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ON A CLASS OF NONLINEAR ELLIPTIC, ANISOTROPIC
SINGULAR PERTURBATIONS PROBLEMS

OGABI CHOKRI

Academie de Grenoble, 38000. Grenoble. France

ABSTRACT. In this article we study the asymptotic behavior,as e — 0, of the
solution of a nonlinear elliptic, anisotropic singular perturbations problem in
cylindrical domain, the limit problem is given and strong convergences are
proved, we also give an application to intergo-differential problems.

1. DESCRIPTION OF THE PROBLEM AND MAIN THEOREMS

The aim of this manuscript is to analyze nonlinear diffusion problems when the
diffusion coefficients in certain directions are going towards zero. We consider a
general nonlinear elliptic singularly perturbed problem which can be considered as
a generalization to some class of integro-differential problem (see [3]), let us begin
by describing the linear part of the problem as given in [2] and [3]. For Q = wy X wo
a bounded cylindrical domain of RY (N > 2) where wy,ws are Lipschitz domains
of R? and RV ~P respectively, we denote by = = (z1,...,xx) = (X1, X2) the points
in RY where

X1 = (z1,..,xp) €wiand Xo = (Tpt1, ..., TN) € Wa,

i.e. we split the coordinates into two parts. With this notation we set

Vx

_ T _ 1
= O = (27,
where

Vx, = (0pys e 05,)" and Vx, = (0

Tp419 "

Oy )T
To make it simple we use this abuse of notation
Vx,u € L*(Q) instead of Vx,u € [LQ(Q)]p;N_p for a function u
Let A = (a;j(z)) be a N x N symmetric matrix which satisfies the ellipticity
assumption
IN>0:AE-€ > N¢]> Ve e RN foraez € Q,
and

ai(z) € L®(Q),Vi,j =1,2,..., N, (1)
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7

where ” -7 is the canonical scalar product on RY. We decompose A into four
blocks

Ann A
A =
( A1 Az )’
where Aj1, Ago are respectively p X p and (N — p) x (N — p) matrices. For
0<e<1 weset

A = €2A11 €Aio
‘ €Aa1 Az ’
then we have therefore, for a.e. z € Q and every ¢ € RN
—2 =2
Ag-e = A(EE] +[E7) 2 Al Kkl vee RY, (2)
— = —2
and A&, - &y A |§2’

Y

v

3

where we have set

_ &)
g_ <£2 ’
with,

& =(&, &) and & = (§pq, s En)T

And finally let B : L?(Q) — L?(2) be a nonlinear locally-Liptchitz operator i.e,
for every bounded set E C L?(Q) there exists K > 0 such that

Vu,v € B |[Bw) = BO)| 20 < K lu— vl 20 (3)
,and B satisfies the growth condition
3 >2 M 20, Vue L2(9Q): [ B gy < M (1+ ullzq) . @)
We define the space
V={ueLl*Q):VxueL*Q)}
Moreover we suppose that for every E C V bounded in L?(Q2) we have
como {B(E)} € V, (5)

where conv { B (E)} is the closed convex hull of B (E) in L?(£2).This last condi-
tion is the most crucial, it will be used in the proof of the interior estimates and
the convergence theorem.

For § > M \Q|%7% we consider the problem

/ASVuE.Vgodx + ﬁ/uggpda: = /B(ug)godx, Yo € D(Q) ©)
Q Q

Q
Ue € H& 9

The existence of u. will be proved in the next section, Now, passing to the limit
e — 0 formally in (6) we obtain the limit problem

/AQQVX2UO.VX2<,0d:c + B/uogodm = /B(uo)gpdx, Yo € D(QY) (7)
Q Q Q
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Our goal is to prove that ug exists and it satisfies (7), and give a sense to the
formal convergence u, ~ ug, actually we would like to obtain convergence in L?((2).
We refer to [2] for more details about the linear theory of problem (6). However the
nonlinear theory is poorly known, a monotone problem has been solved in [4] (using
monotonicity argument), and also a case where B is represented by an integral
operator has been studied in [3] (in the last section of this paper, we shall give an
application to integro-differential problems). Generally, in singular perturbation
problems for PDEs, a simple analysis of the problem gives only weak convergences,
and often it is difficult to prove strong convergence, the principal hardness is the
passage to the limit in the nonlinear term. In this article we expose a resolution
method based on the use of several approximated problems involving regularization
with compact operators and truncations. Let us give the main results.

Theorem 1. (Existence and L"-regularity of solutions) Assume (1), (2), (4), and
that B is continuous on L*(Q) ( not necessarily locally-Lipschitz) then (6) has at
least a solution u. € H(Q). Moreover, if uc € H(Q) is a solution to (6) then

lwell pr gy < ﬁ for every e > 0.

For the convergence theorem and the interior estimates we need the following
assumption

8kA22, aiaij, 8jaij S LOO(Q) k=1, P, t=1,..,p, j=p+1, ,N
(®)
Theorem 2. (Interior estimates) Assume (1), (2), (3), (4), (5), (8). Let (u.) C

H}(Q)) be a sequence of solutions to (6) then for every open set Q' CC Q (ie
Q' C Q) there exists Cor > 0 (independent of €) such that

Ve [uell gy < Cor

Theorem 3. ( The convergence theorem) Assume (1), (2), (3), (4), (5), (8). Let
(ue) C HY(Q) be a sequence of solutions to (6) then there exists a subsequence (u, )
and ug € HL (Q) N L2(Q) such that : Vx,up € L*(Q) and

Ue,, — Up, VX,Ue, — VXU N LQ(Q) strongly as €, — 0

and for a.e X1 we have ug(X1,.) € H} (w2),and

/AQQVXQUO(Xla ) - Vx,pdXo +ﬂ/U0(X17 JpdXs

= /B(uo)(Xl,.)gong, VY € D(w,) 9)

w2

Corollary 1. If problem (9) has a unique solution ( in the sense of theorem 3)
then the convergences given in the previous theorem hold for the whole sequence
(te)-

