on the SDOF-based analytical formula, Eq. (28). As the 

disk radius becomes larger the total effective mass of the system, including the contributions of 

the mass of the structure and the effective fluid mass, increases, as does the effective damping  

	 	

Fig. 4: Normalized mode-1 resonant frequency vs. normalized disk size. (20-μm-thick 

silicon ASID operating in heptane) 
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due to the increased contact area with the fluid. These two effects together cause the resonant 

frequency to drop significantly as a/h increases. It can also be seen in Fig. 4 that when the disk 

diameter exceeds the device thickness (a/h>0.5) the SDOF analytical result provides an excellent 

estimate for the resonant frequency as determined by the continuous model. However, for 

smaller disk radii the SDOF result may deviate significantly from the more exact result. This is 

due to the assumption in the SDOF model that the legs are massless, thereby resulting in a 

theoretically infinite natural frequency as the disk radius approaches zero. This behavior 

indicates that the SDOF formula should only be used for ASIDs having a sufficiently large disk 

radius. Also of note in Fig. 4 is the fact that the continuous-model curve begins at a value slightly 

smaller than unity, indicating that the resonant frequency of a cantilevered leg (with no disk 

attachment) in axial mode in fluid is very close to that of its in-vacuum counterpart, i.e., the leg-

fluid shearing interaction is extremely efficient.        

Variation of the Q-factor with respect to the normalized disk radius is shown in Fig. 5 for 

different values of /L h  and a fixed value of  /b h . Clearly seen in Fig. 5 is the existence of a 

relative maximum corresponding to an optimal disk size in each case. The SDOF model gives a 

constant optimal disk radius of ( / ) 2opta h   for all cases [see Eq. (30)], while this optimal value 

is seen to increase and depend on /L h  (and /b h ) when the more exact continuous model is 

used. Also of interest is that the continuous-model results show that the presence of the disk does 

not necessarily increase the Q value beyond that of the isolated leg (a/h=0) case, as indicated by 

the initial downward slope of the curves, but implementing a disk of optimal or near-optimal size 

may significantly improve Q over that of a simple cantilever driven axially. The figure also 

suggests that, in general, the accuracy of the SDOF estimate for Q [Eq. (28)] will deteriorate as 

the disk radius decreases and as the leg length increases. As mentioned earlier, this is due to the  



	 	

Fig. 5: Mode-1 quality factor vs. normalized disk size: continuous model (solid) and SDOF 

model (dashed). (20-μm-thick silicon ASID operating in heptane) 

	

Fig. 6: Optimal disk size (resulting in maximum Q) versus the length and width of the legs. 

(20-μm-thick silicon ASID operating in heptane)	

 

increasing importance of leg mass and leg fluid resistance (both neglected in the SDOF model) 

as the disk size decreases relative to the leg size. 

The detailed variation of the optimal disk radius can be observed in Fig. 6 in which 
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the SDOF value of 2, indicating that the SDOF result provides a lower bound on the optimal disk 

size. While the results in Fig. 6 are associated with a particular device thickness and material 

system (20-μm-thick silicon device in heptane), additional calculations show that the dependence 

of the optimal value of /a h  on the normalized material length, 0 /L h , is negligible for practical 

ranges of solid and fluid properties and micro-scale device dimensions.  

Figure 7 displays how the disk size changes the fluid-induced drop in the resonant 

frequency of the ASID for various values of /L h  and fixed values of /b h  and 0 /L h . Of 

particular note is the relatively small value of relative frequency change due to the fluid. The 

continuous model shows that in all cases considered in the figure the surrounding liquid causes a 

decrease in the resonant frequency of less than 1%. Moreover, the optimal disk radius that yields 

a maximum Q value (see Figs. 5, 6) corresponds to a minimum value of the fluid-induced drop in 

the resonant frequency of the ASID. The same comments apply here regarding the trends in the 

accuracy of the SDOF analytical expression for the resonant frequency drop [Eq. (27)] as were 

made in the discussion of Fig. 5 and the SDOF formula for Q. 

The maximum Q value corresponding to the optimal a/h value can be calculated for 

specified values of /L h , /b h , and 0 /L h . These results are shown in Fig. 8 for both models, 

noting that 0 /L h  is fixed. As discussed earlier, the accuracy of the SDOF model becomes quite 

good as the legs become shorter. Moreover, the SDOF result [Eq. (30)] always provides an upper 

bound to the more accurate continuous-model result for the maximum Q, since the SDOF model 

neglects dissipation effects of the fluid in contact with the legs. Figure 8 demonstrates that the 

ASID is capable of unprecedented levels of Q in liquid (300-500 or even larger) if the legs are 

shorter and wider (i.e., stiffer) and if the disk radius is optimal (or near-optimal). However, there 

 



	 	

Fig. 7: Vacuum-to-fluid shift in resonant frequency vs. normalized disk radius. (20-μm-

thick silicon ASID operating in heptane) 

	

Fig. 8: Maximum Q-factor associated with the optimal disk size: continuous model (solid), 

and SDOF model (dashed). (20-μm-thick silicon ASID operating in heptane) 
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addition, any stiffening of the legs, due to either decreasing L or increasing width b, would result 

in a reduction of the dynamic response of the system. 	 

