ON A CLASS OF NONLINEAR ELLIPTIC, ANISOTROPIC SINGULAR PERTURBATIONS PROBLEMS

Ogabi Chokri

- To cite this version:

Ogabi Chokri. ON A CLASS OF NONLINEAR ELLIPTIC, ANISOTROPIC SINGULAR PERTUR-
BATIONS PROBLEMS. 2014. hal-01074262

HAL Id: hal-01074262

https://hal.science/hal-01074262

Preprint submitted on 14 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON A CLASS OF NONLINEAR ELLIPTIC, ANISOTROPIC SINGULAR PERTURBATIONS PROBLEMS

OGABI CHOKRI

Academie de Grenoble, 38000. Grenoble. France

Abstract

In this article we study the asymptotic behavior, as $\epsilon \rightarrow 0$, of the solution of a nonlinear elliptic, anisotropic singular perturbations problem in cylindrical domain, the limit problem is given and strong convergences are proved, we also give an application to intergo-differential problems.

1. Description of the problem and main theorems

The aim of this manuscript is to analyze nonlinear diffusion problems when the diffusion coefficients in certain directions are going towards zero. We consider a general nonlinear elliptic singularly perturbed problem which can be considered as a generalization to some class of integro-differential problem (see [3]), let us begin by describing the linear part of the problem as given in [2] and [3]. For $\Omega=\omega_{1} \times \omega_{2}$ a bounded cylindrical domain of $\mathbb{R}^{N}(N \geq 2)$ where ω_{1}, ω_{2} are Lipschitz domains of \mathbb{R}^{p} and \mathbb{R}^{N-p} respectively, we denote by $x=\left(x_{1}, \ldots, x_{N}\right)=\left(X_{1}, X_{2}\right)$ the points in \mathbb{R}^{N} where

$$
X_{1}=\left(x_{1}, \ldots, x_{p}\right) \in \omega_{1} \text { and } X_{2}=\left(x_{p+1}, \ldots, x_{N}\right) \in \omega_{2}
$$

i.e. we split the coordinates into two parts. With this notation we set

$$
\nabla=\left(\partial_{x_{1}}, \ldots, \partial_{x_{N}}\right)^{T}=\binom{\nabla_{X_{1}}}{\nabla_{X_{2}}}
$$

where

$$
\nabla_{X_{1}}=\left(\partial_{x_{1}}, \ldots, \partial_{x_{p}}\right)^{T} \text { and } \nabla_{X_{2}}=\left(\partial_{x_{p+1}}, \ldots, \partial_{x_{N}}\right)^{T}
$$

To make it simple we use this abuse of notation

$$
\nabla_{X_{i}} u \in L^{2}(\Omega) \text { instead of } \nabla_{X_{i}} u \in\left[L^{2}(\Omega)\right]^{p ; N-p} \text { for a function } u
$$

Let $A=\left(a_{i j}(x)\right)$ be a $N \times N$ symmetric matrix which satisfies the ellipticity assumption

$$
\exists \lambda>0: A \xi \cdot \xi \geq \lambda|\xi|^{2} \forall \xi \in R^{N} \text { for a.e } x \in \Omega
$$

and

$$
\begin{equation*}
a_{i j}(x) \in L^{\infty}(\Omega), \forall i, j=1,2, \ldots, N \tag{1}
\end{equation*}
$$

[^0]where "." is the canonical scalar product on R^{N}. We decompose A into four blocks
\[

A=\left($$
\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}
$$\right)
\]

where A_{11}, A_{22} are respectively $p \times p$ and $(N-p) \times(N-p)$ matrices. For $0<\epsilon \leq 1$ we set

$$
A_{\epsilon}=\left(\begin{array}{cc}
\epsilon^{2} A_{11} & \epsilon A_{12} \\
\epsilon A_{21} & A_{22}
\end{array}\right)
$$

then we have therefore, for a.e. $x \in \Omega$ and every $\xi \in R^{N}$

$$
\begin{align*}
A_{\epsilon} \xi \cdot \xi & \geq \lambda\left(\epsilon^{2}\left|\overline{\xi_{1}}\right|^{2}+\left|\overline{\xi_{2}}\right|^{2}\right) \geq \lambda \epsilon^{2}|\xi|^{2} \forall \xi \in R^{N} \tag{2}\\
\text { and } A_{22} \overline{\xi_{2}} \cdot \overline{\xi_{2}} & \geq \lambda\left|\overline{\xi_{2}}\right|^{2}
\end{align*}
$$

where we have set

$$
\xi=\left(\overline{\overline{\xi_{1}}} \overline{\xi_{2}}\right)
$$

with,

$$
\overline{\xi_{1}}=\left(\xi_{1}, \ldots ., \xi_{p}\right)^{T} \text { and } \overline{\xi_{2}}=\left(\xi_{p+1}, \ldots ., \xi_{N}\right)^{T}
$$

And finally let $B: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ be a nonlinear locally-Liptchitz operator i.e, for every bounded set $E \subset L^{2}(\Omega)$ there exists $K_{E} \geq 0$ such that

$$
\begin{equation*}
\forall u, v \in E:\|B(u)-B(v)\|_{L^{2}(\Omega)} \leq K_{E}\|u-v\|_{L^{2}(\Omega)} \tag{3}
\end{equation*}
$$

,and B satisfies the growth condition

$$
\begin{equation*}
\exists r>2, M \geq 0, \forall u \in L^{2}(\Omega):\|B(u)\|_{L^{r}(\Omega)} \leq M\left(1+\|u\|_{L^{2}(\Omega)}\right) \tag{4}
\end{equation*}
$$

We define the space

$$
V=\left\{u \in L^{2}(\Omega): \nabla_{X_{1}} u \in L^{2}(\Omega)\right\}
$$

Moreover we suppose that for every $E \subset V$ bounded in $L^{2}(\Omega)$ we have

$$
\begin{equation*}
\overline{\operatorname{conv}}\{B(E)\} \subset V, \tag{5}
\end{equation*}
$$

where $\overline{\operatorname{conv}}\{B(E)\}$ is the closed convex hull of $B(E)$ in $L^{2}(\Omega)$.This last condition is the most crucial, it will be used in the proof of the interior estimates and the convergence theorem.

For $\beta>M|\Omega|^{\frac{1}{2}-\frac{1}{r}}$ we consider the problem

$$
\left\{\begin{array}{l}
\int_{\Omega} A_{\epsilon} \nabla u_{\epsilon} \cdot \nabla \varphi d x+\beta \int_{\Omega} u_{\epsilon} \varphi d x=\int_{\Omega} B\left(u_{\epsilon}\right) \varphi d x, \forall \varphi \in \mathcal{D}(\Omega) \tag{6}\\
u_{\epsilon} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

The existence of u_{ϵ} will be proved in the next section, Now, passing to the limit $\epsilon \rightarrow 0$ formally in (6) we obtain the limit problem

$$
\begin{equation*}
\int_{\Omega} A_{22} \nabla_{X_{2}} u_{0} \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} u_{0} \varphi d x=\int_{\Omega} B\left(u_{0}\right) \varphi d x, \forall \varphi \in \mathcal{D}(\Omega) \tag{7}
\end{equation*}
$$

Our goal is to prove that u_{0} exists and it satisfies (7), and give a sense to the formal convergence $u_{\epsilon} \rightsquigarrow u_{0}$, actually we would like to obtain convergence in $L^{2}(\Omega)$. We refer to [2] for more details about the linear theory of problem (6). However the nonlinear theory is poorly known, a monotone problem has been solved in [4] (using monotonicity argument), and also a case where B is represented by an integral operator has been studied in [3] (in the last section of this paper, we shall give an application to integro-differential problems). Generally, in singular perturbation problems for PDEs, a simple analysis of the problem gives only weak convergences, and often it is difficult to prove strong convergence, the principal hardness is the passage to the limit in the nonlinear term. In this article we expose a resolution method based on the use of several approximated problems involving regularization with compact operators and truncations. Let us give the main results.
Theorem 1. (Existence and L^{r}-regularity of solutions) Assume (1), (2), (4), and that B is continuous on $L^{2}(\Omega)$ (not necessarily locally-Lipschitz) then (6) has at least a solution $u_{\epsilon} \in H_{0}^{1}(\Omega)$. Moreover, if $u_{\epsilon} \in H_{0}^{1}(\Omega)$ is a solution to (6) then $\left\|u_{\epsilon}\right\|_{L^{r}(\Omega)} \leq \frac{M}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}$ for every $\epsilon>0$.

For the convergence theorem and the interior estimates we need the following assumption

$$
\begin{equation*}
\partial_{k} A_{22}, \partial_{i} a_{i j}, \partial_{j} a_{i j} \in L^{\infty}(\Omega) \quad k=1, \ldots, p, \quad i=1, \ldots, p, \quad j=p+1, \ldots, N \tag{8}
\end{equation*}
$$

Theorem 2. (Interior estimates) Assume (1), (2), (3), (4), (5), (8). Let $\left(u_{\epsilon}\right) \subset$ $H_{0}^{1}(\Omega)$ be a sequence of solutions to (6) then for every open set $\Omega^{\prime} \subset \subset \Omega$ (i.e $\overline{\Omega^{\prime}} \subset \Omega$) there exists $C_{\Omega^{\prime}} \geq 0$ (independent of ϵ) such that

$$
\forall \epsilon:\left\|u_{\epsilon}\right\|_{H^{1}\left(\Omega^{\prime}\right)} \leq C_{\Omega^{\prime}}
$$

Theorem 3. (The convergence theorem) Assume (1), (2), (3), (4), (5), (8). Let $\left(u_{\epsilon}\right) \subset H_{0}^{1}(\Omega)$ be a sequence of solutions to (6) then there exists a subsequence $\left(u_{\epsilon_{k}}\right)$ and $u_{0} \in H_{l o c}^{1}(\Omega) \cap L^{2}(\Omega)$ such that $: \nabla_{X_{2}} u_{0} \in L^{2}(\Omega)$ and

$$
u_{\epsilon_{k}} \rightarrow u_{0}, \nabla_{X_{2}} u_{\epsilon_{k}} \rightarrow \nabla_{X_{2}} u_{0} \text { in } L^{2}(\Omega) \text { strongly as } \epsilon_{k} \rightarrow 0
$$

and for a.e X_{1} we have $u_{0}\left(X_{1},.\right) \in H_{0}^{1}\left(\omega_{2}\right)$, and

$$
\begin{align*}
& \int_{\omega_{2}} A_{22} \nabla_{X_{2}} u_{0}\left(X_{1}, .\right) \cdot \nabla_{X_{2}} \varphi d X_{2}+\beta \int_{\omega_{2}} u_{0}\left(X_{1}, .\right) \varphi d X_{2} \\
= & \int_{\omega_{2}} B\left(u_{0}\right)\left(X_{1}, .\right) \varphi d X_{2}, \quad \forall \varphi \in \mathcal{D}\left(\omega_{2}\right) \tag{9}
\end{align*}
$$

Corollary 1. If problem (9) has a unique solution (in the sense of theorem 3) then the convergences given in the previous theorem hold for the whole sequence $\left(u_{\epsilon}\right)$.
Proof. The proof is direct, let $\left(u_{\epsilon}\right)$ be a sequence of solutions to (6) and suppose that u_{ϵ} does not converge to $u_{0}($ as $\epsilon \rightarrow 0)$ then there exists a subsequence $\left(u_{\epsilon_{k}}\right)$ and $\delta>0$ such that $\forall \epsilon_{k},\left\|u_{\epsilon_{k}}-u_{0}\right\|_{L^{2}(\Omega)}>\delta$ or $\left\|\nabla_{X_{2}}\left(u_{\epsilon_{k}}-u_{0}\right)\right\|_{L^{2}(\Omega)}>\delta$. By theorem 3 one can extract a subsequence of ($u_{\epsilon_{k}}$) which converges to some u_{1} in the sense of theorem $\mathbf{3}$, assume that (9) has a unique solution then $u_{1}=u_{0}$.and this contradicts the previous inequalities.

