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Abstract—Goal-Babbling Exploration consists in the generic
task of sensory-motor coordination learning through goal space
exploration. A typical drawback in Goal-Babbling Exploration
algorithms remains the human involvement during the adjust-
ment phase. In order to tackle this issue, we propose in this
article to study an evolutionary perspective. It takes the form
of applying an optimization approach to enhance the learning
process. Our goal is to disengage the modeler without efficiency
loss. We use a simple chromosome describing every parameters
on which the model is built. The experimental results obtained
demonstrate its feasibility: a self-adjustment of these parameters
bringing up good enough developmental trajectories.

I. INTRODUCTION

Goal-Babbling Exploration in developmental robotics has

recently become an intensive research field for sensory-motor

acquisition. Developmental robotics aims at defining models

of developmental mechanisms, allowing a full open-ended

incremental learning, compliant and resilient with a real

environment, leading to a staged growth of knowledge.

So far, for the vast majority, it still involves a benevolent

supervising human modeler, seeking to manually optimize

his own particular model parameters. Unfortunately this

assumption lacks credibility with the rest of the intrinsically

developmental paradigm, fundamentally self-organized.

What we propose in this article is basically asking these

developments from an evolutionary perspective to find out

efficient structural choices, endeavoring to consider the

following problem: how to disengage the modeler in order

to give priority to automated adaptation of motivational

processes? We answer by first highlighting the limitations of

the external modeling approach, showing possible specific

parameters of models for a given incarnation, and then

proposing a phylogenetic approach to solve it.

To complete the description of the article, we start by

recalling some preliminary background about goal-babbling

research and we finish by analyzing in silico experimental

results1.

1This work was realized with the support of HPC@LR, High-Performance
Computing Center in Languedoc-Roussillon, France.

II. GOAL-BABBLING EXPLORATION FOR REACHING

PROBLEM

A. Goal-Babbling Exploration

Goal-babbling has become a new research field within

the last five years. Historically the goal-babbling approach

originates from the need to improve inverse models learning

for any kind of embodiment through self-exploration. This

qualifies the reaching problem, which consists, for example,

in moving a robot arm so as to reach a desired target. It

remains strongly associated with the developmental robotics

field which considers a robot to be seen as pro-active in its

own learning process [10], [1].

At the very beginning, researchers discovered a simple way

to explore affordances that is generating motor commands

to get information so that the agent would be able to build

an inverse control model of its particular embodiment. This

first step is usually referred as Motor-Babbling Exploration

(MBE). First works proposed an exploration through

randomly generated motor commands, then heuristically

guided algorithms appeared to guide the agent by accounting

for its weaknesses. For instance, [12] are architectured around

a MBE approach that is an agent exploring its motor space

M being driven by the improvement of predictions of couples

〈motor command, sensory effect〉.
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Fig. 1. Illustration of the redundancy within the (surjective) mapping
between the motor space M and the goal space G. It also shows possible
volume dissimilarity between some motor subspaces and their observable
consequences in the goal space.
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It has since been underlined that exploring a goal space

G instead of a motor space M leads to more efficient

learning experience. This approach represents the so-called

Goal-Babbling Exploration (GBE) [2]. The main reason of its

important interest is the fact that the agent must learn sensory-

motor coordinations in a redundant and high-dimensional

motor space in which many different motor commands might

result in a sole effect in goal space (cf. figure 1). This means

that exploring the huge number of combinations of commands

for every actuators cannot be fairly well considered as the right

choice given the rather short lifetime of any learning agent

[14]. Moreover, it appeared that this computational evidence

has also been validated by works in infant developmental

psychology: [17], [4]. Recent works investigated bootstrapping

approach for coordination skills without pre-specifying, or

even representing, a set of goals [13].

B. FIMO: Framework for Intrinsic Motivation

We developped a generic Framework for Intrinsic

Motivation. It aims at unifying both individual and collective

needs to provide a shared experimental frame. It allows to

introduce new ideas, implement them and moreover to test

their efficiency according to a common experimental protocol

[8]. Beyond, FIMO holds advantages like its numerous

configurable options and the multiple embodiments available.

Within this framework, one can run reproducible experiments

using specific parameters configuration, and write easily

comparison tests for them. The visualization module allows

to observe and study experimental differences.

In this framework, an agent is involved in a long-term

developmental learning loop, driven by a progress-based

metric of interest. Detailed information about model and

algorithm is available in previous publications [7], [8]. From

an algorithmic point of view, this model is based on two

independant kinds of data: raw data and structuring data.

Raw data represent every low-level sensorimotor transitions

experienced by the agent. These are tuples that represent a

transition from a start state st to a final state st+1 via a motor

command mt. They are used to compute motor commands to

execute for reaching a goal.
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Fig. 2. Graphical explanation of how the agent tries to reach a goal γ
t,

starting from s
t, using q sequential attempts.