While all of the numerical results presented thus far have been based on silicon devices in 

heptane, the theoretical models may be used to study the effects of varying the structural material 

and/or the surrounding fluid. For example, one would expect the quality factor to vary 

considerably when the ASID is immersed in different liquids. This is explored in Fig. 9, in which  

Fig. 9: Q-factor variation as a function of normalized material (solid/liquid) parameter. 

Particular device/fluid systems are show for illustrative purposes. 

 

the effect of material properties (both liquid and solid) on Q for different values of /a h  and 

fixed values of /L h  and /b h  is shown. The only parameter that is material-dependent is the 

abscissa quantity, 1/2
0( / )L h  . It is apparent that the results of the continuous model yield an 

essentially linear variation of Q with respect to 1/2
0( / )L h  , a result which was mathematically 

evident in the SDOF approximate relationship encapsulated by Eq. (28). Again, we see the 

expected departure of the SDOF results from those of the continuous model (a very slight 

overestimation in this case) as the disk size becomes smaller relative to the device thickness. As 
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expected, the device will resonate with sharper peaks (higher Q) in liquids having lower values 

of viscosity and density; Q will also increase as the device density or modulus is increased. (See 

the material-dependence of the abscissa in Fig. 9.)  

While the curves of Fig. 9 are general in the sense that they apply to arbitrary material 

properties and device thicknesses, we have indicated for illustrative purposes specific abscissa 

values corresponding to a 20-μm-thick silicon device immersed in four different liquids. 

Heptane, being the least viscous of the four liquids, gives the highest quality factor, whereas 

liquids of higher viscosity and density such as a glycerol (75%wt)-water mixture (ρf=1200 kg/m3, 

η=0.036 Pa·s [57]) or blood (ρf=1060 kg/m3, η=0.004 Pa·s [58]) are seen to reduce the quality 

factor significantly. Theoretical results such as those depicted in Fig. 9 may be useful in 

extrapolating experimental Q data for one material system (e.g., a Si device in water) to another 

material system (e.g., an SU-8 device in blood).  

C. COMPARISON OF THEORETICAL QUALITY FACTOR PREDICTIONS WITH 

EXPERIMENTAL DATA 

Our primary motivation for studying the mechanics of the ASID resonator was to 

understand how the system parameters influence the efficiency of vibration in liquid 

environments as measured by the quality factor Q. Therefore, to examine the validity of the 

theoretical models described in this paper a comparison will be made between the theoretical 

predictions for Q and the existing liquid-phase quality factor data presented in [45]. The data 

correspond to 23 specimens of designs similar to that shown in Fig. 1a, having a fixed leg width 

of b=2 μm and various values of device thickness and leg length. All devices were fabricated 

from silicon and measurements were made in heptane. (Details may be found in [44] and [45].) 

Property values used in the theoretical models for Si and heptane have been listed earlier in the 



present paper. The value of L, the effective leg length in the models, is specified as indicated in 

Fig. 10. Finite element modal analyses for the mode of interest (first in-plane disk rotation mode) 

show that this dimension yields a good estimate of the distance over which the leg strain is 

primarily one-dimensional (axial); this choice is therefore consistent with model assumption (2) 

and with the dimension used in [45] to categorize the collected data. This latter point will 

facilitate the comparison which follows.  

 

Fig. 10: Dimension used for the effective leg length L in modeling the ASID resonator. 
   

The Q data of [45] and the predicted values based on the continuous and SDOF models 

are displayed in Fig. 11. An immediate and encouraging observation suggested by the 

comparison is that nearly all of the data (markers) are bounded by the corresponding range 

spanned by the theoretical results (continuous curves) and that these bounds are relatively tight, 

especially on the high-Q side which is of most practical interest. In addition the theoretical 

models capture the qualitative trends of the measured data quite well with respect to changes in 

both b/L and a/h. The models also provide very good quantitative estimates for Q in many cases, 

especially for the lower values of a/h which result in higher quality factors, i.e., the upper 

curves/markers in Fig. 11. In particular, the predicted Q values for the specimen that yielded the 

highest Q were within 3% of the measured result of 304. While no claims of optimizing the disk 



size were made in [45], it is interesting that the specimen that yielded the largest Q value 

corresponded to the lowest ratio of a/h considered in that experimental study (a/h=2.5), while the 

present theory (Fig. 6), using that specimen’s dimensions of (h, b, L)=(20, 2, 11) μm, predicts  

		