Proof. The proof is direct, let (uc) be a sequence of solutions to (6) and suppose
that u. does not converge to ug (as € — 0) then there exists a subsequence (u., )
and § > 0 such that Veg, [|ue, —uollz2(q) > 0 or [[Vix,(ue, —uo)ll2(q) > 0. By
theorem 3 one can extract a subsequence of (u.,) which converges to some u; in
the sense of theorem 3, assume that (9) has a unique solution then u; = ug.and
this contradicts the previous inequalities. (I
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In the case of non-uniqueness we can reformulate the convergences ,given in the
previous theorem, using € — nets like in [3]. Let us recall the definition of € — nets

(3D

Definition 1. Let (X, d) be metric space, Y, Y’ two subsets of X, then we say that
Y is an € —net of Y/, if for every x € Y' there exists an a € Y such that

d(z,a) < e
We define the following space introduced in [3]

W ={ue L*Q): Vx,u € L*(Q), and for a.e X1, u(X1,.) € Hy(ws) },
equipped with the Hilbertian norm (see [3])

lullyy = ||U|\2Lz(n) + HVXZuHiz(Q)
Now we can give Theorem 3 in the following form

Theorem 4. Under assumptions of theorem & then Z ,the set of solutions of (9)
in W, is non empty and we have ZN Hlloc(Q) # &, and moreover for every n > 0,
there exists eg > 0 such that = is an n — net of ¢, in W where

Eeo = {ue solution to (6) for 0 < e < ep}

Proof. Theorem 1 and 3 ensure that ENH, (Q) # 2. For the n—net convergence,
let us reasoning by contradiction, then there exists n > 0 and a sequence ¢, — 0
such that = is not an n — net of 2, in W for every k ( remark that =., # & by
Theorem 1) in other words there exists a sequence (u; ) with €, — 0 such that

for every up € = we have ’ Uer — UOH > 7, according to theorem 3 there exists a
w

subsequence of (uc, ) which converges to some ug € = inl¥ and this contradicts the
previous inequality. O

2. EXISTENCE AND L" — regularity FOR THE SOLUTIONS AND WEAK
CONVERGENCES

2.1. Existence and L" —regularity. In this subsection we prove Theorem 1, we
start by the following result on the L"- regularity for the solutions

Proposition 1. Assume (1), (2), (4 ) then if uc € H}(Q) is a solution to (6) then

ue € L7(Q) and [|uel| o) < ﬁ for every e >0

Proof. We will proceed as in [1]. Let u. € Hg(f) be a solution to (6), given
g € D(Q) and let w, € H}(Q) be the unique solution to the linear problem

/AEVwE -Vpdx + B/wetpda? = /g(pdm, Vo € D(Q), (10)
Q Q Q

the existence of w, follows by the Lax-Milgram theorem (thanks to assumptions

(1), (2))-
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Take u, as a test function and using the symmetry of A, we get

/uegdx = /AEVw6 - Vuedr + ,B/wguedm
Q Q

Q

/AGVU6 -Vw.dxr + B/weuedm
Q Q

= /B(ue)wedac.
Q

Given s such that L + 1 =1, then by (4) we obtain

/ wegdn| < M1+ [lucll o o) e
Q

L+(9) (11)

Now we have to estimate |[wel|f.(q, - Let p € C1(R,R), such that p(0) = 0 and

p' >0 and p € L™ then p(w.) € H (), take p(we) as a test function in (10) we
get

P (w)ANVwe - Vwedx + 8 | wep(we)dz = [ gp(we)da.
/ o |

Q Q

Now, using ellipticity assumption (2) we derive

M [ levs 2o+ [ [Vxgwd s | 46 [vptwids < [gptw)da
Q Q Q Q

Thus

8 / wiplw e < [optu)ic

Q

Assume that Vo € R : |p(z)]| < \z|ﬁ , so that |p(z)|" < |z||p(z)| = zp(z) then,
we obtain

8 [wpwids < gl | [ ol ds

Q Q
1
< Yol /wemwe)dx ,

Q

then
%
8 /wep(wa < gl oo
Q
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Now, for § > 0 taking p(z) = x(2? + 6)% we show easily that p satisfies the
above assumptions, so we obtain

s

ﬁ/ﬁw+w¥ < gl

Q

Ls(Q)>

let 6 — 0 by Fatou’s lemma we get

5 ||weHLs(Q) < gl L5 ()

Finally by (11) we get

M1+ el gen)
ﬁwﬂé T g

L3 (Q)
Q

By density we can take g € L*(2) and therefore by duality we get

M1+ [|uellp2(0))
[tell 1y < 3 :

hence by Holder’s inequality we obtain

M M|QPT
el r () < R luell () »
then
e M
R

O

Now, it remains to prove the existence of u., the proof is based on the Schauder
fixed point theorem. Let v € L?(2) and v, € H}(Q) be the unique solution to the
linearized problem

/AEVU6 -Vdz + B/vegoda: = /B(v)godx, Yo € D(Q) (12)
Q Q Q

The existence of v, follows by the Lax-Milgram theorem ( thanks to assumptions
(1), (2)). Let I' : L*(Q) — L*(Q) be the mapping defined by I'(v) = v..We prove
that T is continuous, fix v € L*(Q) and let v,, — v in L?*(f), we note v" = T'(v,)
then we have

JAS =0 eduts [ -v)pds = [ (Blon) - B eds, Vo € DO
Q Q Q

Take (v? —v.) as a test function, estimating using ellipticity assumption (2) and
Holder’s inequality we get

Bllve = vell L2y < 1B(wn) = B(v)ll L2 -

Passing to the limit as n — oo and assume that B is continuous, then the
continuity of I" follows. Now, we define the set
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1 1 1 1

M|Qz7" MI|QZ7"
S=qveH(Q): ||VU||L2(Q) < vE i — | and ||U||L2(Q) < —| | 11
EV2AX\B-MI|Q|2" " B—MI|QZ""

It is clear that S is a convex bounded set in H}(2) and it is closed in L?(£2), then S
is compact in L?(€2) (thanks to the compact Sobolev embedding H} () — L2(Q)).
Let us check that S is stable by T'. For v € S, taking ¢ = v, in (12) and estimating
using ellipticity assumption (2) and Holder’s inequality we get