In the case of non-uniqueness we can reformulate the convergences, given in the previous theorem, using $\epsilon-$ nets like in [3]. Let us recall the definition of $\epsilon-$ nets ([3])

Definition 1. Let (X, d) be metric space, Y, Y^{\prime} two subsets of X, then we say that Y is an ϵ - net of Y^{\prime}, if for every $x \in Y^{\prime}$ there exists an $a \in Y$ such that

$$
d(x, a)<\epsilon
$$

We define the following space introduced in [3]

$$
W=\left\{u \in L^{2}(\Omega): \nabla_{X_{2}} u \in L^{2}(\Omega), \text { and for a.e } X_{1}, u\left(X_{1}, .\right) \in H_{0}^{1}\left(\omega_{2}\right)\right\},
$$

equipped with the Hilbertian norm (see [3])

$$
\|u\|_{W}^{2}=\|u\|_{L^{2}(\Omega)}^{2}+\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)}^{2}
$$

Now we can give Theorem 3 in the following form
Theorem 4. Under assumptions of theorem 3 then Ξ, the set of solutions of (9) in W, is non empty and we have $\Xi \cap H_{l o c}^{1}(\Omega) \neq \varnothing$, and moreover for every $\eta>0$, there exists $\epsilon_{0}>0$ such that Ξ is an $\eta-$ net of $\Xi_{\epsilon_{0}}$ in W where

$$
\Xi_{\epsilon_{0}}=\left\{u_{\epsilon} \text { solution to (6) for } 0<\epsilon<\epsilon_{0}\right\}
$$

Proof. Theorem 1 and 3 ensure that $\Xi \cap H_{l o c}^{1}(\Omega) \neq \varnothing$. For the η - net convergence, let us reasoning by contradiction, then there exists $\eta>0$ and a sequence $\epsilon_{k} \rightarrow 0$ such that Ξ is not an η - net of $\Xi_{\epsilon_{k}}$ in W for every k (remark that $\Xi_{\epsilon_{k}} \neq \varnothing$ by Theorem 1) in other words there exists a sequence $\left(u_{\epsilon_{k}^{\prime}}\right)$ with $\epsilon_{k}^{\prime} \rightarrow 0$ such that for every $u_{0} \in \Xi$ we have $\left\|u_{\epsilon_{k}^{\prime}}-u_{0}\right\|_{W} \geq \eta$, according to theorem 3 there exists a subsequence of $\left(u_{\epsilon_{k}^{\prime}}\right)$ which converges to some $u_{0} \in \Xi$ in W and this contradicts the previous inequality.

2. Existence and L^{r} - regularity For the solutions and weak CONVERGENCES

2.1. Existence and L^{r} - regularity. In this subsection we prove Theorem 1, we start by the following result on the L^{r} - regularity for the solutions

Proposition 1. Assume (1), (2), (4) then if $u_{\epsilon} \in H_{0}^{1}(\Omega)$ is a solution to (6) then $u_{\epsilon} \in L^{r}(\Omega)$ and $\left\|u_{\epsilon}\right\|_{L^{r}(\Omega)} \leq \frac{M}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}$ for every $\epsilon>0$

Proof. We will proceed as in [1]. Let $u_{\epsilon} \in H_{0}^{1}(\Omega)$ be a solution to (6), given $g \in \mathcal{D}(\Omega)$ and let $w_{\epsilon} \in H_{0}^{1}(\Omega)$ be the unique solution to the linear problem

$$
\begin{equation*}
\int_{\Omega} A_{\epsilon} \nabla w_{\epsilon} \cdot \nabla \varphi d x+\beta \int_{\Omega} w_{\epsilon} \varphi d x=\int_{\Omega} g \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega), \tag{10}
\end{equation*}
$$

the existence of w_{ϵ} follows by the Lax-Milgram theorem (thanks to assumptions (1), (2)).

Take u_{ϵ} as a test function and using the symmetry of A_{ϵ} we get

$$
\begin{aligned}
\int_{\Omega} u_{\epsilon} g d x & =\int_{\Omega} A_{\epsilon} \nabla w_{\epsilon} \cdot \nabla u_{\epsilon} d x+\beta \int_{\Omega} w_{\epsilon} u_{\epsilon} d x \\
& =\int_{\Omega} A_{\epsilon} \nabla u_{\epsilon} \cdot \nabla w_{\epsilon} d x+\beta \int_{\Omega} w_{\epsilon} u_{\epsilon} d x \\
& =\int_{\Omega} B\left(u_{\epsilon}\right) w_{\epsilon} d x
\end{aligned}
$$

Given s such that $\frac{1}{r}+\frac{1}{s}=1$, then by (4) we obtain

$$
\begin{equation*}
\left|\int_{\Omega} u_{\epsilon} g d x\right| \leq M\left(1+\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)}\right)\left\|w_{\epsilon}\right\|_{L^{s}(\Omega)} \tag{11}
\end{equation*}
$$

Now we have to estimate $\left\|w_{\epsilon}\right\|_{L^{s}(\Omega)}$. Let $\rho \in C^{1}(\mathbb{R}, \mathbb{R})$, such that $\rho(0)=0$ and $\rho^{\prime} \geq 0$ and $\rho^{\prime} \in L^{\infty}$ then $\rho\left(w_{\epsilon}\right) \in H_{0}^{1}(\Omega)$, take $\rho\left(w_{\epsilon}\right)$ as a test function in (10) we get

$$
\int_{\Omega} \rho^{\prime}\left(w_{\epsilon}\right) A_{\epsilon} \nabla w_{\epsilon} \cdot \nabla w_{\epsilon} d x+\beta \int_{\Omega} w_{\epsilon} \rho\left(w_{\epsilon}\right) d x=\int_{\Omega} g \rho\left(w_{\epsilon}\right) d x
$$

Now, using ellipticity assumption (2) we derive

$$
\lambda\left(\int_{\Omega} \rho^{\prime}\left(w_{\epsilon}\right)\left|\epsilon \nabla_{X_{1}} w_{\epsilon}\right|^{2} d x+\int_{\Omega} \rho^{\prime}\left(w_{\epsilon}\right)\left|\nabla_{X_{2}} w_{\epsilon}\right|^{2} d x\right)+\beta \int_{\Omega} w_{\epsilon} \rho\left(w_{\epsilon}\right) d x \leq \int_{\Omega} g \rho\left(w_{\epsilon}\right) d x
$$

Thus

$$
\beta \int_{\Omega} w_{\epsilon} \rho\left(w_{\epsilon}\right) d x \leq \int_{\Omega} g \rho\left(w_{\epsilon}\right) d x
$$

Assume that $\forall x \in \mathbb{R}:|\rho(x)| \leq|x|^{\frac{1}{r-1}}$, so that $|\rho(x)|^{r} \leq|x||\rho(x)|=x \rho(x)$ then, we obtain

$$
\begin{aligned}
\beta \int_{\Omega} w_{\epsilon} \rho\left(w_{\epsilon}\right) d x & \leq\|g\|_{L^{s}(\Omega)}\left(\int_{\Omega}\left|\rho\left(w_{\epsilon}\right)\right|^{r} d x\right)^{\frac{1}{r}} \\
& \leq\|g\|_{L^{s}(\Omega)}\left(\int_{\Omega} w_{\epsilon} \rho\left(w_{\epsilon}\right) d x\right)^{\frac{1}{r}}
\end{aligned}
$$

then

$$
\beta\left(\int_{\Omega} w_{\epsilon} \rho\left(w_{\epsilon}\right)\right)^{\frac{1}{s}} \leq\|g\|_{L^{s}(\Omega)}
$$

Now, for $\delta>0$ taking $\rho(x)=x\left(x^{2}+\delta\right)^{\frac{s-2}{2}}$ we show easily that ρ satisfies the above assumptions, so we obtain

$$
\beta\left(\int_{\Omega} w_{\epsilon}^{2}\left(w_{\epsilon}^{2}+\delta\right)^{\frac{s-2}{2}}\right)^{\frac{1}{s}} \leq\|g\|_{L^{s}(\Omega)}
$$

let $\delta \rightarrow 0$ by Fatou's lemma we get

$$
\beta\left\|w_{\epsilon}\right\|_{L^{s}(\Omega)} \leq\|g\|_{L^{s}(\Omega)}
$$

Finally by (11) we get

$$
\left|\int_{\Omega} u_{\epsilon} g d x\right| \leq \frac{M\left(1+\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)}\right)}{\beta}\|g\|_{L^{s}(\Omega)}
$$

By density we can take $g \in L^{s}(\Omega)$ and therefore by duality we get

$$
\left\|u_{\epsilon}\right\|_{L^{r}(\Omega)} \leq \frac{M\left(1+\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)}\right)}{\beta}
$$

hence by Holder's inequality we obtain

$$
\left\|u_{\epsilon}\right\|_{L^{r}(\Omega)} \leq \frac{M}{\beta}+\frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta}\left\|u_{\epsilon}\right\|_{L^{r}(\Omega)}
$$

then

$$
\left\|u_{\epsilon}\right\|_{L^{r}(\Omega)} \leq \frac{M}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}
$$

Now, it remains to prove the existence of u_{ϵ}, the proof is based on the Schauder fixed point theorem. Let $v \in L^{2}(\Omega)$ and $v_{\epsilon} \in H_{0}^{1}(\Omega)$ be the unique solution to the linearized problem

$$
\begin{equation*}
\int_{\Omega} A_{\epsilon} \nabla v_{\epsilon} \cdot \nabla \varphi d x+\beta \int_{\Omega} v_{\epsilon} \varphi d x=\int_{\Omega} B(v) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega) \tag{12}
\end{equation*}
$$

The existence of v_{ϵ} follows by the Lax-Milgram theorem (thanks to assumptions (1), (2)). Let $\Gamma: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ be the mapping defined by $\Gamma(v)=v_{\epsilon}$. We prove that Γ is continuous, fix $v \in L^{2}(\Omega)$ and let $v_{n} \rightarrow v$ in $L^{2}(\Omega)$, we note $v_{\epsilon}^{n}=\Gamma\left(v_{n}\right)$ then we have

$$
\int_{\Omega} A_{\epsilon} \nabla\left(v_{\epsilon}^{n}-v_{\epsilon}\right) \cdot \nabla \varphi d x+\beta \int_{\Omega}\left(v_{\epsilon}^{n}-v_{\epsilon}\right) \varphi d x=\int_{\Omega}\left(B\left(v_{n}\right)-B(v)\right) \varphi d x, \forall \varphi \in \mathcal{D}(\Omega)
$$

Take $\left(v_{\epsilon}^{n}-v_{\epsilon}\right)$ as a test function, estimating using ellipticity assumption (2) and Holder's inequality we get

$$
\beta\left\|v_{\epsilon}^{n}-v_{\epsilon}\right\|_{L^{2}(\Omega)} \leq\left\|B\left(v_{n}\right)-B(v)\right\|_{L^{2}(\Omega)} .
$$

Passing to the limit as $n \rightarrow \infty$ and assume that B is continuous, then the continuity of Γ follows. Now, we define the set

$$
S=\left\{v \in H_{0}^{1}(\Omega):\|\nabla v\|_{L^{2}(\Omega)} \leq \frac{\sqrt{\beta}}{\epsilon \sqrt{2 \lambda}}\left(\frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right) \text { and }\|v\|_{L^{2}(\Omega)} \leq \frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right\}
$$

It is clear that S is a convex bounded set in $H_{0}^{1}(\Omega)$ and it is closed in $L^{2}(\Omega)$, then S is compact in $L^{2}(\Omega)$ (thanks to the compact Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$). Let us check that S is stable by Γ. For $v \in S$, taking $\varphi=v_{\epsilon}$ in (12) and estimating using ellipticity assumption (2) and Hölder's inequality we get

$$
\lambda \epsilon^{2}\left\|\nabla v_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+\beta\left\|v_{\epsilon}\right\|_{L^{2}(\Omega)}^{2} \leq\|B(v)\|_{L^{2}(\Omega)}\left\|v_{\epsilon}\right\|_{L^{2}(\Omega)}
$$

then by Young's inequality we derive

$$
\lambda \epsilon^{2}\left\|\nabla v_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+\beta\left\|v_{\epsilon}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{2 \beta}\|B(v)\|_{L^{2}(\Omega)}^{2}+\frac{\beta}{2}\left\|v_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}
$$

and (4) gives

$$
\begin{aligned}
\lambda \epsilon^{2}\left\|\nabla v_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+\frac{\beta}{2}\left\|v_{\epsilon}\right\|_{L^{2}(\Omega)}^{2} & \leq \frac{|\Omega|^{1-\frac{2}{r}}\left(M+M\|v\|_{L^{2}(\Omega)}\right)^{2}}{2 \beta} \\
& \leq \frac{|\Omega|^{1-\frac{2}{r}}\left(M+\frac{M^{2}|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right)^{2}}{2 \beta} \leq \frac{\beta}{2}\left(\frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right)^{2},
\end{aligned}
$$

hence

$$
\left\{\begin{array}{c}
\left\|v_{\epsilon}\right\|_{L^{2}(\Omega)} \leq \frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}} \\
\left\|\nabla v_{\epsilon}\right\|_{L^{2}(\Omega)} \leq \frac{\sqrt{\beta}}{\epsilon \sqrt{2 \lambda}}\left(\frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right)
\end{array}\right.
$$