Fig. 11: Theoretical Q-factors (present study) vs. existing data for silicon specimens in 

heptane [45]. (Solid: continuous model; Dashed: SDOF model; X: experiment) [color 

online] 

 

that ( / ) 2.3opta h  , which is consistent with the data. However, the quantitative difference 

between theory and experiment in Fig. 11 is significant for the higher a/h ratios of 10 and 20, for 

which the theoretical Q values are 30-50% below the data in 10 of 11 cases. Possible reasons for 

the quantitative discrepancy are the following: (1) The theoretical results are based on the use of 

a room temperature value of viscosity for heptane, i.e., reduction in viscosity due to temperature 

effects has not been included. (2) The model neglects the mass associated with the leg-disk 

junctions (see shaded portion in Fig. 10). Underestimating the mass will result in lower predicted 

Q values. (3) The model is based on the assumption of uniform electrothermal loading in the 

legs, a condition which may be difficult to achieve during testing. (4) Experimental error 
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associated with extraction of Q from noisy signals will obviously exist, as evidenced by the 

scatter of the data in Fig. 11. This error is expected to be higher for lower-Q signals.  

If the two sets of theoretical curves in Fig. 11 are compared, one finds that, when the legs 

are shorter and/or the disk diameter is larger, the results of the SDOF analytical formula 

approach those of the continuous model, as expected, because the inertial and fluid effects 

associated with the legs become insignificant compared to those associated with the disk.      

 

IV. SUMMARY AND CONCLUSIONS  

A new analytical approach to a novel high-Q disk resonator supported by two tangential 

legs, described here as an “all-shear interaction device” or “ASID,” has been explored through 

the use of two theoretical models: a continuous-system (distributed-parameter) model, which is 

capable of simulating multi-modal response, and the special case of a single-degree-of-freedom 

(SDOF) model, which is limited to the fundamental in-plane rotational mode. The SDOF model 

led to explicit analytical approximations for the resonant characteristics (resonant frequency, 

quality factor, and fluid-induced drop in the resonant frequency) of the ASID in terms of the 

system’s geometric and material parameters. The SDOF analytical formulas have been compared 

with the resonant characteristics extracted from the frequency response curves of the more 

general multi-modal, continuous-system model. The analytical formulas were shown to be in 

very good agreement with the results of the more general model over a significant portion of the 

design space provided that the disk radius is sufficiently large relative to the device thickness. 

Both theoretical models indicate the existence of an optimal disk radius that maximizes the 

quality factor and minimizes the relative decrease in resonant frequency caused by the fluid. The 

SDOF model yields an optimal disk radius that is twice the device thickness [ ( / ) 2opta h  ] 



regardless of leg dimensions, while the more refined model suggests that the optimal disk radius 

is slightly larger than the SDOF result [ ( / ) 2opta h  ] by an amount that depends on the size of 

the leg dimensions (length and width) relative to the device thickness. Both models suggest that 

ASID resonators are capable of achieving unprecedented levels of liquid-phase Q (300-500 or 

even higher) and fluid-induced resonant frequency reductions of less than 1%, and that such 

levels of performance are achievable if the ASID design includes relatively stiff (short and wide) 

legs and a disk of optimal (or near-optimal) size. The theoretical models also clearly show the 

effect of the liquid density and viscosity on the resonant characteristics of the device and thus 

enable one to map the performance measured in one liquid environment into resonant behaviors 

in other liquids without performing additional experiments in the other media.  

The results of the present modeling effort have been validated by comparing the 

theoretical predictions for liquid-phase quality factor with published experimental data 

(measurements in heptane). The comparisons show that the models reproduce the trends 

exhibited by the existing data and give good quantitative estimates for Q, especially for those 

device geometries that exhibit the highest quality factors. In particular, both theoretical models 

yielded estimates within 3% of the highest Q measured in the data (Q=304); moreover, the 

specimen that achieved this level of resonant performance corresponded to a disk size of a/h=2.5, 

a value that was very close to the theoretically optimal value of ( / ) 2.3opta h   given by the 

continuous model derived in this study. While most of the theoretical predictions for Q for larger 

disk sizes (a/h = 10 and 20) were 30-50% below the measured values, the quantitative agreement 

between theory and experiment was quite good for the higher-Q devices (a/h = 2.5 and 5) which 

are of most interest in resonator applications. These results suggest that the new analytical 

models presented herein may furnish a relatively simple, yet sufficiently accurate, theoretical 



foundation for the encouraging performance of ASID-type devices in past experiments and may 

serve as the basis for a rational approach to designing these microresonators to achieve 

maximum performance in a wide variety of applications and liquid environments.    

Acknowledgments 

This work was supported in part by NSF Grant Nos. ECCS-1128992 and ECCS-1128554, 

The Graduate School of Marquette University, and the Marquette University Department of Civil, 

Construction and Environmental Engineering. The authors would also like to thank the reviewers 

for their suggestions for improving the paper.  