Aé? ||VUeHi2(Q) +8 ||Us||2L2(Q) < ||B(U)||L2(Q) HUe||L2(Q) ]

then by Young’s inequality we derive

2 2 1 2 5 2
A Vvl + BllvlFacey < 55 1BOGay + 5 Ivelacoy

and (4) gives

1—2
Q77 (M + Mol g2 0))*

2 2 B 2
Ae ||VUe||L2(Q)+§||’Ue||L2(Q) < 23
1 1 2
|Q|17% M + %7;;1 1_1 2
B—M|Q|Z”F 3 M|Q2™"
< 5 Sol 7 o an-t
B B—MIQP”"
hence
M|Q|3 ¥
||Ue||L2(Q) < s+
1

-

-

VB MQz
||VU6HL2(Q) < o 6_MQ|§_T>

And therefore v = I'(v) € S.Whence, there exists at least a fixed point u. € S
for T', in other words u. is a solution to (6).

2.2. Weak convergences as ¢ — 0. Throughout this article we use the notations
— | — for weak and strong convergences of sequences respectively. Assume (1), (2),
(4 ) and let (u) be a sequence of solutions to (6), . We begin by a simple analysis
of the problem, considering problem (6) and taking ¢ = u. € H}(Q), by ellipticity
assumption (2) we get

A /|6VX1u€|2dx+/\VX2ue|2dx +B/ufdx§/B(ue)uedx,
Q Q Q Q

and Holder’s inequality gives
A IV x, e | 72 ) AV x5 e 2 gy 8 el 72 ) < 1B @)l 2y el 2 ey -

and therefore (4) and Proposition 1 give

M2 Q' MO
2 2 2
A ||V x, uel| 72 ) FA IV xta e[ 2 0y 8 el 72 ) < L+

B-MIQPFT - Mo
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‘Whence
[€Vx, UeHL2(Q) <
<

Slag)a

Hvxwellm(m = (13)
< Moz
B—M|Q|Z

3

=

||u€HL2(Q)

20— 7 -5 . .
,where C? = % <1 + 5MMQ|;|11> Remark that the gradient of u. is
— 2 I3 - 2 ™

not bounded uniformly in H}(Q) so we cannot obtain strong convergence (using
Sobolev embedding for example) in L%(£2), however there exists a subsequence (u., )
and ug € L*(Q) such that: ue, — ug, Vx,ue, — Vx,uo and €,V x, u., — 0 weakly
in L2(Q2) (we used weak compacity in L?(f2), and the continuity of the operator
of derivation on D’'(2)). The function uy constructed before represents a good
candidate for solution to the limit problems (7),(9).

Corollary 2. We have ug € L"().

Proof. Since (u,,) is bounded in L"(2) then one can extract a subsequence noted
always (u.,) which converges weakly to some u; € L"(2) and therefore u, — uy
in D'(Q), so u; = ug O

3. INTERIOR ESTIMATES AND H}  — regularity

For every g € V consider the linear problem (10), then one can prove the

Theorem 5. Assume (1), (2), (8) then for every Q' CC Q (i.e ¥ C Q) there
exists Car g > 0 independent of € such that

Ve : ||v6||H1(Q’) < Car g (14)

Proof. The proof is the same as in [2] (see the rate estimations theorem in [2]),
remark that the additional term Bv. is uniformly bounded in L?(Q). O

To obtain interior estimates for the nonlinear problem we use the well known
Banach-Steinhaus’s theorem

Theorem 6. (see [6]) Let Y and Z be two separated topological vector spaces, and
let (Ae) be a family of continuous linear mappings from'Y — Z |, G is convex
compact set in'Y . Suppose that for each v € G the orbit {Ac(x)}, is bounded in Z,
then (A¢) is uniformly bounded on G, i.e. there exists a bounded F set in Z such
that Ve, A.(G) C F.

Now, we are ready to prove Theorem 2. Let (;);en ,(Vj : Q; C ©;41) be an
open covering of €2, so we can define a family (p;); of seminorms on H} () by

p;(u) = |[ull g1 o) for every u € Hyy ()

Set Z = (H}. (), (p;);), we can check easily that Z is a separated locally convex
topological vector space where the topology is generated by the family of seminorms
(pj)j, we alsoset Y = L?(£2). We define a family (A.). of linear mappings from Y to
Z by A.(g) = ve where v, is the unique solution to (10) (existence and uniqueness
follows by Lax-Milgram, thanks to (1), (2)). Ve, A. : Y — Z is continuous (we can
check easily that A, : Y — H'(Q) and the injection H'(Q) < Z are continuous).
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We note Z,,, Y, the spaces Z and Y equipped with the weak topology, then for every

1_1
€, Ac 1 Yy — Z,, is still continuous. Let £ = Su €V : [Jul[12(q) < m}

and assume (5) then G = conv {B (E)} C V, it is clear that G is bounded in Y thus
G is compact in Y,,. Recall that a set is bounded in a locally convex topological space
if and only if the seminorms that generate the topology are bounded on this set,
suppose (8) then according to (14) we have, for g € G, {Ac(g)}, is bounded in Z,
and therefore {Ac(g)}, is bounded in Z,, so by Theorem 6 there exists a bounded
set Fin Z,, (also note that F' is also bounded in Z) such that Ve, A.(G) C F. Now
let (ue) be a sequence of solutions to (6), and assume in addition (3) and (4) then
(13) gives (ue)e C E whence (B(u.))e C G, and therefore A (B(u.)) C F for every
€, in other words we have

Vi, 3C; > 0 such that Ve : p;(Ac(B(ue))) < C;
where C is independent of €, and therefore
Ve, v, HUEHHl(Qj) <Cj
Now, given ' CC Q then there exists j such that Q' C ; thus
Ve, [[uell gy < Cj (15)

Corollary 3. Let (u.) C HY(Q) be a sequence of solutions to (6) such that ue —
ug in L*(Q) weakly, then under assumptions of Theorem 2 we have, ug € H. ()

Proof. take ' CC Q an open set, and ¢ € D(2), 1 < i < N then by (15) we have

/uﬁﬁiwdm = /@'Uei/)dl‘ < Co ||¢||L2(Q')
Q/ 94

Let € — 0 and using the week convergence u. — ug we get:

/uoaﬂbdm < Cor ¥l 2ar

Q/

Hence, up € H} _(Q). O

4. STRONG CONVERGENCE AND PROOF OF THEOREM 3
Let us begin by some useful propositions

Proposition 2. Let (g,) be a sequence in H}(Q) and g € L?(Q) such that Vx,g €
L?(Q) and Vx,9, — Vx,g in L*(Q), then we have:
gn — g in L*(Q) and for a.e. X1 g(X1,.) € H}(w2)

Proof. We have for a.e X1 : Vx,0,(X1,.) — Vx,g (X1,.) in L?(ws2) (up to a
subsequence), and since for a.e X; and for every n we have g,(X1,.) € H}(w2)
then we have for a.e. X1, g(X1,.) € H}(w2).And finally the convergence g, — g in

L?(Q) follows by Poincaré’s inequality / lgn —gl> < C / IVx,(gn — 9)? O
Q Q
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Proposition 3. Let f,v € L?(Q) such that Vx,v € L*(Q) and
/AQQVXZU - Vx,pdx + B/vcpdx = /fapdx, Yo € D(Q),
Q Q Q

then we have for a.e X3

/A22VXQU(X17 -)'VXQSDdXz-Fﬁ/U(Xu JpdXy = /f(le JpdXs, Vo € D(w2)
w2 w2 w2

Moreover, if for a.e X1 we have v(X1,.) € H (w2) then v is the unique function
which satisfies the previous equalities

Proof. Same arguments as in [2]. O

4.1. The cut-off problem: Let ¢ € D(Q), and let (u.) C HJ(£2) be a sequence
of solutions to (6) such that u. converges weakly in L?(Q2) to some ug € L*(Q2).
we define w. € H{(£2) to be the unique solution to the cut-off problem (under
assumptions (1), (2) existence and uniqueness of w, follows from the Lax-Milgram
theorem)

/AEVw6 -Vipdx + 6/w6gpdx = /B(gbué)godx, Yo € D(Q) (16)
Q Q Q

The following Lemma is fundamental in this paper

Lemma 1. Assume (1), (2), (3),(4), (5), (8) then there exists wg € W such that
we — wg n W strongly and

/A22VX2'LU0 - Vx,pdx + B/wogodas = /B(qi)uo)gadzl:, Yo € D(Q),
Q

Q Q

/A22vx2w0(X17 ) - Vx,pdXs + 5/w0(X1a DpdXs

w2

_ /B(qsuo)(Xl,.)godXQ, Yy € D(ws),

w2

and wq 18 the unique function which satisfies the two previous weak formulations.
Admit this lemma for the moment then we have the following

Proposition 4. Assume (1), (2), (3),(4), (5), (8), let (u.) be a sequence of so-
lutions to (6) such that u. — ug weakly in L?(Q), then we have u. — ug in W
strongly and

/A22VXZUO(X1, -)'VXZWdX2+ﬂ/Uo(X1>-)<PdX2 = /B(Uo)(Xl,-WdXz, Vi € D(wz)

w2

4.2. Proof of Proposition 4.
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4.2.1. Approximation by truncations. Let (u.) be a sequence in Hg(£2) of so-
lutions to (6), assume (1), (2) and define w™ € H}(Q) the unique solution ( by
Lax-Milgram theorem) to the problem

Jawur-o+8 [ure= [B,ue, v e D), (17)

Q Q Q
where (¢,,) is a sequence in D(€2) which converges to 1 in L Q).
Proposition 5. Suppose (1), (2), (3), (4) then we have
|V x, we VX2UF||L2(Q) -0

as n — oo uniformly on €

Proof. Subtracting (6) from (17) and taking » = (w” — u.) € H3 () we get

/AEV(w;’ —ue) - V(wl — ue)dx + B/ (w" — uc)*dx

Q

/ (6t00) — Blue)) (wl — u)de
Q

By (2) and Holder’s inequality we derive

MV (! = u)ll72 iy < 1By ue) = Buo)llpe lwd = uell 2

M|Q|2 <-
8- Mlﬂ‘,,la”(énuell]ﬂ(ﬂ M|Q‘777 ||¢7l||LT 2 Q)

we note K the Lipschitz coefficient of B associated with the bounded set

1
MI|Q2™ M
we I2(Q) : full o < sup(— T bl ) < o0
I LA I VT e A

and Proposition 1 gives [|uel| 2 (o) <

1
r

whence (3) and Holder’s inequality give

w = Uel| o

K

2

IV x, (we = uE)HL2(Q) < By ¢ — 1|| 2 el -
And finally by Proposition 1 and Poincaré’s inequality in the X5 direction we

get

C'KM
1V 0 (7 — )| oy < 6 — 1| 22
. RS VAT ERES LT

Whence [V, (w¢ — ue)l|12(q) — 0 as n — oo uniformly in € O
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4.2.2. The convergence. Fix n ,under assumptions of Proposition 4 then it
follows by Lemma 1 that there exists wj € W such that

wr — wg strongly in W (18)

and wg is the unique function in W which satisfies

/A22VX2w3 -V, pdz + ﬁ/wgsﬁdfﬁ = /B(éf’nuo)s@diﬂ, Vo € D(), (19)
Q ! Q

and for a.e X; we have

/AQQVXZUJS(Xl, ) . VX%,OCZXQ + ﬂ/wg(Xl, )(deg (20)

— Bt Jedx, vo € Dwa)
wa
For a.e X taking ¢ = wj(X1,.) € H}(w2) in (20), by ellipticity assumption (2),
Holder’s inequality we obtain

n 2 n
A/\V)Qwo (X1, )7 dXs < [|B(dy,u0) (X1, )l 120y 105 (X215 )l 200 »
w2
and Poincaré’s inequality in the X direction gives

n ¢
IVaxawg (X1, ey < 5 1B(@nu0) (X1, )l e,

N 0/2
HwO(le‘)||L2(w2) < T”B(d)nuO)(Xla')HL?(wg)

integrating over w; yields

n Cl
||VX2wO||L2(Q) < THB@%UO)HB(QN
0/2
lelzy S S IB@10) oy

and by (4) and Holder’s inequality (remark that ug € L"(2) since (u.) is bounded
in L"(Q) and u, — ug in L?(2)) we obtain
1