And therefore $v_{\epsilon}=\Gamma(v) \in S$. Whence, there exists at least a fixed point $u_{\epsilon} \in S$ for Γ, in other words u_{ϵ} is a solution to (6).
2.2. Weak convergences as $\epsilon \rightarrow 0$. Throughout this article we use the notations $\rightharpoonup, \rightarrow$ for weak and strong convergences of sequences respectively. Assume (1), (2), (4) and let $\left(u_{\epsilon}\right)$ be a sequence of solutions to (6), We begin by a simple analysis of the problem, considering problem (6) and taking $\varphi=u_{\epsilon} \in H_{0}^{1}(\Omega)$, by ellipticity assumption (2) we get

$$
\lambda\left(\int_{\Omega}\left|\epsilon \nabla_{X_{1}} u_{\epsilon}\right|^{2} d x+\int_{\Omega}\left|\nabla_{X_{2}} u_{\epsilon}\right|^{2} d x\right)+\beta \int_{\Omega} u_{\epsilon}^{2} d x \leq \int_{\Omega} B\left(u_{\epsilon}\right) u_{\epsilon} d x
$$

and Hölder's inequality gives

$$
\lambda \epsilon^{2}\left\|\nabla_{X_{1}} u_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+\lambda\left\|\nabla_{X_{2}} u_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+\beta\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|B\left(u_{\epsilon}\right)\right\|_{L^{2}(\Omega)}\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)}
$$

and therefore (4) and Proposition 1 give

$$
\lambda \epsilon^{2}\left\|\nabla_{X_{1}} u_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+\lambda\left\|\nabla_{X_{2}} u_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+\beta\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{M^{2}|\Omega|^{1-\frac{2}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\left(1+\frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right)
$$

Whence

$$
\left\{\begin{array}{c}
\left\|\epsilon \nabla_{X_{1}} u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq \frac{C}{\sqrt{\lambda}} \tag{13}\\
\left\|\nabla_{X_{2}} u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq \frac{C}{\sqrt{\lambda}} \\
\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq \frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}
\end{array}\right.
$$

,where $C^{2}=\frac{M^{2}|\Omega|^{1-\frac{2}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\left(1+\frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right)$. Remark that the gradient of u_{ϵ} is
not bounded uniformly in $H_{0}^{1}(\Omega)$ so we cannot obtain strong convergence (using Sobolev embedding for example) in $L^{2}(\Omega)$, however there exists a subsequence ($u_{\epsilon_{k}}$) and $u_{0} \in L^{2}(\Omega)$ such that: $u_{\epsilon_{k}} \rightharpoonup u_{0}, \nabla_{X_{2}} u_{\epsilon_{k}} \rightharpoonup \nabla_{X_{2}} u_{0}$ and $\epsilon_{k} \nabla_{X_{1}} u_{\epsilon_{k}} \rightharpoonup 0$ weakly in $L^{2}(\Omega)$ (we used weak compacity in $L^{2}(\Omega)$, and the continuity of the operator of derivation on $\left.\mathcal{D}^{\prime}(\Omega)\right)$. The function u_{0} constructed before represents a good candidate for solution to the limit problems (7),(9).
Corollary 2. We have $u_{0} \in L^{r}(\Omega)$.
Proof. Since ($u_{\epsilon_{k}}$) is bounded in $L^{r}(\Omega)$ then one can extract a subsequence noted always $\left(u_{\epsilon_{k}}\right)$ which converges weakly to some $u_{1} \in L^{r}(\Omega)$ and therefore $u_{\epsilon_{k}} \rightharpoonup u_{1}$ in $\mathcal{D}^{\prime}(\Omega)$, so $u_{1}=u_{0}$

$$
\text { 3. Interior estimates and } H_{l o c}^{1} \text { - regularity }
$$

For every $g \in V$ consider the linear problem (10), then one can prove the
Theorem 5. Assume (1), (2), (8) then for every $\Omega^{\prime} \subset \subset \Omega$ (i.e $\overline{\Omega^{\prime}} \subset \Omega$) there exists $C_{\Omega^{\prime}, g} \geq 0$ independent of ϵ such that

$$
\begin{equation*}
\forall \epsilon:\left\|v_{\epsilon}\right\|_{H^{1}\left(\Omega^{\prime}\right)} \leq C_{\Omega^{\prime}, g} \tag{14}
\end{equation*}
$$

Proof. The proof is the same as in [2] (see the rate estimations theorem in [2]), remark that the additional term βv_{ϵ} is uniformly bounded in $L^{2}(\Omega)$.

To obtain interior estimates for the nonlinear problem we use the well known Banach-Steinhaus's theorem

Theorem 6. (see [6]) Let Y and Z be two separated topological vector spaces, and let $\left(\mathcal{A}_{\epsilon}\right)$ be a family of continuous linear mappings from $Y \rightarrow Z, G$ is convex compact set in Y. Suppose that for each $x \in G$ the orbit $\left\{\mathcal{A}_{\epsilon}(x)\right\}_{\epsilon}$ is bounded in Z, then $\left(\mathcal{A}_{\epsilon}\right)$ is uniformly bounded on G, i.e. there exists a bounded F set in Z such that $\forall \epsilon, \mathcal{A}_{\epsilon}(G) \subset F$.

Now, we are ready to prove Theorem 2. Let $\left(\Omega_{j}\right)_{j \in \mathbb{N}},\left(\forall j: \overline{\Omega_{j}} \subset \Omega_{j+1}\right)$ be an open covering of Ω, so we can define a family $\left(p_{j}\right)_{j}$ of seminorms on $H_{l o c}^{1}(\Omega)$ by

$$
p_{j}(u)=\|u\|_{H^{1}\left(\Omega_{j}\right)} \text { for every } u \in H_{l o c}^{1}(\Omega)
$$

Set $Z=\left(H_{l o c}^{1}(\Omega),\left(p_{j}\right)_{j}\right)$, we can check easily that Z is a separated locally convex topological vector space where the topology is generated by the family of seminorms $\left(p_{j}\right)_{j}$, we also set $Y=L^{2}(\Omega)$. We define a family $\left(\mathcal{A}_{\epsilon}\right)_{\epsilon}$ of linear mappings from Y to Z by $\mathcal{A}_{\epsilon}(g)=v_{\epsilon}$ where v_{ϵ} is the unique solution to (10) (existence and uniqueness follows by Lax-Milgram, thanks to (1), (2)). $\forall \epsilon, \mathcal{A}_{\epsilon}: Y \rightarrow Z$ is continuous (we can check easily that $\mathcal{A}_{\epsilon}: Y \rightarrow H^{1}(\Omega)$ and the injection $H^{1}(\Omega) \hookrightarrow Z$ are continuous).

We note Z_{w}, Y_{w} the spaces Z and Y equipped with the weak topology, then for every $\epsilon, \mathcal{A}_{\epsilon}: Y_{w} \rightarrow Z_{w}$ is still continuous. Let $E=\left\{u \in V:\|u\|_{L^{2}(\Omega)} \leq \frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}}-\frac{1}{r}}\right\}$ and assume (5) then $G=\overline{\operatorname{conv}}\{B(E)\} \subset V$, it is clear that G is bounded in Y thus G is compact in Y_{w}. Recall that a set is bounded in a locally convex topological space if and only if the seminorms that generate the topology are bounded on this set, suppose (8) then according to (14) we have, for $g \in G,\left\{\mathcal{A}_{\epsilon}(g)\right\}_{\epsilon}$ is bounded in Z, and therefore $\left\{\mathcal{A}_{\epsilon}(g)\right\}_{\epsilon}$ is bounded in Z_{w} so by Theorem 6 there exists a bounded set F in Z_{w} (also note that F is also bounded in Z) such that $\forall \epsilon, \mathcal{A}_{\epsilon}(G) \subset F$. Now let $\left(u_{\epsilon}\right)$ be a sequence of solutions to (6), and assume in addition (3) and (4) then (13) gives $\left(u_{\epsilon}\right)_{\epsilon} \subset E$ whence $\left(B\left(u_{\epsilon}\right)\right)_{\epsilon} \subset G$, and therefore $\mathcal{A}_{\epsilon}\left(B\left(u_{\epsilon}\right)\right) \subset F$ for every ϵ, in other words we have

$$
\forall j, \exists C_{j} \geq 0 \text { such that } \forall \epsilon: p_{j}\left(\mathcal{A}_{\epsilon}\left(B\left(u_{\epsilon}\right)\right)\right) \leq C_{j}
$$

where C_{j} is independent of ϵ, and therefore

$$
\forall \epsilon, \forall j,\left\|u_{\epsilon}\right\|_{H^{1}\left(\Omega_{j}\right)} \leq C_{j}
$$

Now, given $\Omega^{\prime} \subset \subset \Omega$ then there exists j such that $\Omega^{\prime} \subset \Omega_{j}$ thus

$$
\begin{equation*}
\forall \epsilon,\left\|u_{\epsilon}\right\|_{H^{1}\left(\Omega^{\prime}\right)} \leq C_{j} \tag{15}
\end{equation*}
$$

Corollary 3. Let $\left(u_{\epsilon}\right) \subset H_{0}^{1}(\Omega)$ be a sequence of solutions to (6) such that $u_{\epsilon} \rightharpoonup$ u_{0} in $L^{2}(\Omega)$ weakly, then under assumptions of Theorem 2 we have, $u_{0} \in H_{l o c}^{1}(\Omega)$

Proof. take $\Omega^{\prime} \subset \subset \Omega$ an open set, and $\psi \in \mathcal{D}\left(\Omega^{\prime}\right), 1 \leq i \leq N$ then by (15) we have

$$
\left|\int_{\Omega^{\prime}} u_{\epsilon} \partial_{i} \psi d x\right|=\left|\int_{\Omega^{\prime}} \partial_{i} u_{\epsilon} \psi d x\right| \leq C_{\Omega^{\prime}}\|\psi\|_{L^{2}\left(\Omega^{\prime}\right)}
$$

Let $\epsilon \rightarrow 0$ and using the week convergence $u_{\epsilon} \rightharpoonup u_{0}$ we get:

$$
\left|\int_{\Omega^{\prime}} u_{0} \partial_{i} \psi d x\right| \leq C_{\Omega^{\prime}}\|\psi\|_{L^{2}\left(\Omega^{\prime}\right)}
$$

Hence, $u_{0} \in H_{l o c}^{1}(\Omega)$.

4. Strong convergence and proof of theorem 3

Let us begin by some useful propositions
Proposition 2. Let $\left(g_{n}\right)$ be a sequence in $H_{0}^{1}(\Omega)$ and $g \in L^{2}(\Omega)$ such that $\nabla_{X_{2}} g \in$ $L^{2}(\Omega)$ and $\nabla_{X_{2}} g_{n} \rightarrow \nabla_{X_{2}} g$ in $L^{2}(\Omega)$, then we have:
$g_{n} \rightarrow g$ in $L^{2}(\Omega)$ and for a.e. $X_{1} g\left(X_{1},.\right) \in H_{0}^{1}\left(\omega_{2}\right)$
Proof. We have for a.e $X_{1}: \nabla_{X_{2}} g_{n}\left(X_{1},.\right) \rightarrow \nabla_{X_{2}} g\left(X_{1},.\right)$ in $L^{2}\left(\omega_{2}\right)$ (up to a subsequence), and since for a.e X_{1} and for every n we have $g_{n}\left(X_{1},.\right) \in H_{0}^{1}\left(\omega_{2}\right)$ then we have for a.e. $X_{1}, g\left(X_{1},.\right) \in H_{0}^{1}\left(\omega_{2}\right)$. And finally the convergence $g_{n} \rightarrow g$ in $L^{2}(\Omega)$ follows by Poincaré's inequality $\int_{\Omega}\left|g_{n}-g\right|^{2} \leq C \int_{\Omega}\left|\nabla_{X_{2}}\left(g_{n}-g\right)\right|^{2}$

Proposition 3. Let $f, v \in L^{2}(\Omega)$ such that $\nabla_{X_{2}} v \in L^{2}(\Omega)$ and

$$
\int_{\Omega} A_{22} \nabla_{X_{2}} v \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} v \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega)
$$

then we have for a.e X_{1}

$$
\int_{\omega_{2}} A_{22} \nabla_{X_{2}} v\left(X_{1}, .\right) \cdot \nabla_{X_{2}} \varphi d X_{2}+\beta \int_{\omega_{2}} v\left(X_{1}, .\right) \varphi d X_{2}=\int_{\omega_{2}} f\left(X_{1}, .\right) \varphi d X_{2}, \quad \forall \varphi \in \mathcal{D}\left(\omega_{2}\right)
$$