Structuring data represent high-level experimentations for

driving space exploration using the notion of competence

progress. These are tuples composed of a start state st, a

final state st+q , a goal state γt. We can compute the final

distance d between st+q and γt, as illustrated on figure 2,

and an associated competence value κt. These experiments

are anchored in a unique region of the exploration space

according to the goal location, and are used to compute the

interest value of this particular region.

The model describes three nested loops (cf. figure 3).

The first one, indicated by the word Beginning, consists in

generating a particular sensory configuration as a goal. The

second one operates so as to try reaching this goal in q attempts

(cf. figure 2). After every motor command has been computed

and executed, the system broaden its raw data collection. When

the goal is considered reached or the agent runs out of reaching

attempts, the process goes back to the first level. When a

reaching attempt is considered too bad, a third inner loop takes

control and leads a local exploration learning phase, in order

to acquire p new transitions from the location really reached

and thus improve next trial.

Environment

Computing

competence κ
t

Computing

motor action

Local learning

of p new raw data

Reaching goal

in q attempts

Generating goal

Sensors Motors

Beginning

Fig. 3. Algorithmic architecture of the motivational model, composed of
three nested loops: goal generation, reaching attempts and local learning.

Unfortunately, contrary to developmental philosophy pro-

moted by this high-level architecture, we must face some low-

level manual adjustments.



III. MOTIVATIONS AND PROBLEM

In this section, we first describe particular application of

the FIMO framework to a simulated robotic arm. We then

lead parametric studies on previously presented parameters:

the maximum number of attempts to reach a goal (q) and the

number of local exploration in learning loop (p).

A. Application to robotic arm

We used for our experiments a simulated setup typically

used – in particular in [2], [3] – to test intrinsic motivation

algorithm: a robotic arm. The figure 4 illustrates this setup:

15 joints moving 15 equal lengths limbs; θi represent angles

of each joint, relatively to θi−1.

The objective is to let the robot discover its own operational

space and automatically learn to control its arm in order

to be able to reach any specific location, i.e. finding motor

commands that move its end-effector st towards a particular

location γt.
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Fig. 4. Schematic representation of a 15 joints robotic arm setup, with equal
limbs lengths, moving in 2D space.

B. Parametric study

We faced the classical problem of adjusting these parameters

without really being able to predict the consequences. Using

our experimental FIMO framework, we can easily lead

a parametric study. We propose here to focus on two

parameters: exploration trials (p) and max reaching trials (q),

as referenced in figure 3.

Monitoring the evolution of the learning progress through

time exhibits a particular developmental trajectory. A curve is

composed of the consecutive results for regular examinations.

More precisely, an examination is constituted with a set of

questions uniformly distributed over the real reachable goal

space. A result represents the average distance d to a subset

of representative reachable goals (cf. figure 2).

Figures 5 and 6 show different developmental trajectories,

where each curve is the average result of 10 runs. X-axis

represents the number of motor commands, i.e. motor

actions. Y-axis is average distance to questions. AUC is an

performance indicator (cf. section IV-C).

Fig. 5. Experimental results for the number of exploration trials: p = 0, i.e.
disabling exploration phase (blue) and p = 5 (green).

The first studied parameter relates to local learning phase

and represents the number p of new transitions to be acquired

from the current state. The figure 5 demonstrates clearly

importance of such mechanism. Without exploration (p = 0),

results show bad average distance to the goal of 31.06, while

for p = 5 average distance equals 7.22, more than 4 times

better.

The second one relates to reaching phase and represents

the quota q of actions allowed to reach the generated goals.

In figure 6, contrary to previous one, every curve exhibits

similar behavior: quick decreasing and then plateau. Thus,

it is complicated to explain the possible influence of such

parameter. Given that the aim of this article is not to analyze

deeply the algorithm, we want here to emphasize the difficulty

to find out the good values.

We introduced in this section only two parameters among

more than ten. For instance, we tested different values

of the threshold of competence for considering a goal as

reached. The presence of so many parameters makes the

task of the human tedious. Moreover, this difficulty comes

at least from interrelationships characterizing some subsets

of parameters required for loop instantiation. These potential

interrelationships between parameters governing the system



Fig. 6. Experimental results for the quota of reaching attempts: q = 1,
q = 2, q = 3, q = 5, q = 10 and q = 20.

may lead to qualify such a system as being complex.

Furthermore, experimenting two different embodiments

with the same settings of the main loop implies getting

different results or developmental trajectories. This is

absolutely not a side-effect but a requirement as we wanted

the sensory-motor learning loop to be as generic as possible

in order to guide any embodied agent towards experimenting

its very own affordant sensory-motor coordinations.

Therefore we propose to use an evolutionary approach for

GBE model, in order to perform an automatic human-free

parameters adjustement.

IV. EVOFIMO: EXPERIMENTAL RESULTS

In this section we present the experimental results by

evolving parameters on a robotic arm. We integrated this new

evolutionary perspective in our framework FIMO2, so that we

can call it EvoFIMO. The basic evolutionary part is delegated

to a library called pyevolve. There are many advantages to

use this existing piece of software, including facts like: it is

written in pure Python like our framework; we can export

and visualize easily the evolution statistics through graphs;

and more importantly it is open-source.