1_
IO M (+ 18l 2, lluoll)

T—2

||VX2wg||L2(Q) < b\ )
1_1
02|Q|2 s M("'”(anHLﬁjz ||u0||LT)
A

(we note that The the right hand sides of the previous inequality is uniformly
bounded). Using weak compacity in L?(f2), one can extract a subsequence noted
always (wg) which converges weakly to some wy € L?(f2) and such that V x,w? —
V x,wo weakly. Now, passing to the limit as n — oo in (19) and using

1B(¢nu0) — B(uo)ll 20y < K ll¢n, — 1

IN

)

ngHL?(Q)

(21)

o]

L2 lwollLr o)
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we get

/A22VX2wo -Vx,pdr + 5/“10@6196 = /B(uo)godx, Vo € D(Q?) (22)
Q Q Q

Now we will prove that Vx,w? — Vx,wp in L*(Q) strongly, using ellipticity as-
sumption (2) we obtain

AV x, (wh — wo)[[ 7 < (23)

/A22vX2 (Wi —wo) - Vx, (wf — wo)dz + Bwg — wol|72 ()
Q

< /A22VX2U}6L -Vx,widr — /Azzv&wg - Vx,wodr — /A22vx2w0 Vxpuhde
Q Q Q

+/A22VX2w0 - Vx,wodz + B ||wg — w0||2L2(Q)
Q

Taking ¢ = w” € H}(Q) in (19) and (22) and letting € — 0 we get (thanks to (18))
/AQQVXZU)SL . VXngdx + ﬂ/ |’U.)g|2 dx = /B(¢nU(])wgd$, (24)
Q Q Q

and
/A22vX2w0 -Vx,widz + ﬁ/wowg‘dm = /B(uo)wg‘dm (25)
Q Q Q

Replacing (24) and (25) in (23) we get
MV oz (wf = wo)l 720 (26)

< /B(q/)nuo)wgdx - /B(uo)wgdac - /AggVX2w6L -V x,wodz
Q Q Q

+/A22VX2U}0 . VX2’U)Od£L' —l-ﬂ/ |w0|2 dr — ﬂ/wow(’}dm
Q Q Q
We have B(¢,,u0) — B(up) in L?(2) and since w — wq in L*(Q) then

/B(qbnuo)wgda: — /B(uo)woda:
Q

Q

And since Vx,w§ — Vx,wp in L?(Q) then AV x,wd — AV, w in L*(Q)
(since Az € L*(Q2)). Now, let n — oo in (26) we get

IV x, (wg = wo)| L2y — 0 (27)

Thanks to the uniform convergence proved in proposition 5, (27) and (18), we
show by the triangular inequality that Vx,u. — Vx,wo in L?(2). Now, we must
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check that wg = ugp, according to Proposition 2, we have for a.e X1, wo(X3,.) €
H}(wy) and u. — wg in L*(Q) , and therefore wy = ug. By (22), we obtain

/AQQVX2u0 - Vx,pdx + B/uogad:c = /B(uo)cpdar, Yo € D(Q),
Q Q Q

and we finish the proof of proposition 4 by using proposition 3. Finally, if
(ue) is a sequence of solutions to (6) then there exists a subsequence (u.,) which
converges to some uy in L?() weakly ( see subsection 2.2), whence Theorem3
follows from Proposition 4. Now, it remains to prove Lemma 1 which will be
the subject of the next section.

5. PrRooF OF LEMMA 1

Before starting , let us give some tools. For n € N* we note A,, = (I —n~1A)~!
the resolvent of the Dirichlet Laplacian on L?(Q), this is a compact operator as
well known. Given f € L?(Q) and we note U,, = (I —n~tA)~1f | U, is the unique
weak solution to the singularly perturbed problem:

1
_*AUn + Un = f7
n
we have the
Theorem 7. (see [5]): If f € H}(Q) then : |U, — fllz2@) < Con~i 11z ()
The following lemma will be used in the approximation

Lemma 2. For any functions g € H} (Q) N L*(Q) , ¢ € D(Q) we have : ¢g €
H () and moreover there exists Q' CC Q- 1691l 71 ) < Co 19l 1.0

Proof. the proof is direct. O

5.1. Approximation of the cut-off problem by regularization. Let (u.)CH] ()
be a sequence of solution to (6) such that u. — ug € L*(Q) weakly, assume (1), (2),
(3), (4), (5), (8). For ¢ € D(Q) fixed we note w? € H}(2) the unique solution to
the following regularized problem (thanks to assumptions (1), (2) and Lax-Milgram
theorem).

/AGVw? -Vpdx + ﬁ/w?g&dm = /B(An(¢u€))<pdx, VYo € D(Q) (28)
Q Q Q

Proposition 6. As n — oo we have :
Vx,w” — Vx,w in L*(Q) uniformly in e
where w, s the solution to the cut-off problem (16)
Proof. Subtracting (16) from (28) and taking ¢ = (w? — w.) € H}(Q) yields

/AEV(wZ —we) - V(wl — we)dx + B/(w? - we)de

Q

Q
- / (B(An(bue)) — B((¢uo)} (wf — we)de
Q
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Remark that (¢uc)e is bounded in L?(Q2) (Proposition 1) and it is clear that
(An(§1c) e is bounded in L2(©) (|An(6uo)ll oy < 6tcl2(qy)» then by ellip-
ticity assumption (2) and the local Lipschitzness of B (3) we get

A 1Vxawr = w)P do < [ {B(a(00) - Bow)) (ur - w)ds
Q Q

2

< K / A (6ue) — ducl do | = well oo
Q

Hence, Poincaré’s inequality gives

[N

i CK’
V3 (02 = 0l < S5 | [ 1800w - éucfPde |
Q

and by Theorem 7 we get

n CIK -1
IV x, (we —we)HL2(Q) < Iy no¢ H¢ue||H1(Q)7

and Lemma 2 gives

C'K
By
So finally by Theorem 2 we get

n _1
IV, (W = we)ll 20y < Con™ 7 ||uell g (o)
IV, (W = we)llp2q) < C"n7 %
where C” > 0 is independent on € and n O