 

References     

[1]  K.M. Goeders, J.S. Colton, and L.A. Bottomley, “Microcantilevers: Sensing Chemical 
Interactions via Mechanical Motion,” Chem. Rev. 108, no. 2, pp. 522-542 (2008). 

[2]  H. Campanella, Acoustic Wave and Electromechanical Resonators, Artech House, 
Norwood, MA (2010). 

[3]  H.K. Hunt and A.M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 
pp. 1544-1559 (2010). 

[4]  A. Boisen, S. Dohn, S.S. Keller, S. Schmid, and M. Tenje, “Cantilever-like 
micromechanical sensors,” Rep. Prog. Phys. 74, 036101, 30 pp. (2011).    

[5]  S. Fanget, S. Hentz, P. Puget, J. Arcamone, M. Matheron, E. Colinet, P. Andreucci, L. 
Duraffourg, E. Myers, and M.L. Roukes, “Gas sensors based on gravimetric detection—A 
review,” Sens. Act. B: Chem. 160, pp. 804-821 (2011). 

[6]  K. Eom, H.S. Park, D.S. Yoon, and T. Kwon, “Nanomechanical resonators and their 
applications in biological/chemical detection: Nanomechanics principles,” Physics Reports 
503, pp. 115-163 (2011). 

[7]  Q. Zhu, “Microcantilever Sensors in Biological and Chemical Detections,” Sensors and 
Transducers 125, no. 2, Feb., pp. 1-21 (2011). 

[8]  T. Braun, V. Barwich, M.K. Ghatkesar, A.H. Bredekamp, C. Gerber, M. Hegner, and H.P. 
Lang, “Micromechanical mass sensors for biomolecular detection in a physiological 
environment,” Phys. Rev. E 72, 031907, 9 pp. (2005).  

[9]  J.L. Arlette, E.B. Myers, and M.L. Roukes, “Comparative advantages of mechanical 
biosensors,” Nature Nanotechnology  6, April, pp. 203-215 (2011). 

[10]  B.N. Johnson and R. Mutharasan, “Biosensing using dynamic-mode cantilever sensors: A 
review,” Biosensors and Bioelectronics 32, pp. 1-18 (2012). 



[11]  N. Belmiloud, I. Dufour, A. Colin, and L. Nicu, “Rheological behavior probed by vibrating 
microcantilevers,” Appl. Phys. Lett. 92, no. 4, 041907, 3 pp. (2008). 

[12]  C. Riesch, E.K. Reichel, F. Keplinger, and B. Jakoby, “Characterizing Vibrating 
Cantilevers for Liquid Viscosity and Density Sensing,” J. Sensors 2008, 697062, 9 pp. 
(2008). 

[13]  I. Dufour, A. Maali, Y. Amarouchene, C. Ayela, B. Caillard, A. Darwiche, M. Guirardel, 
H. Kellay, E. Lemaire, F. Mathieu, C. Pellet, D. Saya, M. Youssry, L. Nicu, and A. Colin, 
“The Microcantilever: A Versatile Tool for Measuring the Rheological Properties of 
Complex Fluids,” J. Sensors 2012, 719898, 9 pp. (2012). 

[14]  I. Dufour, E. Lemaire, B. Caillard, H. Debéda, C. Lucat, S.M. Heinrich, F. Josse, and O. 
Brand, “Effect of hydrodynamic force on microcantilever vibrations:Applications to liquid-
phase chemical sensing,” Sensors and Actuators B: Chemical 192, pp. 664-672 (2014). 

[15]  S.R. Anton and H.A. Sodano, “A review of power harvesting using piezoelectric materials 
(2003–2006),” Smart Mater. Struct. 16, pp. R1-R21 (2007).  

[16]  S. Priya and D.J. Inman (eds.), Energy Harvesting Technologies, Springer, New York 
(2009). 

[17]  S. Beeby and N. White, Energy Harvesting for Autonomous Systems, Artech House, 
Norwood, MA (2010).   

[18] J.E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with 
applications to the atomic force microscope,” J. Appl. Phys. 84, no. 1, July, pp. 64-76 
(1998). 

[19]   S. Basak, A. Raman, and S.V. Garimella, “Hydrodynamic loading of microcantilevers 
vibrating in viscous fluids,” J. Appl. Phys. 99, no. 11, 114906, 10 pp. (2006).  

[20]   C. Vančura, Y. Li, J. Lichtenberg, K.-U. Kirstein, A. Hierlemann, and F. Josse, “Liquid-
Phase Chemical and Biochemical Detection Using Fully Integrated Magnetically Actuated 
Complementary Metal Oxide Semiconductor Resonant Cantilever Sensor Systems,” Anal. 
Chem. 79, no. 4, Feb., pp. 1646-1654 (2007). 

[21] C. Vančura, I. Dufour, S.M. Heinrich, F. Josse, and A. Hierlemann, “Analysis of resonating 
microcantilevers operating in a viscous liquid environment,” Sens. Act. A: Phys. 141, pp. 
43-51 (2008).   