Moreover, if for a.e X_{1} we have $v\left(X_{1},.\right) \in H_{0}^{1}\left(\omega_{2}\right)$ then v is the unique function which satisfies the previous equalities

Proof. Same arguments as in [2].
4.1. The cut-off problem: Let $\phi \in \mathcal{D}(\Omega)$, and let $\left(u_{\epsilon}\right) \subset H_{0}^{1}(\Omega)$ be a sequence of solutions to (6) such that u_{ϵ} converges weakly in $L^{2}(\Omega)$ to some $u_{0} \in L^{2}(\Omega)$. we define $w_{\epsilon} \in H_{0}^{1}(\Omega)$ to be the unique solution to the cut-off problem (under assumptions (1), (2) existence and uniqueness of w_{ϵ} follows from the Lax-Milgram theorem)

$$
\begin{equation*}
\int_{\Omega} A_{\epsilon} \nabla w_{\epsilon} \cdot \nabla \varphi d x+\beta \int_{\Omega} w_{\epsilon} \varphi d x=\int_{\Omega} B\left(\phi u_{\epsilon}\right) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega) \tag{16}
\end{equation*}
$$

The following Lemma is fundamental in this paper

Lemma 1. Assume (1), (2), (3),(4), (5), (8) then there exists $w_{0} \in W$ such that $w_{\epsilon} \rightarrow w_{0}$ in W strongly and

$$
\begin{aligned}
& \int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} w_{0} \varphi d x=\int_{\Omega} B\left(\phi u_{0}\right) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega) \\
& \int_{\omega_{2}} A_{22} \nabla_{X_{2}} w_{0}\left(X_{1}, .\right) \cdot \nabla_{X_{2}} \varphi d X_{2}+\beta \int_{\omega_{2}} w_{0}\left(X_{1}, .\right) \varphi d X_{2} \\
& \quad=\int_{\omega_{2}} B\left(\phi u_{0}\right)\left(X_{1}, .\right) \varphi d X_{2}, \quad \forall \varphi \in \mathcal{D}\left(\omega_{2}\right)
\end{aligned}
$$

and w_{0} is the unique function which satisfies the two previous weak formulations.
Admit this lemma for the moment then we have the following
Proposition 4. Assume (1), (2), (3),(4), (5), (8), let (u_{ϵ}) be a sequence of solutions to (6) such that $u_{\epsilon} \rightharpoonup u_{0}$ weakly in $L^{2}(\Omega)$, then we have $u_{\epsilon} \rightarrow u_{0}$ in W strongly and

$$
\int_{\omega_{2}} A_{22} \nabla_{X_{2}} u_{0}\left(X_{1}, .\right) \cdot \nabla_{X_{2}} \varphi d X_{2}+\beta \int_{\omega_{2}} u_{0}\left(X_{1}, .\right) \varphi d X_{2}=\int_{\omega_{2}} B\left(u_{0}\right)\left(X_{1}, .\right) \varphi d X_{2}, \quad \forall \varphi \in \mathcal{D}\left(\omega_{2}\right)
$$

4.2. Proof of Proposition 4.

4.2.1. Approximation by truncations. Let $\left(u_{\epsilon}\right)$ be a sequence in $H_{0}^{1}(\Omega)$ of solutions to (6), assume (1), (2) and define $w_{\epsilon}^{n} \in H_{0}^{1}(\Omega)$ the unique solution (by Lax-Milgram theorem) to the problem

$$
\begin{equation*}
\int_{\Omega} A_{\epsilon} \nabla w_{\epsilon}^{n} \cdot \nabla \varphi+\beta \int_{\Omega} w_{\epsilon}^{n} \varphi=\int_{\Omega} B\left(\phi_{n} u_{\epsilon}\right) \varphi, \quad \forall \varphi \in \mathcal{D}(\Omega) \tag{17}
\end{equation*}
$$

where $\left(\phi_{n}\right)$ is a sequence in $\mathcal{D}(\Omega)$ which converges to 1 in $L^{\frac{2 r}{r-2}}(\Omega)$.
Proposition 5. Suppose (1), (2), (3), (4) then we have

$$
\left\|\nabla_{X_{2}} w_{\epsilon}^{n}-\nabla_{X_{2}} u_{\epsilon}\right\|_{L^{2}(\Omega)} \rightarrow 0
$$

as $n \rightarrow \infty$ uniformly on ϵ

Proof. Subtracting (6) from (17) and taking $\varphi=\left(w_{\epsilon}^{n}-u_{\epsilon}\right) \in H_{0}^{1}(\Omega)$ we get

$$
\begin{aligned}
\int_{\Omega} A_{\epsilon} \nabla\left(w_{\epsilon}^{n}-u_{\epsilon}\right) \cdot \nabla\left(w_{\epsilon}^{n}-u_{\epsilon}\right) d x+ & \beta \int_{\Omega}\left(w_{\epsilon}^{n}-u_{\epsilon}\right)^{2} d x \\
& =\int_{\Omega}\left(B\left(\phi_{n} u_{\epsilon}\right)-B\left(u_{\epsilon}\right)\right)\left(w_{\epsilon}^{n}-u_{\epsilon}\right) d x
\end{aligned}
$$

By (2) and Hölder's inequality we derive

$$
\lambda\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-u_{\epsilon}\right)\right\|_{L^{2}(\Omega)}^{2} \leq\left\|\left(B\left(\phi_{n} u_{\epsilon}\right)-B\left(u_{\epsilon}\right)\right)\right\|_{L^{2}}\left\|w_{\epsilon}^{n}-u_{\epsilon}\right\|_{L^{2}}
$$

and Proposition 1 gives $\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq \frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}},\left\|\phi_{n} u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq \frac{M}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\left\|\phi_{n}\right\|_{L^{\frac{2 r}{r-2}}(\Omega)}$, we note K the Lipschitz coefficient of B associated with the bounded set

$$
\left\{u \in L^{2}(\Omega):\|u\|_{L^{2}} \leq \sup _{n}\left(\frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}, \frac{M}{\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\left\|\phi_{n}\right\|_{L^{\frac{2 r}{r-2}}}\right)<\infty\right\}
$$

whence (3) and Hölder's inequality give

$$
\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-u_{\epsilon}\right)\right\|_{L^{2}(\Omega)}^{2} \leq \frac{K}{\lambda}\left\|\phi_{n}-1\right\|_{L^{\frac{2 r}{r-2}}}\left\|u_{\epsilon}\right\|_{L^{r}}\left\|w_{\epsilon}^{n}-u_{\epsilon}\right\|_{L^{2}}
$$

And finally by Proposition 1 and Poincaré's inequality in the X_{2} direction we get

$$
\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-u_{\epsilon}\right)\right\|_{L^{2}(\Omega)} \leq \frac{C^{\prime} K M}{\lambda\left(\beta-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}\right)}\left\|\phi_{n}-1\right\|_{L^{\frac{2 r}{r-2}}}
$$

Whence $\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-u_{\epsilon}\right)\right\|_{L^{2}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$ uniformly in ϵ
4.2.2. The convergence. Fix n, under assumptions of Proposition 4 then it follows by Lemma 1 that there exists $w_{0}^{n} \in W$ such that

$$
\begin{equation*}
w_{\epsilon}^{n} \rightarrow w_{0}^{n} \text { strongly in } W \tag{18}
\end{equation*}
$$

and w_{0}^{n} is the unique function in W which satisfies

$$
\begin{equation*}
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} w_{0}^{n} \varphi d x=\int_{\Omega} B\left(\phi_{n} u_{0}\right) \varphi d x, \forall \varphi \in \mathcal{D}(\Omega) \tag{19}
\end{equation*}
$$

and for a.e X_{1} we have

$$
\begin{align*}
& \int_{\omega_{2}} A_{22} \nabla_{X_{2}} w_{0}^{n}\left(X_{1}, .\right) \cdot \nabla_{X_{2}} \varphi d X_{2}+\beta \int_{\omega_{2}} w_{0}^{n}\left(X_{1}, .\right) \varphi d X_{2} \tag{20}\\
= & \int_{\omega_{2}} B\left(\phi_{n} u_{0}\right)\left(X_{1}, .\right) \varphi d X_{2}, \quad \forall \varphi \in \mathcal{D}\left(\omega_{2}\right)
\end{align*}
$$

For a.e X_{1} taking $\varphi=w_{0}^{n}\left(X_{1},.\right) \in H_{0}^{1}\left(\omega_{2}\right)$ in (20), by ellipticity assumption (2), Hölder's inequality we obtain

$$
\lambda \int_{\omega_{2}}\left|\nabla_{X_{2}} w_{0}^{n}\left(X_{1}, .\right)\right|^{2} d X_{2} \leq\left\|B\left(\phi_{n} u_{0}\right)\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)}\left\|w_{0}^{n}\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)}
$$

and Poincaré's inequality in the X_{2} direction gives

$$
\begin{aligned}
\left\|\nabla_{X_{2}} w_{0}^{n}\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)} & \leq \frac{C^{\prime}}{\lambda}\left\|B\left(\phi_{n} u_{0}\right)\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)} \\
\left\|w_{0}^{n}\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)} & \leq \frac{C^{\prime 2}}{\lambda}\left\|B\left(\phi_{n} u_{0}\right)\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)}
\end{aligned}
$$

integrating over ω_{1} yields

$$
\begin{aligned}
\left\|\nabla_{X_{2}} w_{0}^{n}\right\|_{L^{2}(\Omega)} & \leq \frac{C^{\prime}}{\lambda}\left\|B\left(\phi_{n} u_{0}\right)\right\|_{L^{2}(\Omega)} \\
\left\|w_{0}^{n}\right\|_{L^{2}(\Omega)} & \leq \frac{C^{2}}{\lambda}\left\|B\left(\phi_{n} u_{0}\right)\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

and by (4) and Hölder's inequality (remark that $u_{0} \in L^{r}(\Omega)$ since $\left(u_{\epsilon}\right)$ is bounded in $L^{r}(\Omega)$ and $u_{\epsilon} \rightharpoonup u_{0}$ in $\left.L^{2}(\Omega)\right)$ we obtain

$$
\begin{aligned}
\left\|\nabla_{X_{2}} w_{0}^{n}\right\|_{L^{2}(\Omega)} & \leq \frac{C|\Omega|^{\frac{1}{2}-\frac{1}{r}} M\left(+\left\|\phi_{n}\right\|_{L^{\frac{2 r}{r-2}}}\left\|u_{0}\right\|_{L^{r}}\right)}{\lambda} \\
\left\|w_{0}^{n}\right\|_{L^{2}(\Omega)} & \leq \frac{C^{2}|\Omega|^{\frac{1}{2}-\frac{1}{r}} M\left(+\left\|\phi_{n}\right\|_{L^{\frac{2 r}{r-2}}}\left\|u_{0}\right\|_{L^{r}}\right)}{\lambda}
\end{aligned}
$$

(we note that The the right hand sides of the previous inequality is uniformly bounded). Using weak compacity in $L^{2}(\Omega)$, one can extract a subsequence noted always $\left(w_{0}^{n}\right)$ which converges weakly to some $w_{0} \in L^{2}(\Omega)$ and such that $\nabla_{X_{2}} w_{0}^{n} \rightharpoonup$ $\nabla_{X_{2}} w_{0}$ weakly. Now, passing to the limit as $n \rightarrow \infty$ in (19) and using

$$
\begin{equation*}
\left\|B\left(\phi_{n} u_{0}\right)-B\left(u_{0}\right)\right\|_{L^{2}(\Omega)} \leq K\left\|\phi_{n}-1\right\|_{L^{\frac{2 r}{r-2}}}\left\|u_{0}\right\|_{L^{r}(\Omega)} \tag{21}
\end{equation*}
$$

we get

$$
\begin{equation*}
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} w_{0} \varphi d x=\int_{\Omega} B\left(u_{0}\right) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega) \tag{22}
\end{equation*}
$$

Now we will prove that $\nabla_{X_{2}} w_{0}^{n} \rightarrow \nabla_{X_{2}} w_{0}$ in $L^{2}(\Omega)$ strongly, using ellipticity assumption (2) we obtain

$$
\begin{align*}
& \lambda\left\|\nabla_{X_{2}}\left(w_{0}^{n}-w_{0}\right)\right\|_{L^{2}(\Omega)}^{2} \leq \tag{23}\\
& \int_{\Omega} A_{22} \nabla_{X_{2}}\left(w_{0}^{n}-w_{0}\right) \cdot \nabla_{X_{2}}\left(w_{0}^{n}-w_{0}\right) d x+\beta\left\|w_{0}^{n}-w_{0}\right\|_{L^{2}(\Omega)}^{2} \\
\leq & \int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} w_{0}^{n} d x-\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} w_{0} d x-\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} w_{0}^{n} d x \\
& +\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} w_{0} d x+\beta\left\|w_{0}^{n}-w_{0}\right\|_{L^{2}(\Omega)}^{2}
\end{align*}
$$