5.2. The convergence.

5.2.1. Passage to the limit as ¢ — 0. Let n € N* fixed, taking ¢ = w” € H}(Q)
in (28),and estimating using ellipticity assumption (2) and (4) and Proposition
1(as in subsection 2.2) then one can extract a subsequence (wy, ,,))x which converges
(as ex(n) — 0) to some w{ in the following sense

w?k('n) - wg avX2w?k(n) - VX2w(7)L and ek(n)lewZ@(n) -0 (29)
in L*(Q)
Now passing the limit (as ex(n) — 0) in (28) we get

/AggVsz@Vngoderﬂ/wggpdx = (hr)n . B(An (e, (n)))pdr, Vo € D(Q)
Q Q Q

Since e, (n) — ug weakly in L*(Q) then ¢u,, ) — ¢ug weakly in L*(Q) so by
compacity of A, we get Ap (U, (n)) — An(dup) in L?(Q) strongly. And therefore,

the continuity of B gives B(Ap(duc, (n))) — B(An(¢ug)) in L?(Q) strongly, hence
the previous equality becomes

/AQQVX2U)6L -Vx,pdx + ﬁ/wggpdx = /B(An(qbuo)))godx, Yo € D(Q)
Q Q Q
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(30)
Take ¢ = w( () € H}() in (30) and let €x(n) — 0 we derive

/AggVXQwO Vx,whdx —I—B/ |w6L| dx = /B n(Pugy))wy da (31)
Q

Now, we prove strong convergences for the whole sequence (as € — 0)
Proposition 7. As e — 0 we have Vx,w” — Vx,wy strongly in L*()

Proof. Computing

v n v 2
“\Vx, (wek(n) —wg) VX2( w(n) wy)
/B 2 (PUey (n))) W ”k(n)dx—/ek.(n)Algvxwa-VXIw?k(n)dav—Qﬂ/w?k(n)wgdx
Q Q

Q
/Gk A21VX1 ek(n VXz’LUg)d.'L‘ - /AQQV)(ng . Vsz?k(n)da?
Q Q

- /A22vx2w -Vx,wi)dr + /B n(Pugy))wy da

Let €,(n) — 0 and using (29) we get

Q

Ek(")_’o k
Q
- Q/AQQVXQ’LUS . VXZU}(T)LdLC

Since B(Ap(¢uc,(n))) — B(An(duo)) in L*(Q) strongly and w? () — wi weakly

then
/ (An(Pue,(n))) we, (n) —>/ n(duo))

Q
Whence by (31) we get (hr)n Ien(n) = 0. Now using ellipticity assumption (2)
€;(n)—0
we derive
2
)‘62 /‘Vxl 5 (n) + )\/ ‘sz e (n) — n) < Ie”t(n)v

Q Q

and therefore we get

o) — 0 as ¢(n) — 0,

HVX2 (wg(n) - ’U)g’
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According to Proposition 2 we have for a.e X7, wi(X1,.) € Hg(wz2) and

— 0
L2(Q)

n n
0, Hwei(n) — Wy ‘

HVXz (We () — w(})’ L2(Q)

as ¢(n) — 0,

By (30) and Proposition 3 we show that for every n fixed, wj is the unique
function which satisfies for a.e X1

/AQQVXQ’LUS'(Xl, ) . VXQCPdXQ +ﬂ/’u}g(X1, )(p dX2
= /B(An(¢u0))>(X1a .)g@dXQ, V(p S D(WQ)

Since the union of zero measure sets is a zero measure set then we have for a.e
X, and Vn € N*

/Azzvxgwg(Xl, ) Vx,pdXo + 5/w3(X17 JpdXs (32)
= /B(An<¢uo)))(X1, .)(de27 V(p € D(WQ)

And finally, the uniqueness of w{ implies that the whole sequence (w”) converges
ieVneN":
IV, (W —wi)l 120y — 0, and [|wd —willp2q) — 0ase—0

O

5.2.2. Passage to the limit n — oo. For a.e X; and Vn € N* taking ¢ =
wP(X1,.) € H}(ws) in (32), using ellipticity assumption (2) and Holder’s inequality
we get

n 2 n
A/\ngwo (X1, )7 dXa < [[B(An(9u0)) (X5 )l L2 (0 106 (X15 )l 22wy
w2
and Poincaré’s inequality in the X, direction gives

n %
IVawg (X1, e,y < 5 1B(An(9uo)) (X1, )l Lawy)

0/2
||w6l(X1")HL2(w2) < THB(An((bUO))(Xh~)||L2(m)

integrating over w; yields

Cl

HVX2w6L||L2(Q) < By HB(An(ébUO))”L?(Q) )
C/Z
ng”L?(Q) < By ||B(An(¢UO))||L2(Q) )
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and by (4) and Holder’s inequality we obtain

1_1
CQP T M (4[|l oo 1ol 2)
A )
’ 1_1
g 200 M (+ 6] ol )
011L2(Q) Y )

IVxowgllpz@) <

IN

(we used the inequality [|Ay,(¢uo)l|p2(q) < |duoll 2y and the notation ||¢[| , =
sup [¢(x)])
e

Whence, it follows by weak compacity that there exists wy € L?(Q2) and a sub-
sequence noted always (w{) such that

Vx,wy — Vx,wo and wf — wp in L*(Q)

Remark that ¢ug € H}(Q) by Lemma2, then by Theorem 7 A,,(¢uqg) — dug
in L?(92) and therefore, continuity of B gives B(Ay(dug))) — B(dug) in L*(2).
Now, let n — oo in (30) yields

/AQQVX2U]0 -V x,pdx + ﬁ/wogoda: = /B(d)uo)cpdm, Yo e D)  (33)
Q Q Q

Take p = w" € HE(Q) in (33) and let € — 0 we obtain (by Proposition 7)
/AQQVXZUJO -Vx,widz + ﬁ/wowgda: = /B(qbuo)wgda:,
Q Q Q

and as n — oo we derive

/AQQVX2w0 - Vx,wodz + B/ lwo|? dz = /B(¢uo)wodx (34)
Q Q Q

Now, we prove the strong convergences of w{ and V x,w{, by ellipticity assump-
tion (2), (31) and (34) we get