[22] C.A. Van Eysden and J.E. Sader, “Frequency response of cantilever beams immersed in 
viscous fluids with applications to the atomic force microscope: Arbitrary mode order,” J. 
Appl. Phys. 101, no. 4, 044908, 11 pp. (2007). 

[23] M.K. Ghatkesar, T. Braun, V. Barwich, J.-P. Ramseyer, C. Gerber, M. Hegner, and H.P. 
Lang, “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett. 92, no. 
4, 043106, 3 pp. (2008). 

[24] B.N. Johnson and R. Mutharasan, “Persistence of bending and torsional modes in 
piezoelectric-excited millimeter-sized cantilever (PEMC) sensors in viscous liquids – 1 to 
103 cP,” J. Appl. Phys. 109, no. 6, 066105, 3 pp. (2011). 



[25] I. Dufour, F. Josse, S.M. Heinrich, C. Lucat, C. Ayela, F. Ménil, and O. Brand, 
“Unconventional uses of microcantilevers as chemical sensors in gas and liquid media,” 
Sens. Act. B: Chem. 170, pp. 115-121 (2012).  

[26] L.B. Sharos, A. Raman, S. Crittenden, and R. Reifenberger, “Enhanced mass sensing using 
torsional and lateral resonances in microcantilevers,” Appl. Phys. Lett. 84, no. 23, June, pp. 
4638-4640 (2004). 

[27] I. Dufour, S.M. Heinrich, and F. Josse, “Theoretical Analysis of Strong-Axis Bending 
Mode Vibrations for Resonant Microcantilever (Bio)Chemical Sensors in Gas or Liquid 
Phase,” JMEMS 16, no. 1, Feb., pp. 44-49 (2007). 

[28] S.M. Heinrich, R. Maharjan, L. Beardslee, O. Brand, I. Dufour, and F. Josse, “An 
Analytical Model for In-Plane Flexural Vibrations of Thin Cantilever-Based Sensors in 
Viscous Fluids: Applications to Chemical Sensing in Liquids,” Proc., Int’l Workshop on 
Nanomechanical Cantilever Sensors, Banff, Canada, May 26-28, 2 pp. (2010).  

[29] S. Heinrich, R. Maharjan, I. Dufour, F. Josse, L.A. Beardslee, and O. Brand, “An 
Analytical Model of a Thermally Excited Microcantilever Vibrating Laterally in a Viscous 
Fluid,”	 Proc., IEEE Sensors 2010 Conf., Waikoloa, HI, Nov. 1-4, pp. 1399-1404 (2010).  

[30] L.A. Beardslee, A.M. Addous, S.Heinrich, F. Josse, I. Dufour, and O. Brand, “Thermal 
Excitation and Piezoresistive Detection of Cantilever In-Plane Resonance Modes for 
Sensing Applications,” JMEMS 19, no. 4, Aug., pp. 1015-1017 (2010).  

[31] L.A. Beardslee, K.S. Demirci, Y. Luzinova, B. Mizaikoff, S.M. Heinrich, F. Josse, and O. 
Brand, “Liquid-Phase Chemical Sensing Using Lateral Mode Resonant Cantilevers,” Anal. 
Chem. 82, no. 18, Sept., pp. 7542-7549 (2010).  

[32] L.A. Beardslee, F. Josse, S.M. Heinrich, I. Dufour, and O. Brand, “Geometrical 
Considerations for the Design of Liquid-Phase Biochemical Sensors Using a Cantilever’s 
Fundamental In-Plane Mode,”	 Sens. Act. B: Chem. 164, pp. 7-14 (2012). 

[33] R. Cox, F. Josse, F., S.M. Heinrich, S., O. Brand, and I. Dufour, “Characteristics of 
laterally vibrating resonant microcantilevers in viscous liquid media,” J. Appl. Phys. 111, 
no. 1, 014907, 14 pp. (2012).   

[34]  C. Castille, I. Dufour, and C. Lucat, “Longitudinal vibration mode of piezoelectric thick-
film cantilever-based sensors in liquid media,” Appl. Phys. Lett. 96, no. 15, 154102, 3 pp. 
(2010). 

[35] R. Lakhmi, H. Debeda, I. Dufour, C. Lucat, and M. Maglione, “Study of Screen-Printed 
PZT Cantilevers Both Self-Actuated and Self-Read-Out,” Int’l J. Appl. Ceramics Tech. 11, 
no. 2,  pp. 311-320 (2014).  

[36] C.P. Green and J.E. Sader,  “Torsional frequency response of cantilever beams immersed in 
viscous fluids with applications to the atomic force microscope,”J. Appl. Phys. 92, no. 10, 
Nov., pp. 6262-6274 (2002). 

