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Abstract

We study the implications of assuming different energy intensities for

physical capital accumulation and final good production in an overlapping

generations (OLG) resource economy. Differing from the standard OLG

literature, but consistently with the empirical evidence, physical capital

accumulation is assumed to be relatively more energy-intensive than con-

sumption. Focusing on exhaustible resources, we find that OLG equilibria

can exhibit a “non-classical behaviour”: our model can generate complex

dynamics where extraction may increase during some periods and decrease

afterwards. As a consequence, in contrast to the classical response predicted

by the standard approach, resource prices may not increase monotonically.

This result points out the importance of the assumptions about energy-

intensity considered in the literature.
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1 Introduction

How does the scarcity of natural resources limit economic growth and to what

extent physical capital accumulation offsets this constraint? These questions have

been the research focus of many papers in the literature of resource economics dat-

ing back to Dasgupta and Heal (1974, 1979), Solow (1974), and Stiglitz (1974). In

these studies, resources are assumed to be extracted in order to provide energy that

will be used in the final good production. The limit to economic growth is then

directly imposed by the usage of scarce resources in production. Greater physical

capital accumulation is suggested (unless non-renewable resources are substituted

with renewables) to overcome this constraint. However, the overwhelming ma-

jority of the literature, assuming the same technology for both consumption and

physical capital accumulation, tends to contradict the empirical evidence about

the energy intensity of these sectors. Data suggests that physical capital produc-

tion is relatively more energy intensive than consumption, so that non-renewable

resources could limit growth through the equipment production sector.1 In this

paper we analyze the effect of differentiating the energy intensities of physical cap-

ital and final good production in an overlapping generations (OLG) exhaustible

resource economy. We study how the standard results regarding the dynamics of

resources and prices are modified if physical capital accumulation is assumed to

be relatively more energy-intensive than consumption.

To our knowledge, differing energy intensities has only been studied in Pérez-

Barahona (2011), considering an infinitely lived agents general equilibrium model.

1Azomahou et al. (2004 and 2006) builds an energy intensity measurement (ratio between

energy consumption and value added) of 14 sectors of the economy from the Structural Analysis

Database of OECD and the Energy Balances and Energy Prices and Taxes of IEA. Their empirical

analysis shows that energy intensity is high in sectors closely involved in production of physical

capital (e.g., iron and steel sector, 0.809; transport and storage, 0.85; non-ferrous metals, 0.599;

and non-metallic minerals, 0.507). However, energy intensity is lower for consumption goods

related sectors (e.g., food and tobacco, 0.134; textile and leather, 0.082; and construction, 0.018).

In the same direction, Williams (2004) points out that the “life cycle energy use of a computer

is dominated by production (81%) as opposed to operation (19%)”.
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This paper shows that the monotonicity properties of consumption and resource

extraction change if physical capital accumulation is assumed to be relatively more

energy-intensive than consumption. The study is limited however to infinitely

lived agents models, while numerous papers claim that the OLG framework offers

a better explanatory power for the discussion of natural resource problems.2 As in

Pérez-Barahona (2011), we assume that the physical capital sector is more energy

intensive than consumption, and energy is obtained from the extraction of natural

resources. Thus, going beyond the standard literature, in our paper the accumu-

lation of physical capital is assumed to be determined not only by the savings but

also by the energy that it requires. In addition, instead of taking resources as the

only way of saving (Krautkraemer and Batina, 1999; Koskela et al., 2002), both

resource stock and man-made capital are considered to be alternative assets (Mour-

mouras, 1991; Farmer, 2000; Agnani et al., 2005; Bednar-Friedl and Farmer, 2013).

In the literature of natural resources and OLG models, the equilibrium trajecto-

ries converge to a single steady-state (or single balanced growth path) with saddle-

path dynamics under linear/no regeneration of resources and with exogenous/no

technological progress. The standard results on growth and dynamics in OLG

exhaustible resource economies are mainly built upon the studies of Mourmouras

(1991), and Olson and Knapp (1997). It is shown that with exhaustible resources,

no technical progress, and standard assumptions about preferences and technol-

ogy, extraction trajectories monotonically decrease (and therefore, resources price

monotonically increases) into the trivial steady-state in the limit. Olson and

Knapp (1997) find however that under non-standard assumptions (finite horizon

quadratic utility), the convergence to the zero steady-state does not need to be

monotone. Extraction could transitory rise, with the corresponding decrease of

2Three main reasons are frequently quoted. First, resources are a store of value between

generations (see Koskela et al., 2002; Valente, 2008; Bednar-Friedl and Farmer; 2013). Second,

intergenerational aspects should be taken into account when analyzing environmental issues

and/or natural resource economies (Solow, 1974; Padilla, 2002; and Agnani et al., 2005). Finally,

there exists empirical evidence showing that agents are not perfect altruistically linked (among

others, Altonji et al., 1992; and Balestra, 2003).
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resources price. Moreover, cycle extraction is shown to be numerically possible

under infinite horizon, CES preferences, and for a very particular set of param-

eters. Mourmouras (1991) studies the interaction between capital accumulation

and natural resources exploitation under linear/no regeneration of resources. Be-

sides from how physical capital accumulates, this model is similar to ours but the

equilibrium dynamics are saddle-path stable.3 Differing from this approach, our

paper contributes to the literature by showing that, without taking linearizing

assumptions, our model can generate complex dynamics and the subsequent non-

monotonic behaviour of resources extraction and prices.