Taking $\varphi=w_{\epsilon}^{n} \in H_{0}^{1}(\Omega)$ in (19) and (22) and letting $\epsilon \rightarrow 0$ we get (thanks to (18))

$$
\begin{equation*}
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} w_{0}^{n} d x+\beta \int_{\Omega}\left|w_{0}^{n}\right|^{2} d x=\int_{\Omega} B\left(\phi_{n} u_{0}\right) w_{0}^{n} d x \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} w_{0}^{n} d x+\beta \int_{\Omega} w_{0} w_{0}^{n} d x=\int_{\Omega} B\left(u_{0}\right) w_{0}^{n} d x \tag{25}
\end{equation*}
$$

Replacing (24) and (25) in (23) we get

$$
\begin{align*}
& \lambda\left\|\nabla_{X_{2}}\left(w_{0}^{n}-w_{0}\right)\right\|_{L^{2}(\Omega)}^{2} \tag{26}\\
\leq & \int_{\Omega} B\left(\phi_{n} u_{0}\right) w_{0}^{n} d x-\int_{\Omega} B\left(u_{0}\right) w_{0}^{n} d x-\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} w_{0} d x \\
& +\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} w_{0} d x+\beta \int_{\Omega}\left|w_{0}\right|^{2} d x-\beta \int_{\Omega} w_{0} w_{0}^{n} d x
\end{align*}
$$

We have $B\left(\phi_{n} u_{0}\right) \rightarrow B\left(u_{0}\right)$ in $L^{2}(\Omega)$ and since $w_{0}^{n} \rightharpoonup w_{0}$ in $L^{2}(\Omega)$ then

$$
\int_{\Omega} B\left(\phi_{n} u_{0}\right) w_{0}^{n} d x \rightarrow \int_{\Omega} B\left(u_{0}\right) w_{0} d x
$$

And since $\nabla_{X_{2}} w_{0}^{n} \rightharpoonup \nabla_{X_{2}} w_{0}$ in $L^{2}(\Omega)$ then $A_{22} \nabla_{X_{2}} w_{0}^{n} \rightharpoonup A_{22} \nabla_{X_{2}} w_{0}$ in $L^{2}(\Omega)$ (since $A_{22} \in L^{\infty}(\Omega)$). Now, let $n \rightarrow \infty$ in (26) we get

$$
\begin{equation*}
\left\|\nabla_{X_{2}}\left(w_{0}^{n}-w_{0}\right)\right\|_{L^{2}(\Omega)} \rightarrow 0 \tag{27}
\end{equation*}
$$

Thanks to the uniform convergence proved in proposition 5, (27) and (18), we show by the triangular inequality that $\nabla_{X_{2}} u_{\epsilon} \rightarrow \nabla_{X_{2}} w_{0}$ in $L^{2}(\Omega)$. Now, we must
check that $w_{0}=u_{0}$, according to Proposition 2, we have for a.e $X_{1}, w_{0}\left(X_{1},.\right) \in$ $H_{0}^{1}\left(\omega_{2}\right)$ and $u_{\epsilon} \rightarrow w_{0}$ in $L^{2}(\Omega)$, and therefore $w_{0}=u_{0}$. By (22), we obtain

$$
\int_{\Omega} A_{22} \nabla_{X_{2}} u_{0} \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} u_{0} \varphi d x=\int_{\Omega} B\left(u_{0}\right) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega)
$$

and we finish the proof of proposition 4 by using proposition 3. Finally, if $\left(u_{\epsilon}\right)$ is a sequence of solutions to (6) then there exists a subsequence $\left(u_{\epsilon_{k}}\right)$ which converges to some u_{0} in $L^{2}(\Omega)$ weakly (see subsection 2.2), whence Theorem3 follows from Proposition 4. Now, it remains to prove Lemma 1 which will be the subject of the next section.

5. Proof of Lemma 1

Before starting, let us give some tools. For $n \in \mathbb{N}^{*}$ we note $\Delta_{n}=\left(I-n^{-1} \Delta\right)^{-1}$ the resolvent of the Dirichlet Laplacian on $L^{2}(\Omega)$, this is a compact operator as well known. Given $f \in L^{2}(\Omega)$ and we note $U_{n}=\left(I-n^{-1} \Delta\right)^{-1} f, U_{n}$ is the unique weak solution to the singularly perturbed problem:

$$
-\frac{1}{n} \Delta U_{n}+U_{n}=f
$$

we have the
Theorem 7. (see [5]): If $f \in H_{0}^{1}(\Omega)$ then : $\left\|U_{n}-f\right\|_{L^{2}(\Omega)} \leq C_{\Omega} n^{-\frac{1}{4}}\|f\|_{H^{1}(\Omega)}$
The following lemma will be used in the approximation
Lemma 2. For any functions $g \in H_{l o c}^{1}(\Omega) \cap L^{2}(\Omega), \phi \in \mathcal{D}(\Omega)$ we have : $\phi g \in$ $H_{0}^{1}(\Omega)$ and moreover there exists $\Omega^{\prime} \subset \subset \Omega:\|\phi g\|_{H^{1}(\Omega)} \leq C_{\phi}\|g\|_{H^{1}\left(\Omega^{\prime}\right)}$

Proof. the proof is direct.
5.1. Approximation of the cut-off problem by regularization. Let $\left(u_{\epsilon}\right) \subset H_{0}^{1}(\Omega)$ be a sequence of solution to (6) such that $u_{\epsilon} \rightharpoonup u_{0} \in L^{2}(\Omega)$ weakly, assume (1), (2), (3), (4), (5), (8). For $\phi \in \mathcal{D}(\Omega)$ fixed we note $w_{\epsilon}^{n} \in H_{0}^{1}(\Omega)$ the unique solution to the following regularized problem (thanks to assumptions (1), (2) and Lax-Milgram theorem).

$$
\begin{equation*}
\int_{\Omega} A_{\epsilon} \nabla w_{\epsilon}^{n} \cdot \nabla \varphi d x+\beta \int_{\Omega} w_{\epsilon}^{n} \varphi d x=\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{\epsilon}\right)\right) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega) \tag{28}
\end{equation*}
$$

Proposition 6. As $n \rightarrow \infty$ we have :

$$
\nabla_{X_{2}} w_{\epsilon}^{n} \rightarrow \nabla_{X_{2}} w_{\epsilon} \text { in } L^{2}(\Omega) \text { uniformly in } \epsilon
$$

where w_{ϵ} is the solution to the cut-off problem (16)
Proof. Subtracting (16) from (28) and taking $\varphi=\left(w_{\epsilon}^{n}-w_{\epsilon}\right) \in H_{0}^{1}(\Omega)$ yields

$$
\begin{aligned}
& \int_{\Omega} A_{\epsilon} \nabla\left(w_{\epsilon}^{n}-w_{\epsilon}\right) \cdot \nabla\left(w_{\epsilon}^{n}-w_{\epsilon}\right) d x+\beta \int_{\Omega}\left(w_{\epsilon}^{n}-w_{\epsilon}\right)^{2} d x \\
&=\int_{\Omega}\left\{B\left(\Delta_{n}\left(\phi u_{\epsilon}\right)\right)-B\left(\left(\phi u_{\epsilon}\right)\right)\right\}\left(w_{\epsilon}^{n}-w_{\epsilon}\right) d x
\end{aligned}
$$

Remark that $\left(\phi u_{\epsilon}\right)_{\epsilon}$ is bounded in $L^{2}(\Omega)$ (Proposition 1) and it is clear that $\left(\Delta_{n}\left(\phi u_{\epsilon}\right)\right)_{n, \epsilon}$ is bounded in $L^{2}(\Omega)\left(\left\|\Delta_{n}\left(\phi u_{\epsilon}\right)\right\|_{L^{2}(\Omega)} \leq\left\|\phi u_{\epsilon}\right\|_{L^{2}(\Omega)}\right)$, then by ellipticity assumption (2) and the local Lipschitzness of B (3) we get

$$
\begin{aligned}
\lambda \int_{\Omega}\left|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-w_{\epsilon}\right)\right|^{2} d x & \leq \int_{\Omega}\left\{B\left(\Delta_{n}\left(\phi u_{\epsilon}\right)\right)-B\left(\phi u_{\epsilon}\right)\right\}\left(w_{\epsilon}^{n}-w_{\epsilon}\right) d x \\
& \leq K^{\prime}\left(\int_{\Omega}\left|\Delta_{n}\left(\phi u_{\epsilon}\right)-\phi u_{\epsilon}\right|^{2} d x\right)^{\frac{1}{2}}\left\|w_{\epsilon}^{n}-w_{\epsilon}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

Hence, Poincaré's inequality gives

$$
\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-w_{\epsilon}\right)\right\|_{L^{2}(\Omega)} \leq \frac{C K^{\prime}}{\lambda}\left(\int_{\Omega}\left|\Delta_{n}\left(\phi u_{\epsilon}\right)-\phi u_{\epsilon}\right|^{2} d x\right)^{\frac{1}{2}}
$$

and by Theorem 7 we get

$$
\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-w_{\epsilon}\right)\right\|_{L^{2}(\Omega)} \leq \frac{C^{\prime} K}{\lambda} n^{-\frac{1}{4}}\left\|\phi u_{\epsilon}\right\|_{H^{1}(\Omega)}
$$

and Lemma 2 gives

$$
\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-w_{\epsilon}\right)\right\|_{L^{2}(\Omega)} \leq \frac{C^{\prime} K}{\lambda} C_{\phi} n^{-\frac{1}{4}}\left\|u_{\epsilon}\right\|_{H^{1}\left(\Omega^{\prime}\right)}
$$

So finally by Theorem 2 we get

$$
\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-w_{\epsilon}\right)\right\|_{L^{2}(\Omega)} \leq C^{\prime \prime} n^{-\frac{1}{4}}
$$

where $C " \geq 0$ is independent on ϵ and n

5.2. The convergence.

5.2.1. Passage to the limit as $\epsilon \rightarrow 0$. Let $n \in \mathbb{N}^{*}$ fixed, taking $\varphi=w_{\epsilon}^{n} \in H_{0}^{1}(\Omega)$ in (28), and estimating using ellipticity assumption (2) and (4) and Proposition $\mathbf{1}$ (as in subsection 2.2) then one can extract a subsequence $\left(w_{\epsilon_{k}(n)}^{n}\right)_{k}$ which converges (as $\epsilon_{k}(n) \rightarrow 0$) to some w_{0}^{n} in the following sense

$$
\begin{align*}
w_{\epsilon_{k}(n)}^{n} \rightharpoonup & w_{0}^{n}, \nabla_{X_{2}} w_{\epsilon_{k}(n)}^{n} \rightharpoonup \nabla_{X_{2}} w_{0}^{n} \text { and } \epsilon_{k}(n) \nabla_{X_{1}} w_{\epsilon_{k}(n)}^{n} \rightharpoonup 0 \tag{29}\\
& \quad \operatorname{in} L^{2}(\Omega)
\end{align*}
$$

Now passing the limit (as $\left.\epsilon_{k}(n) \rightarrow 0\right)$ in (28) we get

$$
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} w_{0}^{n} \varphi d x=\lim _{\epsilon_{k}(n) \rightarrow 0} \int_{\Omega} B\left(\Delta_{n}\left(\phi u_{\epsilon_{k}(n)}\right)\right) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega)
$$

Since $u_{\epsilon_{k}(n)} \rightharpoonup u_{0}$ weakly in $L^{2}(\Omega)$ then $\phi u_{\epsilon_{k}(n)} \rightharpoonup \phi u_{0}$ weakly in $L^{2}(\Omega)$ so by compacity of Δ_{n} we get $\Delta_{n}\left(\phi u_{\epsilon_{k}(n)}\right) \rightarrow \Delta_{n}\left(\phi u_{0}\right)$ in $L^{2}(\Omega)$ strongly. And therefore, the continuity of B gives $B\left(\Delta_{n}\left(\phi u_{\epsilon_{k}(n)}\right)\right) \rightarrow B\left(\Delta_{n}\left(\phi u_{0}\right)\right)$ in $L^{2}(\Omega)$ strongly, hence the previous equality becomes

$$
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} w_{0}^{n} \varphi d x=\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{0)}\right)\right) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega)
$$