[37] T. Cai, F. Josse, S. Heinrich, N. Nigro, I. Dufour, and O. Brand, “Resonant Characteristics 
of Rectangular Microcantilevers Vibrating Torsionally in Viscous Liquid Media,” Proc., 



IEEE Int’l Freq. Control Symp. 2012, Paper 7175, Baltimore, MD, May 21-24, pp. 807-812 
(2012).  

[38] M. Aureli, C. Pagano, and M. Porfiri, “Nonlinear finite amplitude torsional vibrations of 
cantilevers in viscous fluids,” J. Appl. Phys. 111, no. 12, 124915, 16 pp. (2012). 

[39] J.E. Sader, T.P. Burg, and S.R. Manalis, “Energy dissipation in microfluidic beam 
resonators,” J. Fluid Mech. 650, pp. 215-250 (2010). 

[40] J. Linden and E. Oesterschulze, “Improving the quality factor of cantilevers in viscous 
fluids by the adaptation of their interface,” Appl. Phys. Lett. 100, no. 11, 113511, 3 pp. 
(2012). 

[41] J.H. Seo and O. Brand, “High Q-Factor In-Plane-Mode Resonant Microsensor Platform for 
Gaseous/Liquid Environment,” JMEMS 17, no. 2, Apr., pp. 483-493 (2008). 

[42] P.S. Waggoner, C.P. Tan, L. Bellan, and H.G. Craighead, “High-Q, in-plane modes of 
nanomechanical resonators operated in air,” J. Appl. Phys. 105, no. 9, 094315, 6 pp. 
(2009). 

[43] J. Linden, A. Thyssen, and E. Oesterschulze, “Suspended plate microresonators with high 
quality factor for the operation in liquids,” Appl. Phys. Lett. 104, no. 19, 191906, 3 pp. 
(2014). 

[44] A. Rahafrooz and S. Pourkamali, “Rotational Mode Disk Resonators for High-Q Operation 
in Liquid,” Waikoloa, HI, Nov. 1-4, pp. 1071-1074 (2010).  

[45] A. Rahafrooz and S. Pourkamali, “Characterization of Rotational Mode Disk Resonator 
Quality Factors in Liquid,” Proc., 2011 IEEE Int’l Freq.Control Symp. San Francisco, CA, 
May 1-5, 5 pp. (2011). 

[46]  A. Rahafrooz, A. Hajjam, B. Tousifar, and S. Pourkamali, “Thermal actuation, a suitable 
mechanism for high frequency electromechanical resonators,” Proc., IEEE MEMS Conf., 
Hong Kong, Jan. 24-28, pp. 200-203 (2010). 

[47]  A. Rahafrooz and S. Pourkamali, “Thermo-electro-mechanical modeling of high frequency 
thermally actuated I2-BAR resonators,” Tech. Dig. Solid-State Sens.,Actuator Microsyst. 
Workshop, Hilton Head Island, SC, June 2010, pp. 74-77 (2010). 

[48] M.S. Sotoudegan, S.M. Heinrich, F. Josse, N.J. Nigro, I. Dufour, and O. Brand, “A Simple 
Model for the In-Plane Rotational Response of a Disk Resonator in Liquid: Resonant 
Frequency, Quality Factor, and Optimal Geometry,” Proc., 2013 Nanomechanical Sensing 
Workshop (NMC 2013), Stanford, CA, May 1-3, pp. 107-108 (2013). 

[49] M.S. Sotoudegan, S.M. Heinrich, F. Josse, N.J. Nigro, I. Dufour, and O. Brand, “Effect of 
Design Parameters on the Rotational Response of a Novel Disk Resonator for Liquid-Phase 
Sensing: Analytical Results,” Proc., IEEE Sensors 2013 Conf., Baltimore, MD, Nov. 4-6, 
pp. 1164-1167 (2013). 

[50] M.S. Sotoudegan, S.M. Heinrich, F. Josse, I. Dufour, and O. Brand, “A Multi-Modal 
Continuous-Systems Model of a Novel High-Q Disk Resonator in a Viscous Liquid,” 
Proc., 2014 Nanomechanical Sensing Workshop (NMC 2014), Madrid, Spain, Apr. 30-May 
2, pp. 98-99 (2014). 



[51] I. Dufour, F. Lochon, S.M. Heinrich, F. Josse, and D. Rebière, “Effect of Coating 
Viscoelasticity on Quality Factor and Limit of Detection of Microcantilever Chemical 
Sensors,” IEEE Sensors Journal  7, no. 2, Feb., pp. 230-236 (2007). 

[52] R. Cox, F. Josse, M.J. Wenzel, S.M. Heinrich, and I. Dufour, “Generalized Model of 
Resonant Polymer-Coated Microcantilevers in Viscous Liquid Media,” Anal. Chem. 80, no. 
15, Aug. 1, pp. 5760-5767 (2008).  