)\/ |V x, (wg —w0)|2dx+ﬂ/|w8 — wo|? da
Q Q

< /AZQVXQ(wg —wy) - Vx, (wy — wo)d:v—i—ﬂ/ lwg — w0|2dx
Q Q

= /B(An(qﬁuo)))wgdz - /AQQVX2w0 -Vx,wyde — Qﬂ/wgwodx
Q Q Q

— /AQQVXng . VX2’LU0d.’13 + /B((bUQ)’LUodJ?
Q Q

Since B(A,(¢ug)) — B(dug) in L*(Q) and wf — wp in L*(Q) then

[B@aou)w; — [ Bou)w,
Q

Q
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Let n — oo in the previous inequality we get
Vx,wy — Vx,wo in L*(Q) (35)

Finally by (35), Proposition 6 and Proposition 7 and the triangular inequality
we get Vx,w. — Vx,wo in L?(Q) and therefore (34), Proposition 2 and 3
complete the proof.

Remark 1. In addition to convergences given in Theorem 3 we also have exue, —
0 in L2(2) strongly, indeed ellipticity assumption gives

)‘ek2/ ‘leu5k|2 + )‘/ ‘sz(ua@ - u0)|2
Q Q

vX Ue,, ) < vX Ue > / 2
< | A, 1k . Lok dx + Ue, — Ug|” dex,
- Q/ (sz (Uep — o)) \Vx,(ue, —uo) ﬁQ e = ol

and we can prove easily that the right-hand side of this inequality converges to
0.

6. SOME APPLICATIONS

6.1. A regularity result and rate of convergence. In this subsection we make
some additional assumptions, suppose that for every u € L(),

Vx, B(u) € L*(9), (36)
and for every p € D(w,) and u,v € L?(2) we have
lpB(u) = pB(v)|l12(q) < I1B(pu) = B(pv)ll 120 (37)

Remark that Theorem 3 of section 1 gives only H} — regularity for ug, however

loc
we have the following
Proposition 8. Under assumptions of Theorem 8 and (36) we have ug € H(Q),

Proof. We will proceed as in [2], let w] CC wy, for 0 < h < d(w),w1), X1 € W} we
set 7% ug(X1, Xa2) = uo(X1 + hei, X2) i = 1,...,p. From (9) we have

/TZA22VX2 (T;lu() —ug)Vx,pdXs + /(TZAQQ — A29)Vx,u0V x,0d X5

+ 5/(T}lu0 — Uo)édez = /{T%B(Uo) — B(Uo)} (deQ

Taking ¢ = T’u,‘;i;uo as a test function, using ellipticity assumption (2) and
Holder’s inequality we derive

2

Ti ug — Ug

A b= — <

HVXQ ( h ) L2(w2)

iA —A 7 _
H <7’h 22h 22) V0 Vi, (Thuoh uo)
L%(w2) L?(w2)
i H(TZB(UO)B(UO)) <T§LU0U0)
h L2(ws) h L2(ws)
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Using Poincaré’s inequality we deduce

. T Asa— Az
m < g ; h Lo (wa) ||VX2U0||L2(w2)
— 7} B(uo)—B(u
h L2(w2) >\ + h ( 0])1 ( 0) LQ(wz)

Using regularity assumption (8) and integrating over w) (we use only the as-
sumption J Az € L2(£2)) we deduce
T;L’U,o — Up

h

h

SC’+'

<T§LB(UO) B(uo))

L(w) xw2) L2 (w) xw2)

Thanks to regularity of B(ug) in the X; direction (assumption (36)) we get
T;LUO — Up

<"
h = ¢

L2(w) xw2)

where C” is independent on h , whence Vx,ug € L*(Q2) and the proof is finished.
([

Now, we give a result on the rate of convergence

Proposition 9. Under assumptions of Theorem & and (36), (37), for 5 >
1 1

max (K, B,) (where By > M |Q2"" (fized), and K is the Lipschitz constant of B

1_1

associated with the bounded set < ||lul|;. < _MQ]E "

PRy ), we have ue — ug in W
0o i

and
e — u0||L2(w’1><w2) P VX, (ue — “0)||L2(w/1xw2) <C'e
where C' > 0 is independent of €.

Proof. To make calculus easier we suppose that Ajs, Ayy = 0, Ay1,A490 = 1 .
According to Theorem 3 the set of solutions to (9) is non empty, and we show
easily that (9) has a unique solution (thanks to assumption f > max(K,S,)),
consequently Corollary 1 implies u, — ug in W.

From (6) and (9) we have

EQ/VXluevxlcpdm—&—/VXz(ue—uo)VXZ<pdx+6/(u6—u0)g0dac = /(B(us)—B(uo))godx
Q Q Q Q

Given W) CC w] CC wi, and let p be a cut-off function with Supp(p) C w| and
p =1 on wj(we can choose 0 < p < 1). We introduce the test function used by
M.Chipot and S.Guesmia in [2], ¢ = p?(ue —ug) € H} () ( thanks to the previous
proposition). Testing with ¢ we obtain

62/VX1’LL5VX1p2(’LL5 — ug)dx
Q

+ /VX2(U€ - uo)VXsz(ue — up)dx + B//}Q(uE - uo)zdx
Q Q

— [ (Bu) = Buo))p (e — w)ds

Q
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we deduce

/ 1PV 5, (e — )| + / 1PV x, (1 — o) de

+,3/ uc—ug) dr = 762/p2VX1’U,0VX1( e—Up)dT—2€ / Ue—p)pV x, pV x, Uodz
Q Q

—262/,0(116—u0)VX1 (ue—uo)Vxlpdx—l—/(B(ue)—B(uo))pQ(ue—uo)dx
Q Q
Using Holder’s inequality for the first three term in the right-hand side, and

assumptions (37), (3) and Holder’s inequality for the last one, we obtain
€ 1pVx, (ue — UO)lliz(wxw) + 1PV (e = 10) [ 22 xws) +
Bllp(ue — UO)H2L2(W IxXwy) = <é ||PVX1U0||L2 (W} xw2) 1PV x, (ue — UO)HLZ(UJ/I/XUJQ)
+267 || (e = 10) VX Pl 12 (g ) 10V 00| L2y )
+ € (e = 10) Vi, Pl 12y wasm) 19(the = 0) | L2 o