Take $\varphi=w_{\epsilon_{k}(n)}^{n} \in H_{0}^{1}(\Omega)$ in (30) and let $\epsilon_{k}(n) \rightarrow 0$ we derive

$$
\begin{equation*}
\left.\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} w_{0}^{n} d x+\beta \int_{\Omega}\left|w_{0}^{n}\right|^{2} d x=\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{0}\right)\right)\right) w_{0}^{n} d x \tag{31}
\end{equation*}
$$

Now, we prove strong convergences for the whole sequence (as $\epsilon \rightarrow 0$)
Proposition 7. As $\epsilon \rightarrow 0$ we have $\nabla_{X_{2}} w_{\epsilon}^{n} \rightarrow \nabla_{X_{2}} w_{0}^{n}$ strongly in $L^{2}(\Omega)$
Proof. Computing

$$
\begin{gathered}
I_{\epsilon_{k}(n)}^{n}=\int_{\Omega} A_{\epsilon}\binom{\nabla_{X_{1}} w_{\epsilon_{k}(n)}^{n}}{\nabla_{X_{2}}\left(w_{\epsilon_{k}(n)}^{n}-w_{0}^{n}\right)} \cdot\binom{\nabla_{X_{1}} w_{\epsilon_{k}(n)}^{n}}{\nabla_{X_{2}}\left(w_{\epsilon_{k}(n)}^{n}-w_{0}^{n}\right)} d x+\beta \int_{\Omega}\left|w_{\epsilon_{k}(n)}^{n}-w_{0}^{n}\right|^{2} d x \\
=\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{\epsilon_{k}(n)}\right)\right) w_{\epsilon_{k}(n)}^{n} d x-\int_{\Omega} \epsilon_{k}(n) A_{12} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{1}} w_{\epsilon_{k}(n)}^{n} d x-2 \beta \int_{\Omega} w_{\epsilon_{k}(n)}^{n} w_{0}^{n} d x \\
\left.-\int_{\Omega} \epsilon_{k}(n) A_{21} \nabla_{X_{1}} w_{\epsilon_{k}(n)}^{n} \cdot \nabla_{X_{2}} w_{0}^{n}\right) d x-\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} w_{\epsilon_{k}(n)}^{n} d x \\
\left.\quad-\int_{\Omega} A_{22} \nabla_{X_{2}} w_{\epsilon_{k}(n)}^{n} \cdot \nabla_{X_{2}} w_{0}^{n}\right) d x+\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{0)}\right)\right) w_{0}^{n} d x
\end{gathered}
$$

Let $\epsilon_{k}(n) \rightarrow 0$ and using (29) we get

$$
\begin{gathered}
\lim _{\epsilon_{k}(n) \rightarrow 0} I_{\epsilon_{k}(n)}^{n}=\lim _{\epsilon_{k}(n) \rightarrow 0}\left(\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{\epsilon_{k}(n)}\right)\right) w_{\epsilon_{k}(n)}^{n} d x+\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{0)}\right)\right) w_{0}^{n} d x\right)-2 \beta \int_{\Omega}\left|w_{0}^{n}\right|^{2} d x \\
-2 \int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} w_{0}^{n} d x
\end{gathered}
$$

Since $B\left(\Delta_{n}\left(\phi u_{\epsilon_{k}(n)}\right)\right) \rightarrow B\left(\Delta_{n}\left(\phi u_{0}\right)\right)$ in $L^{2}(\Omega)$ strongly and $w_{\epsilon_{k}(n)}^{n} \rightharpoonup w_{0}^{n}$ weakly then

$$
\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{\epsilon_{k}(n)}\right)\right) w_{\epsilon_{k}(n)}^{n} \rightarrow \int_{\Omega} B\left(\Delta_{n}\left(\phi u_{0}\right)\right) w_{0}^{n}
$$

Whence by (31) we get $\lim _{\epsilon_{i}(n) \rightarrow 0} I_{\epsilon_{i}(n)}^{n}=0$. Now using ellipticity assumption (2) we derive

$$
\lambda \epsilon_{i}(n)^{2} \int_{\Omega}\left|\nabla_{X_{1}} w_{\epsilon_{i}(n)}^{n}\right|^{2}+\lambda \int_{\Omega}\left|\nabla_{X_{2}}\left(w_{\epsilon_{i}(n)}^{n}-w_{0}^{n}\right)\right|^{2} \leq I_{\epsilon_{i}(n)}^{n},
$$

and therefore we get

$$
\| \nabla_{X_{2}}\left(w_{\epsilon_{i}(n)}^{n}-w_{0}^{n} \|_{L^{2}(\Omega)} \rightarrow 0 \text { as } \epsilon_{i}(n) \rightarrow 0,\right.
$$

According to Proposition 2 we have for a.e $X_{1}, w_{0}^{n}\left(X_{1},.\right) \in H_{0}^{1}\left(\omega_{2}\right)$ and

$$
\begin{aligned}
\left\|\nabla_{X_{2}}\left(w_{\epsilon_{i}(n)}^{n}-w_{0}^{n}\right)\right\|_{L^{2}(\Omega)} & \rightarrow 0,\left\|w_{\epsilon_{i}(n)}^{n}-w_{0}^{n}\right\|_{L^{2}(\Omega)} \rightarrow 0 \\
\text { as } \epsilon_{i}(n) & \rightarrow 0,
\end{aligned}
$$

By (30) and Proposition 3 we show that for every n fixed, w_{0}^{n} is the unique function which satisfies for a.e X_{1}

$$
\begin{aligned}
\int_{\omega_{2}} A_{22} \nabla_{X_{2}} w_{0}^{n}\left(X_{1}, .\right) \cdot \nabla_{X_{2}} \varphi d & X_{2}+\beta \int_{\omega_{2}} w_{0}^{n}\left(X_{1}, .\right) \varphi d X_{2} \\
& =\int_{\omega_{2}} B\left(\Delta_{n}\left(\phi u_{0)}\right)\right)\left(X_{1}, .\right) \varphi d X_{2}, \quad \forall \varphi \in \mathcal{D}\left(\omega_{2}\right)
\end{aligned}
$$

Since the union of zero measure sets is a zero measure set then we have for a.e X_{1} and $\forall n \in \mathbb{N}^{*}$

$$
\begin{align*}
& \int_{\omega_{2}} A_{22} \nabla_{X_{2}} w_{0}^{n}\left(X_{1}, .\right) \cdot \nabla_{X_{2}} \varphi d X_{2}+\beta \int_{\omega_{2}} w_{0}^{n}\left(X_{1}, .\right) \varphi d X_{2} \tag{32}\\
= & \int_{\omega_{2}} B\left(\Delta_{n}\left(\phi u_{0}\right)\right)\left(X_{1}, .\right) \varphi d X_{2}, \quad \forall \varphi \in \mathcal{D}\left(\omega_{2}\right)
\end{align*}
$$

And finally, the uniqueness of w_{0}^{n} implies that the whole sequence $\left(w_{\epsilon}^{n}\right)$ converges i.e $\forall n \in \mathbb{N}^{*}$:

$$
\left\|\nabla_{X_{2}}\left(w_{\epsilon}^{n}-w_{0}^{n}\right)\right\|_{L^{2}(\Omega)} \rightarrow 0, \text { and }\left\|w_{\epsilon}^{n}-w_{0}^{n}\right\|_{L^{2}(\Omega)} \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

5.2.2. Passage to the limit $n \rightarrow \infty$. For a.e X_{1} and $\forall n \in \mathbb{N}^{*}$ taking $\varphi=$ $w_{0}^{n}\left(X_{1},.\right) \in H_{0}^{1}\left(\omega_{2}\right)$ in (32), using ellipticity assumption (2) and Hölder's inequality we get

$$
\lambda \int_{\omega_{2}}\left|\nabla_{X_{2}} w_{0}^{n}\left(X_{1}, .\right)\right|^{2} d X_{2} \leq\left\|B\left(\Delta_{n}\left(\phi u_{0}\right)\right)\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)}\left\|w_{0}^{n}\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)}
$$

and Poincaré's inequality in the X_{2} direction gives

$$
\begin{aligned}
\left\|\nabla_{X_{2}} w_{0}^{n}\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)} & \leq \frac{C^{\prime}}{\lambda}\left\|B\left(\Delta_{n}\left(\phi u_{0}\right)\right)\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)} \\
\left\|w_{0}^{n}\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)} & \leq \frac{C^{\prime 2}}{\lambda}\left\|B\left(\Delta_{n}\left(\phi u_{0}\right)\right)\left(X_{1}, .\right)\right\|_{L^{2}\left(\omega_{2}\right)}
\end{aligned}
$$

integrating over ω_{1} yields

$$
\begin{aligned}
\left\|\nabla_{X_{2}} w_{0}^{n}\right\|_{L^{2}(\Omega)} & \leq \frac{C^{\prime}}{\lambda}\left\|B\left(\Delta_{n}\left(\phi u_{0}\right)\right)\right\|_{L^{2}(\Omega)} \\
\left\|w_{0}^{n}\right\|_{L^{2}(\Omega)} & \leq \frac{C^{\prime 2}}{\lambda}\left\|B\left(\Delta_{n}\left(\phi u_{0}\right)\right)\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

and by (4) and Holder's inequality we obtain

$$
\begin{aligned}
\left\|\nabla_{X_{2}} w_{0}^{n}\right\|_{L^{2}(\Omega)} & \leq \frac{C^{\prime}|\Omega|^{\frac{1}{2}-\frac{1}{r}} M\left(+\|\phi\|_{\infty}\left\|u_{0}\right\|_{L^{2}}\right)}{\lambda} \\
\left\|w_{0}^{n}\right\|_{L^{2}(\Omega)} & \leq \frac{C^{\prime 2}|\Omega|^{\frac{1}{2}-\frac{1}{r}} M\left(+\|\phi\|_{\infty}\left\|u_{0}\right\|_{L^{2}}\right)}{\lambda}
\end{aligned}
$$

(we used the inequality $\left\|\Delta_{n}\left(\phi u_{0}\right)\right\|_{L^{2}(\Omega)} \leq\left\|\phi u_{0}\right\|_{L^{2}(\Omega)}$ and the notation $\|\phi\|_{\infty}=$ $\left.\sup _{x \in \Omega}|\phi(x)|\right)$

Whence, it follows by weak compacity that there exists $w_{0} \in L^{2}(\Omega)$ and a subsequence noted always $\left(w_{0}^{n}\right)$ such that

$$
\nabla_{X_{2}} w_{0}^{n} \rightharpoonup \nabla_{X_{2}} w_{0} \text { and } w_{0}^{n} \rightharpoonup w_{0} \text { in } L^{2}(\Omega)
$$

Remark that $\phi u_{0} \in H_{0}^{1}(\Omega)$ by Lemma2, then by Theorem $7 \Delta_{n}\left(\phi u_{0}\right) \rightarrow \phi u_{0}$ in $L^{2}(\Omega)$ and therefore, continuity of B gives $B\left(\Delta_{n}\left(\phi u_{0}\right)\right) \rightarrow B\left(\phi u_{0}\right)$ in $L^{2}(\Omega)$. Now, let $n \rightarrow \infty$ in (30) yields

$$
\begin{equation*}
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega} w_{0} \varphi d x=\int_{\Omega} B\left(\phi u_{0}\right) \varphi d x, \quad \forall \varphi \in \mathcal{D}(\Omega) \tag{33}
\end{equation*}
$$

Take $\varphi=w_{\epsilon}^{n} \in H_{0}^{1}(\Omega)$ in (33) and let $\epsilon \rightarrow 0$ we obtain (by Proposition 7)

$$
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} w_{0}^{n} d x+\beta \int_{\Omega} w_{0} w_{0}^{n} d x=\int_{\Omega} B\left(\phi u_{0}\right) w_{0}^{n} d x
$$

and as $n \rightarrow \infty$ we derive

$$
\begin{equation*}
\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} w_{0} d x+\beta \int_{\Omega}\left|w_{0}\right|^{2} d x=\int_{\Omega} B\left(\phi u_{0}\right) w_{0} d x \tag{34}
\end{equation*}
$$