[53] G. Stokes, “On the effect of the internal friction of fluids on the motion of pendulums,” 
Trans. Camb. Phil. Soc. 9, no. 2, pp. 8-106 (1851).   

[54]   R.W. Clough and J. Penzien, Dynamics of Structures, 2nd ed., McGraw-Hill, New York 
(1993). 

[55] M.A. Hopcroft, W.D. Nix, and T.W. Kenny, “What is the Young’s modulus of silicon?,” 
JMEMS 19, no. 2, Apr., pp. 229-238 (2010).  

[56] J.H. Ginsberg, Mechanical and Structural Vibrations, John Wiley and Sons, New York 
(2001).  

[57] N. Cheng, “Formula for the Viscosity of a Glycerol-Water Mixture,” Industrial and 
Engineering Chemistry Research 47, no. 9, pp. 3285-3288 (2008). 

[58] J.D. Cutnell and K.W. Johnson, Physics, 8th ed., John Wiley and Sons, New York (2009). 
  



Biographical	Information	of	the	Authors	
	

Mohamad	 S.	 Sotoudegan	 received	 the	 B.S.	 degree	 in	 mechanical	
engineering	 from	 the	 Iran	 University	 of	 Science	 and	 Technology	
(IUST),	 Tehran,	 Iran,	 in	 2011	 and	 the	 M.S.	 degree	 in	 structural	
engineering	from	Marquette	University,	Milwaukee,	WI,	USA,	in	2013.	
He	 is	 currently	pursuing	 the	Ph.D	degree	 in	 structural	mechanics	 at	
Marquette	University	where	he	is	working	on	the	vibration	analysis	of	
micro‐scale	 resonators.	 He	was	 recently	 a	 recipient	 of	 the	 Research	
Assistant	 Honors	 Award	 in	 2014.	 His	 research	 interests	 lie	 in	 the	
areas	 of	 analytical/FEA	 modeling	 of	 the	 MEMS	 devices,	 solid‐fluid	
interactions,	and	optimizing	the	microsystems	performance.		
	

	
Stephen	M.	Heinrich	received	the	B.S.	degree	summa	cum	laude	from	
Pennsylvania	 State	University	 State,	 State	 College,	 PA,	USA,	 in	 1980	
and	 the	 M.S.	 and	 Ph.D.	 degrees	 from	 the	 University	 of	 Illinois	 at	
Urbana‐Champaign,	 Champaign,	 IL,	 USA,	 in	 1982	 and	 1985,	
respectively,	 all	 in	 civil	 engineering.	 He	 joined	 the	 faculty	 of	
Marquette	University,	Milwaukee,	WI,	USA,	as	an	Assistant	Professor,	
where	he	was	promoted	to	Professor	of	Civil	Engineering	in	1998.	He	
was	 a	 recipient	 of	 the	 Reverend	 John	 P.	 Raynor	 Faculty	 Award	 for	
Teaching	Excellence	in	2000,	Marquette’s	highest	teaching	honor.	His	
research	 has	 focused	 on	 structural	 mechanics	 applications	 in	
microelectronics	packaging	and	new	analytical	models	for	predicting	

and	 optimizing	 the	 performance	 of	 cantilever‐based	 chemical/biosensors	 and,	 more	
recently,	vibration	energy	harvesting	devices.	The	investigations	performed	by	him	and	his	
colleagues	 have	 resulted	 in	 over	 100	 refereed	 publications	 and	 three	 best	 paper	 awards	
from	IEEE	and	the	American	Society	of	Mechanical	Engineers.	

	
Fabien	Josse	(SM’–)	received	the	License	degree	in	mathematics	and	
physics	 in	 1976,	 and	 the	 M.S.	 and	 Ph.D.	 degrees	 in	 electrical	
engineering	 from	 the	University	of	Maine,	Orono,	ME,	USA,	 in	1979	
and	 1982,	 respectively.	 He	 has	 been	 with	 Marquette	 University,	
Milwaukee,	WI,	 USA,	 since	 1982,	 and	 is	 currently	 a	 Professor	with	
the	 Department	 of	 Electrical	 and	 Computer	 Engineering,	 and	 the	
Department	 of	 Biomedical	 Engineering.	 His	 research	 interests	
include	 solid‐state	 sensors,	 acoustic‐wave	 sensors	 and	
microelectromechanical	 systems	 devices	 for	 liquid‐phase	
biochemical	 sensor	 applications,	 investigation	 of	 novel	 sensor	
platforms,	and	smart	sensor	systems.	