2
+ K[| p(ue = wo) 72w s »

1_
(thanks to Proposition 1, we remark that pu., pug € {HuLa < ﬁMJl;lIQlll})

Using Young’s inequality for ,the first term in the right-hand side of the previous
inequality, and boundedness of (u.) for the rest, we deduce

2
2 2
o 10V (e = w072 g vy + 1PV x2 (e = 10) 122 g 2
2
+ (B = K) llp(ue = o)l L2 (ur xuwy) < Ce

whence

Huf - u0||L2(w’1><w2) ) ||VX2 (U‘E - u0)||L2(w'1><w2) < 0/67
where C’ is independent of . O

6.2. Application to integro-differential problem. In this section we provide
some concrete examples. In [3] M. Chipot and S. Guesmia studied problem (6)
with the following integral operator

B(u)=a /h(Xl,X{7X2)u(X{,X2)dX{ (38)
1
To prove the convergence theorem the authors based their arguments on the com-
pacity of the operator u — /h(Xl, X1, Xo)u(X], X2)dX]. Indeed, for a sequence
w1
— Ug in LZ(Q) we have /h(Xl, Xl? XQ)UH(Xl, XQ)Xm — / Xl, Xl? XQ)UO(Xl, Xg)Xm

w1
in L2(Q) (by compacity) and we use the continuity of a and Lebesgue’s theorem
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(under additional assumption on a) to get a /h(Xl,X{,Xg)un(X{,Xg)dX{

— Q /h(Xl,Xi,XQ)Uo(X{,XQ)dXi in LZ(Q)
1
We can give another operator based on the aforementioned one

Blu) = / WX, X{, Xo)a(u(X], X))dX, (39)

For a : R — R we note a Liptchitz function i.e there exists K > 0 such that

Yo,y € R: fax) — ay)| < K |o — g (40)
In addition, we suppose that a satisfies the growth condition

Jg€[0,1[, M >0, Yz € R: |a(z)] < M(1+ |z|T), (41)
and we suppose that

heL®w xQ), Vx,he€ LT (w x Q) (42)

Theorem 8. Consider problem (6) with B given by (38) or (89). Assume (1), (2),
(8), (40), (41) , (42) and for B suitably chosen, then we have the affirmations of
theorems 1 , 2 and 3 of section 1 and those of propositions 8, 9

Proof. Take B as in (39) the proof of this theorem amounts to prove that assump-
tions (3), (4), (5), (36) and (37) hold. (3) follows directly from (40) and (42), Now
assume (41), (42) then we can check easily that (4) holds with r = %. It remains to

prove that (5) holds. For every u € V ( we can also take u € L?(f2)), and ¢ € D(Q)
we have for 1 <k <p

I((p) = / /h(Xl,X{,Xg)a(u(X{,Xg))dX{ 8k(p(X1,X2)dX1dX2

Q 1

- / /h<X1,Xi,X2>akso<xl,x2>a<u(X1,X2>>dX1dX2 ax]
Q

1

S / /h(Xl,Xi, Xg)@kcp(Xl,Xg)a(u(X{, XQ))XmdXQ dX{
wi Q
Since dyh € L77 (w1 xQ) it follows that for a.e X € wy : 0y [a(u(X], )h(., X}, )] €
L%(Q), integrating by part we get

I(p) < / /amxl,x;,Xz)w(Xl,Xz>a<u<X1,X2>>dX1dX2 ix;
w1 Q
1
< ol ol 10kRI s, lellpaay
< M+ Jull) el oo
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And therefore 0, B(u) € L*(2), whence (36) holds and we have
IVx, Bu)llp> < M"(1+ [lul ),
then for every L2—bounded set E C V we have
IVx,B(u)|l . <M", ueE. (43)

Now, given a sequence (U,,) in conv(B(E)) which converges strongly to some Up in
L?(2), by (43) and the convexity of the norm we show that (Vx,U,), is bounded
in L?(Q2), hence one can extract a subsequence (U,,) such that (Vx,U,) converges
weakly to some cg in L%(£2), thanks to the continuity of derivation on D’(£2) which
gives ¢ = Vx, Uy and therefore, Uy € V | whence (5) follows. Finally, one can
check easily that (37) holds. Same arguments when B is given by (38) O

6.3. A generalization. Consider (38) with

h e L>®(Q),l € L®(wy),Vx,l € L*(w1), (44)

the operator u — a l(Xl)/h(X{,Xg)u(Xi,Xg)dX{ belongs to a class of

w1

operators defined by
B(u) = a(IP(u)), (45)

where P : L?(2) — L?(ws) is a linear bounded operator (an orthogonal projector
for example). The method used by M. Chipot and S. Guesmia is not applicable
here, in fact the linear operator P is not necessarily compact, for u,, — ug we only
have P(u,) — P(ug) weakly and therefore every subsequence (a (IP(u,))) is not
necessarily convergent in L?(£2) strongly. However we have the following.

Theorem 9. Consider problem (6) with B given by (45). Assume (1), (2), (8),
(40), (41) and (44), then for B suitably chosen, we have affirmations of Theorems
1, 2 and 3 of section 1 and moreover we have ug € H(Q)

Proof. The proof of this theorem amounts to prove that assumptions (3), (4), (5)
and (36) hold. Since P is Lipschitz then (3) follows by (40). We also can prove
(4) using (41) with r = %.It remains to check that (5), (36) hold, for every u €
V (we can take u € L?(Q)) we have Vx, a(lP(u)) € L?(Q) and Vx,a(lPu) =
a'(IP(u))P(u)Vx,l. We can show easily that Vx,a(IP(FE)) is bounded for any
L?—bounded set E C V and we finish the proof as in Theorem 8. O
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