Now, we prove the strong convergences of w_{0}^{n} and $\nabla_{X_{2}} w_{0}^{n}$, by ellipticity assumption (2), (31) and (34) we get

$$
\begin{aligned}
& \lambda \int_{\Omega}\left|\nabla_{X_{2}}\left(w_{0}^{n}-w_{0}\right)\right|^{2} d x+\beta \int_{\Omega}\left|w_{0}^{n}-w_{0}\right|^{2} d x \\
& \leq \int_{\Omega} A_{22} \nabla_{X_{2}}\left(w_{0}^{n}-w_{0}\right) \cdot \nabla_{X_{2}}\left(w_{0}^{n}-w_{0}\right) d x+\beta \int_{\Omega}\left|w_{0}^{n}-w_{0}\right|^{2} d x \\
& =\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{0)}\right)\right) w_{0}^{n} d x-\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0} \cdot \nabla_{X_{2}} w_{0}^{n} d x-2 \beta \int_{\Omega} w_{0}^{n} w_{0} d x \\
& \quad-\int_{\Omega} A_{22} \nabla_{X_{2}} w_{0}^{n} \cdot \nabla_{X_{2}} w_{0} d x+\int_{\Omega} B\left(\phi u_{0}\right) w_{0} d x
\end{aligned}
$$

Since $B\left(\Delta_{n}\left(\phi u_{0}\right)\right) \rightarrow B\left(\phi u_{0}\right)$ in $L^{2}(\Omega)$ and $w_{0}^{n} \rightharpoonup w_{0}$ in $L^{2}(\Omega)$ then

$$
\int_{\Omega} B\left(\Delta_{n}\left(\phi u_{0}\right)\right) w_{0}^{n} \rightarrow \int_{\Omega} B\left(\phi u_{0}\right) w_{0}
$$

Let $n \rightarrow \infty$ in the previous inequality we get

$$
\begin{equation*}
\nabla_{X_{2}} w_{0}^{n} \rightarrow \nabla_{X_{2}} w_{0} \text { in } L^{2}(\Omega) \tag{35}
\end{equation*}
$$

Finally by (35), Proposition 6 and Proposition 7 and the triangular inequality we get $\nabla_{X_{2}} w_{\epsilon} \rightarrow \nabla_{X_{2}} w_{0}$ in $L^{2}(\Omega)$ and therefore (34), Proposition 2 and 3 complete the proof.
Remark 1. In addition to convergences given in Theorem 3 we also have $\epsilon_{k} u_{\epsilon_{k}} \rightarrow$ 0 in $L^{2}(\Omega)$ strongly, indeed ellipticity assumption gives

$$
\begin{aligned}
& \lambda \epsilon_{k}^{2} \int_{\Omega}\left|\nabla_{X_{1}} u_{\epsilon_{k}}\right|^{2}+\lambda \int_{\Omega}\left|\nabla_{X_{2}}\left(u_{\epsilon_{k}}-u_{0}\right)\right|^{2} \\
& \quad \leq \int_{\Omega} A_{\epsilon}\binom{\nabla_{X_{1}} u_{\epsilon_{k}}}{\nabla_{X_{2}}\left(u_{\epsilon_{k}}-u_{0}\right)} \cdot\binom{\nabla_{X_{1}} u_{\epsilon_{k}}}{\nabla_{X_{2}}\left(u_{\epsilon_{k}}-u_{0}\right)} d x+\beta \int_{\Omega}\left|u_{\epsilon_{k}}-u_{0}\right|^{2} d x
\end{aligned}
$$

and we can prove easily that the right-hand side of this inequality converges to 0 .

6. Some Applications

6.1. A regularity result and rate of convergence. In this subsection we make some additional assumptions, suppose that for every $u \in L^{2}(\Omega)$,

$$
\begin{equation*}
\nabla_{X_{1}} B(u) \in L^{2}(\Omega) \tag{36}
\end{equation*}
$$

and for every $\rho \in \mathcal{D}\left(\omega_{1}\right)$ and $u, v \in L^{2}(\Omega)$ we have

$$
\begin{equation*}
\|\rho B(u)-\rho B(v)\|_{L^{2}(\Omega)} \leq\|B(\rho u)-B(\rho v)\|_{L^{2}(\Omega)} \tag{37}
\end{equation*}
$$

Remark that Theorem 3 of section 1 gives only $H_{l o c}^{1}$ - regularity for u_{0}, however we have the following
Proposition 8. Under assumptions of Theorem 3 and (36) we have $u_{0} \in H^{1}(\Omega)$, Proof. We will proceed as in [2], let $\omega_{1}^{\prime} \subset \subset \omega_{1}$, for $0<h<d\left(\omega_{1}^{\prime}, \omega_{1}\right), X_{1} \in \omega_{1}^{\prime}$ we set $\tau_{h}^{i} u_{0}\left(X_{1}, X_{2}\right)=u_{0}\left(X_{1}+h e_{i}, X_{2}\right) i=1, \ldots, p$. From (9) we have

$$
\begin{array}{r}
\int_{\omega_{2}} \tau_{h}^{i} A_{22} \nabla_{X_{2}}\left(\tau_{h}^{i} u_{0}-u_{0}\right) \nabla_{X_{2}} \varphi d X_{2}+\int_{\omega_{2}}\left(\tau_{h}^{i} A_{22}-A_{22}\right) \nabla_{X_{2}} u_{0} \nabla_{X_{2}} \varphi d X_{2} \\
+\beta \int_{\omega_{2}}\left(\tau_{h}^{i} u_{0}-u_{0}\right) \varphi d X_{2}=\int_{\omega_{2}}\left\{\tau_{h}^{i} B\left(u_{0}\right)-B\left(u_{0}\right)\right\} \varphi d X_{2}
\end{array}
$$

Taking $\varphi=\frac{\tau_{h}^{i} u_{0}-u_{0}}{h^{2}}$ as a test function, using ellipticity assumption (2) and Hölder's inequality we derive

$$
\begin{aligned}
& \lambda\left\|\nabla_{X_{2}}\left(\frac{\tau_{h}^{i} u_{0}-u_{0}}{h}\right)\right\|_{L^{2}\left(\omega_{2}\right)}^{2} \leq \\
& \left\|\left(\frac{\tau_{h}^{i} A_{22}-A_{22}}{h}\right) \nabla_{X_{2}} u_{0}\right\|_{L^{2}\left(\omega_{2}\right)}\left\|\nabla_{X_{2}}\left(\frac{\tau_{h}^{i} u_{0}-u_{0}}{h}\right)\right\|_{L^{2}\left(\omega_{2}\right)} \\
& \quad+\left\|\left(\frac{\tau_{h}^{i} B\left(u_{0}\right)-B\left(u_{0}\right)}{h}\right)\right\|_{L^{2}\left(\omega_{2}\right)}\left\|\left(\frac{\tau_{h}^{i} u_{0}-u_{0}}{h}\right)\right\|_{L^{2}\left(\omega_{2}\right)}
\end{aligned}
$$

Using Poincaré's inequality we deduce

$$
\left\|\frac{\tau_{h}^{i} u_{0}-u_{0}}{h}\right\|_{L^{2}\left(\omega_{2}\right)} \leq \frac{C}{\lambda}\left\{\begin{array}{c}
\left\|\frac{\tau_{h}^{i} A_{22}-A_{22}}{h}\right\|_{L^{\infty}\left(\omega_{2}\right)}\left\|\nabla_{X_{2}} u_{0}\right\|_{L^{2}\left(\omega_{2}\right)} \\
+\left\|\frac{\tau_{h}^{i} B\left(u_{0}\right)-B\left(u_{0}\right)}{h}\right\|_{L^{2}\left(\omega_{2}\right)}
\end{array}\right\}
$$

Using regularity assumption (8) and integrating over ω_{1}^{\prime} (we use only the assumption $\left.\partial_{k} A_{22} \in L^{2}(\Omega)\right)$ we deduce

$$
\left\|\frac{\tau_{h}^{i} u_{0}-u_{0}}{h}\right\|_{L\left(\omega_{1}^{\prime} \times \omega_{2}\right)} \leq C^{\prime}+\left\|\left(\frac{\tau_{h}^{i} B\left(u_{0}\right)-B\left(u_{0}\right)}{h}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime} \times \omega_{2}\right)}
$$

Thanks to regularity of $B\left(u_{0}\right)$ in the X_{1} direction (assumption (36)) we get

$$
\left\|\frac{\tau_{h}^{i} u_{0}-u_{0}}{h}\right\|_{L^{2}\left(\omega_{1}^{\prime} \times \omega_{2}\right)} \leq C^{\prime \prime}
$$

where $C^{\prime \prime}$ is independent on h, whence $\nabla_{X_{1}} u_{0} \in L^{2}(\Omega)$ and the proof is finished.

Now, we give a result on the rate of convergence
Proposition 9. Under assumptions of Theorem 3 and (36), (37), for $\beta>$ $\max \left(K, \beta_{0}\right)$ (where $\beta_{0}>M|\Omega|^{\frac{1}{2}-\frac{1}{r}}$ (fixed), and K is the Lipschitz constant of B associated with the bounded set $\left\{\|u\|_{L^{2}} \leq \frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta_{0}-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right\}$), we have $u_{\epsilon} \rightarrow u_{0}$ in W and

$$
\left\|u_{\epsilon}-u_{0}\right\|_{L^{2}\left(\omega_{1}^{\prime} \times \omega_{2}\right)} ;\left\|\nabla_{X_{1}}\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime} \times \omega_{2}\right)} \leq C^{\prime} \epsilon
$$

where $C \geq 0$ is independent of ϵ.
Proof. To make calculus easier we suppose that $A_{12}, A_{21}=0, A_{11}, A_{22}=I$. According to Theorem 3 the set of solutions to (9) is non empty, and we show easily that (9) has a unique solution (thanks to assumption $\beta>\max \left(K, \beta_{0}\right)$), consequently Corollary 1 implies $u_{\epsilon} \rightarrow u_{0}$ in W.

From (6) and (9) we have

$$
\epsilon^{2} \int_{\Omega} \nabla_{X_{1}} u_{\epsilon} \nabla_{X_{1}} \varphi d x+\int_{\Omega} \nabla_{X_{2}}\left(u_{\epsilon}-u_{0}\right) \nabla_{X_{2}} \varphi d x+\beta \int_{\Omega}\left(u_{\epsilon}-u_{0}\right) \varphi d x=\int_{\Omega}\left(B\left(u_{\epsilon}\right)-B\left(u_{0}\right)\right) \varphi d x
$$

Given $\omega_{1}^{\prime} \subset \subset \omega_{1}^{\prime \prime} \subset \subset \omega_{1}$, and let ρ be a cut-off function with $\operatorname{Supp}(\rho) \subset \omega_{1}^{\prime \prime}$ and $\rho=1$ on ω_{1}^{\prime} (we can choose $0 \leq \rho \leq 1$). We introduce the test function used by M.Chipot and S.Guesmia in [2], $\varphi=\rho^{2}\left(u_{\epsilon}-u_{0}\right) \in H_{0}^{1}(\Omega)$ (thanks to the previous proposition). Testing with φ we obtain

$$
\begin{aligned}
& \epsilon^{2} \int_{\Omega} \nabla_{X_{1}} u_{\epsilon} \nabla_{X_{1}} \rho^{2}\left(u_{\epsilon}-u_{0}\right) d x \\
& +\int_{\Omega} \nabla_{X_{2}}\left(u_{\epsilon}-u_{0}\right) \nabla_{X_{2}} \rho^{2}\left(u_{\epsilon}-u_{0}\right) d x+\beta \int_{\Omega} \rho^{2}\left(u_{\epsilon}-u_{0}\right)^{2} d x \\
& \\
& \quad=\int_{\Omega}\left(B\left(u_{\epsilon}\right)-B\left(u_{0}\right)\right) \rho^{2}\left(u_{\epsilon}-u_{0}\right) d x
\end{aligned}
$$

we deduce

$$
\begin{aligned}
& \epsilon^{2} \int_{\Omega}\left|\rho \nabla_{X_{1}}\left(u_{\epsilon}-u_{0}\right)\right|^{2} d x+\int_{\Omega}\left|\rho \nabla_{X_{2}}\left(u_{\epsilon}-u_{0}\right)\right|^{2} d x \\
& +\beta \int_{\Omega} \rho^{2}\left(u_{\epsilon}-u_{0}\right)^{2} d x=-\epsilon^{2} \int_{\Omega} \rho^{2} \nabla_{X_{1}} u_{0} \nabla_{X_{1}}\left(u_{\epsilon}-u_{0}\right) d x-2 \epsilon^{2} \int_{\Omega}\left(u_{\epsilon}-u_{0}\right) \rho \nabla_{X_{1}} \rho \nabla_{X_{1}} u_{0} d x \\
& -2 \epsilon^{2} \int_{\Omega} \rho\left(u_{\epsilon}-u_{0}\right) \nabla_{X_{1}}\left(u_{\epsilon}-u_{0}\right) \nabla_{X_{1}} \rho d x+\int_{\Omega}\left(B\left(u_{\epsilon}\right)-B\left(u_{0}\right)\right) \rho^{2}\left(u_{\epsilon}-u_{0}\right) d x
\end{aligned}
$$