	
	
	
	
	



	
Nicholas	 J.	Nigro	was	born	 in	 1934.	He	 received	 the	B.S.	 degree	 in	
civil	 engineering	 from	 Michigan	 Technology	 University,	 Houghton,	
MI,	USA,	 in	1956,	and	the	M.S.	degree	in	civil	engineering	from	Iowa	
State	 University,	 Ames,	 IA,	 USA,	 in	 1959.	 Following	 a	 three‐year	
period	as	an	Instructor	at	Southern	Illinois	University,	Carbondale,	IL,	
USA,	 he	 received	 the	 Ph.D.	 degree	 in	 theoretical	 and	 applied	
mechanics	 from	 the	 University	 of	 Iowa	 in	 1965.	 He	 immediately	
began	 a	 distinguished	 48‐year	 career	 at	 Marquette	 University,	
Milwaukee,	WI,	USA,	 during	which	 time	he	directed	 the	 research	of	
over	 80	 master’s	 and	 Ph.D.	 students,	 and	 was	 honored	 with	 six	
teaching	 awards,	 including	 the	 Marquette	 University	 Teaching	

Excellence	 Award	 in	 1982.	 During	 the	 past	 six	 years,	 he	 served	 as	 a	 highly	 valued	
researcher	as	Professor	Emeritus	of	Mechanical	Engineering,	interacting	with	students	and	
faculty	 across	 the	 entire	 MU	 College	 of	 Engineering.	 His	 research	 portfolio	 spanned	 a	
diverse	group	of	disciplines,	including	wave	propagation,	fluid‐solid	interaction,	dynamics	
of	high‐altitude	balloon	systems,	 joining	technology	 in	electronic	packaging,	mechanics	of	
liquid	 menisci,	 and,	 most	 recently,	 the	 modeling	 of	 microelectromechanical	 systems	
resonators.	 Since	 his	 unexpected	 passing	 in	 2013,	 he	 has	 been	 sadly	 missed	 by	 a	 large	
community	of	family,	friends,	colleagues,	and	students	whose	lives	he	enriched.	
	

Isabelle	 Dufour	 received	 the	 degree	 from	 the	 École	 Normale	
Supérieure	 de	 Cachan,	 Cachan,	 France,	 in	 1990,	 and	 the	 Ph.D.	 and	
H.D.R.	degrees	in	engineering	science	from	the	University	of	Paris‐Sud,	
Orsay,	 France,	 in	 1993	 and	 2000,	 respectively.	 She	 was	 a	 CNRS	
Research	Fellow	 from	1994	 to	2007,	 first	 in	Cachan,	working	on	 the	
modeling	 of	 electrostatic	 actuators	 (micromotors	 and	 micropumps)	
and	then,	after	2000,	 in	Bordeaux,	working	on	microcantilever‐based	
chemical	sensors.	She	is	currently	a	Professor	of	Electrical	Engineering	
with	 the	 University	 of	 Bordeaux,	 Bordeaux,	 France.	 Her	 research	
interests	 are	 in	 the	 areas	 of	 microcantilever‐based	 sensors	 for	
chemical	 detection,	 rheological	 measurements,	 and	 material	

characterization.	
	
Oliver	 Brand	 (SM’–)	 is	 currently	 a	 Professor	 with	 the	 School	 of	
Electrical	 and	 Computer	 Engineering	 and	 the	 Executive	 Director	 of	
the	 Institute	 for	 Electronics	 and	 Nanotechnology	 with	 the	 Georgia	
Institute	 of	 Technology,	 Atlanta,	 GA,	 USA.	 He	 received	 the	 Diploma	
degree	 in	 physics	 from	 the	 Technical	 University	 of	 Karlsruhe,	
Karlsruhe,	Germany,	in	1990,	and	the	Ph.D.	degree	from	ETH	Zurich,	
Zurich,	 Switzerland,	 in	 1994.	 From	 1995	 to	 1997,	 he	 was	 a	 Post‐
Doctoral	Fellow	with	the	Georgia	Institute	of	Technology.	From	1997	
to	2002,	he	was	a	Lecturer	with	ETH	Zurich	and	the	Deputy	Director	
of	the	Physical	Electronics	Laboratory.		
				Dr.	 Brand	 has	 co‐authored	 over	 190	 publications	 in	 scientific	

journals	 and	 conference	 proceedings.	 He	 is	 a	 Co‐Editor	 of	 the	 Wiley‐VCH	 book	 series	



Advanced	Micro	and	Nanosystems,	and	an	Editorial	Board	Member	of	Sensors	and	Materials.	
He	 served	 as	 the	 General	 Co‐Chair	 of	 the	 2008	 IEEE	 International	 Conference	 on	Micro	
Electro	 Mechanical	 Systems	 (MEMS),	 and	 has	 been	 a	 Technical	 Program	 Committee	
Member	of	the	IEEE	MEMS	Conference,	the	IEEE	Sensors	Conference,	and	the	Transducers	
Conference.	He	was	 a	 co‐recipient	 the	2005	 IEEE	Donald	G.	 Fink	Prize	Paper	Award.	His	
research	 interests	 are	 in	 the	 areas	 of	 integrated	 microsystems,	 microsensors,	 MEMS	
fabrication	technologies,	and	microsystem	packaging.	
	
 