Evolutionary approaches represent a set of methods and

techniques allowing to evolve a population of agents in order

to fit them to some point. It has been largely applied to robotics

within the last twenty years [11]. But for what concerns us

more specifically, there are very few existing relative works

[15], [16].

2The Python open source code of the framework is available at https://
info-depot.lirmm.fr/republic/fimo (public cloning repository) released under
GNU GPLv3 license.

A. Principle of evolutionary approach

The first step in evolutionary approaches is the creation of

an initial population of solutions for the problem, and then

evolve this population along multiple generations. The idea is

to improve the solutions taking the best characteristics found

in selected parents, and keep this process running until certain

stopping criterion is reached and an appropriate solution is

obtained.

B. Chromosome

Practically, our chromosome is composed of 13 parameters

we want to evolve – as showed in figure 7 – represented as

a simple vector. The first two ones are q and p as already

explained in previous section. The rest of the chromosome

represent other parameters that came up from the previous

parametric study we led.

C. Fitness function

As fitness function, we use a numerical integration

technique to approximate the Area Under the learning Curve

of any particular experimental run. The figure 8 illustrates the

difference between two developmental trajectories and their

respective AUC values. This value constitutes a pretty good

hint of an agent’s developmental trajectory and performance.

With same final examination average distances, we can

distinguish different behaviors over time.

exam value

motor commands (#)

AUC=80

AUC=110

Fig. 8. Illustration of Area Under Curve performance indicator, where every
dotted line represents a particular exam.

We chose to perform 3 runs, each one during 1500 motor

commands, in order to compute the average value of AUC for

evaluating each individual.

http://pyevolve.sourceforge.net/intro.html
https://info-depot.lirmm.fr/republic/fimo
https://info-depot.lirmm.fr/republic/fimo
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Fig. 7. Chromosomes structure with range values.

D. Population

An initial population of size 10 is generated in a random

way by choosing values in different ranges for each parameter,

as indicated on figure 7.

We evolve this initial population along 100 generations.

The elitism replacement value is 1, which means that we

keep the best individual as it is, and generate the others by

crossover. To select individuals, we use classical roulette wheel

mechanism. The crossover rate is 80%, which means that

any new individual results from two parents, each of them

contributing respectively with 11 and 2 values. We didn’t need

any repair mechanism. These values are default ones proposed

by pyevolve package.

E. First results

Figure 9 shows the fitness evolution of the population over

generations. A preliminary observation is the relatively large

distribution of the initial population (standard deviation is

91.67) underlining the difficulty of adjusting parameters, as

we pointed out in the section III-B.

Fig. 9. Fitness evolution for parameters, where raw scores represent AUC
values.

What matters is the life-saving decrease of the fitness func-

tion from an initial range [139; 375] to a final range [65; 120].
The final average value equals 101.2, which is equivalent

to average AUC value for human adjustment, in figure 6.

Moreover, the best self-adjusted individual found (65.00) is

better than both human-based configuration proposed (82.46)

and any results from all our parametric study. This first result

tends to show the interest of this self-adjustment procedure,

despite the CPU time requirement (19937 seconds as total

elapsed time). The next steps should be to use meta-parameter

optimization methods to improve the overall process as pro-

posed and experimented in [5], [6]. Moreover, in a practical

way, we could think of alternating in silico optimization and

real robotic phases in order to decrease the time needed to

improve any considered developmental robot.

F. Perspectives

Following the same credo we are working on experimenting

other criteria to evolve. For instance on the same level, we

are interested in experimenting morphological evolution (e.g.

arrangement of limbs length, number of limbs for robotic

arm) to mimic natural selection.

On another higher level, we are also studying other chro-

mosome structures for using genetic programming [9]. Indeed,

apart from the numeric parameters, the model is built on

specific mathematically defined metrics that also could be

self-adjusted. For instance, the metric we use to compute

competence is:

κt =

∥

∥st+q − γt
∥

∥

∥

∥st − γt
∥

∥

It would be represented as evolvable tree chromosome as

described on figure 10.

/

∥

∥ . . .
∥

∥

−

st+q γt

∥

∥ . . .
∥

∥

−

st γt

Fig. 10. Example of tree-based metric chromosome.



V. CONCLUSION

Throughout this paper, we proposed an innovative

evolutionary perspective for Goal-Babbling Exploration. Our

leitmotiv is that we need a generic motivational loop, whose

overall operation is to push the agent towards reaching goals

in accordance with its current level, experience and learning

progress margin.

Furthermore, the exact need for different embodiments

may obviously be different in order to reveal its very own

affordances and improve its very own learning progression.

Hence it follows quite naturally to try imitating of natural

selection in order to fit some particular aspects that may

impact the generic loop for a specific embodiment in an

evo-devo perspective.

We propose a start for disengaging the benevolent

supervising human modeler by self-adjusting parameters. The

experiments exhibited results at least as efficient as manually

defined configurations.
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