Using Hölder's inequality for the first three term in the right-hand side, and assumptions (37), (3) and Hölder's inequality for the last one, we obtain

$$
\begin{aligned}
& \epsilon^{2}\left\|\rho \nabla_{X_{1}}\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}^{2}+\left\|\rho \nabla_{X_{2}}\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}^{2}+ \\
& \beta\left\|\rho\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}^{2} \leq \epsilon^{2}\left\|\rho \nabla_{X_{1}} u_{0}\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}\left\|\rho \nabla_{X_{1}}\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)} \\
& +2 \epsilon^{2}\left\|\left(u_{\epsilon}-u_{0}\right) \nabla_{X_{1}} \rho\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}\left\|\rho \nabla_{X_{1}} u_{0}\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)} \\
& +\epsilon^{2}\left\|\left(u_{\epsilon}-u_{0}\right) \nabla_{X_{1}} \rho\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}\left\|\rho\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)} \\
& \quad+K\left\|\rho\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}^{2},
\end{aligned}
$$

(thanks to Proposition 1, we remark that $\rho u_{\epsilon}, \rho u_{0} \in\left\{\|u\|_{L^{2}} \leq \frac{M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}{\beta_{0}-M|\Omega|^{\frac{1}{2}-\frac{1}{r}}}\right\}$).
Using Young's inequality for , the first term in the right-hand side of the previous inequality, and boundedness of $\left(u_{\epsilon}\right)$ for the rest, we deduce

$$
\begin{aligned}
\frac{\epsilon^{2}}{2}\left\|\rho \nabla_{X_{1}}\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}^{2}+ & \left\|\rho \nabla_{X_{2}}\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}^{2} \\
& +(\beta-K)\left\|\rho\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime \prime} \times \omega_{2}\right)}^{2} \leq C \epsilon^{2}
\end{aligned}
$$

whence

$$
\left\|u_{\epsilon}-u_{0}\right\|_{L^{2}\left(\omega_{1}^{\prime} \times \omega_{2}\right)} ;\left\|\nabla_{X_{2}}\left(u_{\epsilon}-u_{0}\right)\right\|_{L^{2}\left(\omega_{1}^{\prime} \times \omega_{2}\right)} \leq C^{\prime} \epsilon
$$

where C^{\prime} is independent of ϵ.
6.2. Application to integro-differential problem. In this section we provide some concrete examples. In [3] M. Chipot and S. Guesmia studied problem (6) with the following integral operator

$$
\begin{equation*}
B(u)=a\left(\int_{\omega_{1}} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) u\left(X_{1}^{\prime}, X_{2}\right) d X_{1}^{\prime}\right) \tag{38}
\end{equation*}
$$

To prove the convergence theorem the authors based their arguments on the compacity of the operator $u \rightarrow \int_{\omega_{1}} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) u\left(X_{1}^{\prime}, X_{2}\right) d X_{1}^{\prime}$. Indeed, for a sequence $u_{n} \rightharpoonup u_{0}$ in $L^{2}(\Omega)$ we have $\int_{\omega_{1}} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) u_{n}\left(X_{1}^{\prime}, X_{2}\right) d X_{1}^{\prime} \rightarrow \int_{\omega_{1}} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) u_{0}\left(X_{1}^{\prime}, X_{2}\right) d X_{1}^{\prime}$ in $L^{2}(\Omega)$ (by compacity) and we use the continuity of a and Lebesgue's theorem
(under additional assumption on a) to get $a\left(\int_{\omega_{1}} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) u_{n}\left(X_{1}^{\prime}, X_{2}\right) d X_{1}^{\prime}\right)$ $\rightarrow a\left(\int_{\omega_{1}} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) u_{0}\left(X_{1}^{\prime}, X_{2}\right) d X_{1}^{\prime}\right)$ in $L^{2}(\Omega)$.

We can give another operator based on the aforementioned one

$$
\begin{equation*}
B(u)=\int_{\omega_{1}} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) a\left(u\left(X_{1}^{\prime}, X_{2}\right)\right) d X_{1}^{\prime} \tag{39}
\end{equation*}
$$

For $a: \mathbb{R} \rightarrow \mathbb{R}$ we note a Liptchitz function i.e there exists $K \geq 0$ such that

$$
\begin{equation*}
\forall x, y \in \mathbb{R}:|a(x)-a(y)| \leq K|x-y| \tag{40}
\end{equation*}
$$

In addition, we suppose that a satisfies the growth condition

$$
\begin{equation*}
\exists q \in\left[0,1\left[, M \geq 0, \forall x \in \mathbb{R}:|a(x)| \leq M\left(1+|x|^{q}\right)\right.\right. \tag{41}
\end{equation*}
$$

and we suppose that

$$
\begin{equation*}
h \in L^{\infty}\left(\omega_{1} \times \Omega\right), \nabla_{X_{1}} h \in L^{\frac{2}{1-q}}\left(\omega_{1} \times \Omega\right) \tag{42}
\end{equation*}
$$

Theorem 8. Consider problem (6) with B given by (38) or (39). Assume (1), (2), (8), (40), (41), (42) and for β suitably chosen, then we have the affirmations of theorems 1 , 2 and 3 of section 1 and those of propositions 8, 9

Proof. Take B as in (39) the proof of this theorem amounts to prove that assumptions (3), (4), (5), (36) and (37) hold. (3) follows directly from (40) and (42), Now assume (41), (42) then we can check easily that (4) holds with $r=\frac{2}{q}$. It remains to prove that (5) holds. For every $u \in V$ (we can also take $\left.u \in L^{2}(\Omega)\right)$, and $\varphi \in \mathcal{D}(\Omega)$ we have for $1 \leq k \leq p$

$$
\begin{aligned}
& I(\varphi)=\left|\int_{\Omega}\left(\int_{\omega_{1}} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) a\left(u\left(X_{1}^{\prime}, X_{2}\right)\right) d X_{1}^{\prime}\right) \partial_{k} \varphi\left(X_{1}, X_{2}\right) d X_{1} d X_{2}\right| \\
& =\left|\int_{\omega_{1}}\left(\int_{\Omega} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) \partial_{k} \varphi\left(X_{1}, X_{2}\right) a\left(u\left(X_{1}^{\prime}, X_{2}\right)\right) d X_{1} d X_{2}\right) d X_{1}^{\prime}\right| \\
& \quad \leq \int_{\omega_{1}}\left|\left(\int_{\Omega} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) \partial_{k} \varphi\left(X_{1}, X_{2}\right) a\left(u\left(X_{1}^{\prime}, X_{2}\right)\right) d X_{1} d X_{2}\right)\right| d X_{1}^{\prime}
\end{aligned}
$$

Since $\partial_{k} h \in L^{\frac{2 r}{r-2}}\left(\omega_{1} \times \Omega\right)$ it follows that for a.e $X_{1}^{\prime} \in \omega_{1}: \partial_{k}\left[a\left(u\left(X_{1}^{\prime},.\right)\right) h\left(., X_{1}^{\prime},.\right)\right] \in$ $L^{\frac{2 r}{r-2}}(\Omega)$, integrating by part we get

$$
\begin{aligned}
I(\varphi) & \leq \int_{\omega_{1}}\left|\left(\int_{\Omega} \partial_{k} h\left(X_{1}, X_{1}^{\prime}, X_{2}\right) \varphi\left(X_{1}, X_{2}\right) a\left(u\left(X_{1}^{\prime}, X_{2}\right)\right) d X_{1} d X_{2}\right)\right| d X_{1}^{\prime} \\
& \leq\|a(u)\|_{L^{r}}\left|\omega_{1}\right|^{\frac{1}{2}}\left\|\partial_{k} h\right\|_{L^{\frac{2 r}{r-2}}}\|\varphi\|_{L^{2}(\Omega)} \\
& \leq M^{\prime}\left(1+\|u\|_{L^{2}}\right)\|\varphi\|_{L^{2}(\Omega)}
\end{aligned}
$$

And therefore $\partial_{k} B(u) \in L^{2}(\Omega)$, whence (36) holds and we have

$$
\left\|\nabla_{X_{1}} B(u)\right\|_{L^{2}} \leq M^{\prime \prime}\left(1+\|u\|_{L^{2}}\right)
$$

then for every L^{2}-bounded set $E \subset V$ we have

$$
\begin{equation*}
\left\|\nabla_{X_{1}} B(u)\right\|_{L^{2}} \leq M^{\prime \prime \prime}, u \in E \tag{43}
\end{equation*}
$$

Now, given a sequence $\left(U_{n}\right)$ in $\operatorname{conv}(B(E))$ which converges strongly to some U_{0} in $L^{2}(\Omega)$, by (43) and the convexity of the norm we show that $\left(\nabla_{X_{1}} U_{n}\right)_{n}$ is bounded in $L^{2}(\Omega)$, hence one can extract a subsequence $\left(U_{n}\right)$ such that $\left(\nabla_{X_{1}} U_{n}\right)$ converges weakly to some c_{0} in $L^{2}(\Omega)$, thanks to the continuity of derivation on $\mathcal{D}^{\prime}(\Omega)$ which gives $c_{0}=\nabla_{X_{1}} U_{0}$ and therefore, $U_{0} \in V$, whence (5) follows. Finally, one can check easily that (37) holds. Same arguments when B is given by (38)
6.3. A generalization. Consider (38) with

$$
\begin{aligned}
& \quad h \in L^{\infty}(\Omega), l \in L^{\infty}\left(\omega_{1}\right), \nabla_{X_{1}} l \in L^{2}\left(\omega_{1}\right) \\
& \text { the operator } u \rightarrow a\left(l\left(X_{1}\right) \int_{\omega_{1}} h\left(X_{1}^{\prime}, X_{2}\right) u\left(X_{1}^{\prime}, X_{2}\right) d X_{1}^{\prime}\right) \text { belongs to a class of }
\end{aligned}
$$

operators defined by

$$
\begin{equation*}
B(u)=a(l P(u)) \tag{45}
\end{equation*}
$$

where $P: L^{2}(\Omega) \rightarrow L^{2}\left(\omega_{2}\right)$ is a linear bounded operator (an orthogonal projector for example). The method used by M. Chipot and S. Guesmia is not applicable here, in fact the linear operator P is not necessarily compact, for $u_{n} \rightharpoonup u_{0}$ we only have $P\left(u_{n}\right) \rightharpoonup P\left(u_{0}\right)$ weakly and therefore every subsequence $\left(a\left(l P\left(u_{n}\right)\right)\right)$ is not necessarily convergent in $L^{2}(\Omega)$ strongly. However we have the following.

Theorem 9. Consider problem (6) with B given by (45). Assume (1), (2), (8), (40), (41) and (44), then for β suitably chosen, we have affirmations of Theorems 1 , 2 and 3 of section 1 and moreover we have $u_{0} \in H^{1}(\Omega)$
Proof. The proof of this theorem amounts to prove that assumptions (3), (4), (5) and (36) hold. Since P is Lipschitz then (3) follows by (40). We also can prove (4) using (41) with $r=\frac{2}{q}$. It remains to check that (5), (36) hold, for every $u \in$ V (we can take $\left.u \in L^{2}(\Omega)\right)$ we have $\nabla_{X_{1}} a(l P(u)) \in L^{2}(\Omega)$ and $\nabla_{X_{1}} a(l P u)=$ $a^{\prime}(l P(u)) P(u) \nabla_{X_{1}} l$. We can show easily that $\nabla_{X_{1}} a(l P(E))$ is bounded for any L^{2}-bounded set $E \subset V$ and we finish the proof as in Theorem 8.

References

[1] Cazenave T., An introduction to semilinear elliptic equations, Editora do IM-UFRJ, Rio de Janeiro, 2006. ix + 193 pp. ISBN: 85-87674-13-7.
[2] M. Chipot, S. Guesmia, On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems,Com. Pur. App. Ana. 8 (1) (2009), pp. 179-193.
[3] M. Chipot, S. Guesmia, On a class of integro-differential problems. Commun. Pure Appl. Anal. 9(5), 2010, 1249-1262.
[4] M. Chipot, S.Guesmia, M. Sengouga. Singular perturbations of some nonlinear problems. J. Math. Sci. 176 (6), 2011, 828-843.
[5] J. L. Lions, "Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal," Lecture Notes in Mathematics \# 323, Springer-Verlag, 1973.
[6] W. Rudin. functional analysis. McGraw-Hill Science.1991. ISBN : 0070542368.
E-mail address: chokri.ogabi@ac-grenoble.fr

[^0]: Date: September 30, 2014.
 1991 Mathematics Subject Classification. 35J60, 35B25.
 Key words and phrases. Anisotropic singular perturbations, elliptic problem, asymptotic behaviour.