In absence of technological progress, we fully characterized the global dynamic

response of our economy with respect to the share of exhaustible resources in the

production of physical capital. The main contribution of our work comes from

this characterization. In contrast to Mourmouras (1991), local indeterminacy and

hopf bifurcations can arise if the share of energy resources in the equipment pro-

duction is low enough. Moreover, a non-monotonic behavior of extraction is pos-

sible: the stock of (exhaustible) resources always decreases, yet extraction may

increase during some periods and decrease afterwards. As a consequence, in con-

trast to the “classical behavior” predicted by the standard approach building on

Hotelling’s (1931) seminal work, resource prices may not increase in the short-run.

Non-renewable resources literature widely discussed the discrepancy between the

famous Hotelling prediction and the empirical evidence on resource prices. In fact,

the prediction of monotonically rising prices has not been consistent with the em-

pirical dynamic behavior of non-renewable resource prices and their in situ values.4

Investigation of mineral commodity prices shows relative declines and fluctuation

around time trends, rather than persistent increases, for long periods of time (see

figures 1-11 in Krautkraemer, 1998). Considering a large data set of U.S. min-

eral prices, Barnett and Morse (1963) were the first to systematically identify this

pattern. Slade (1982) further reveals that a U-shaped price evolution is consis-

3For a detailed analysis of the dynamics in Mourmouras (1991) see Farmer and Friedl (2010).
4See Krautkramer (1998) for a discussion of this literature.
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tent with the observed prices of many non-renewable resources over the period

1870-1978 (for a recent study, see Ferraro and Peretto, 2003). Several modifica-

tions of Hotelling’s model were then introduced in order to explain the behavior of

prices over time. Environmental constraints and the natural resource abundance

(Ahrens and Sharma, 1997), backstop technologies (Heal, 1976), technical change

(Slade, 1982) and informational asymmetries (Pindyck, 1980) are possible known

channels for inducing resources price decrease. In this regard, our paper identifies

an additional channel for this “non-classical response” of prices, which is based on

the energy intensity characteristics of the economy. We provide at the same time

a justification for the emergence of hopf cycles and indeterminacy, i.e., multiple

equilibria. The interaction between energy intensity, discount rate and the share

of physical capital in the final good production induces cyclic behavior in the econ-

omy via hopf bifurcations. Hopf bifurcations are economically important as they

provide a powerful and easy tool to detect limit cycles and justify the emergence

of cycles endogenously (for further details, see Benhabib and Farmer, 1999; Kind,

1999).5

Finally, another important feature of the paper is that our results do not rely

on particular parameterizations of the exogenous functions involved in the model.

It rather provides a flexible set-up to study the role played by the energy inten-

sity, keeping the model tractable, together with general and plausible qualitative

properties. The results are in fact analytical, and the dynamics are fully charac-

terized. The paper proceeds as follows. The model is presented in Section 1. The

competitive equilibrium is defined in Section 2. Section 3 presents the equilibrium

dynamics and examines the stability of the long-run response. Conclusions and

broader theoretical implications are discussed in Section 4.

5Hopf cycles appear when a fixed point loses or gains stability due to a change in a parameter

and meanwhile a cycle either emerges from or collapses into the fixed point (Asea and Zak,

1999). Depending on the stability of the cycles a stylized business cycle (attracting/stable cycle)

or corridor stability (repelling/unstable cycle) can appear (Kind, 1999; Benhabib and Miyao,

1981).
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2 The model

We study a perfect foresight overlapping generations economy, without population

growth, in discrete time with infinite horizon. In contrast to the standard OLG

approach, our model differentiates the energy intensity of the physical capital sec-

tor and the corresponding of the final good production.6 There are three sectors in

the economy: final good production, equipment (investment) good production and

extraction sector. A single final good, which can be either consumed or invested,

is produced in the economy by combining physical capital and labor. The physical

capital that is used in this production process is provided by the equipment sector.

The physical capital is obtained by means of the already installed equipment and

the energy supplied by the extraction sector. Finally, the extraction sector gets the

energy directly from the natural resource extracted. All agents have rational ex-

pectations and each generation consists of a single representative agent. Moreover,

they are price-takers and all the markets are assumed to be competitive.

2.1 Extraction sector

The purpose of natural resources in the model is double. They are both a store of

value, as an asset, and an input in the production of investment good as energy.

Following Agnani et al. (2005), we assume a grandfathering economy (due to

the ownership of natural resources) so that the initially old generation possesses

the stock of natural resources. At the beginning of each period t, the old agents

own the resource stock Et = etNt, where et is the amount of resources per-worker

and Nt is the number of workers. They choose how much to extract from the

resource stock in order to sell it as energy to the equipment good sector, Xt. The

remaining part of the natural resource is sold to the young agents as resource

assets, At(= Et − Xt). From period t to t + 1, the resource stock regenerates at

a linear rate Π (Mourmouras, 1991), where Π > 1.7 The transition dynamics of

6For the discussion of standard OLG models see de la Croix and Michel (2004).
7Note that the resource is non-renewable as long as Π = 1.
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energy resources in per-worker terms can be formalized as follows:

et+1 = Π(et − xt) = Πat, (1)

where xt ≡ Xt/Nt and at ≡ At/Nt.

2.2 Consumers

The representative individual receives an income equal to the real wage wt from

supplying her one unit of labor to the firms when young. She allocates her income

among current consumption, ct, savings related to investment, st, and the purchase

of natural resource ownership rights, at. In her last period of life (when old at

period t+ 1), the agent is retired and consumes dt+1 out of her entire income, not

leaving any bequests. Her income is then generated from the return on her savings

made when young, Rt+1st , from extracting the demanded portion of the energy

resources and selling it to the firms, Qt+1xt+1, and from selling the rest to the

young, Pt+1at+1, where Rt is the interest rate, and Qt and Pt are the corresponding

prices. Accordingly, the budget constraints facing generation t is as follows:

ct + st + Ptat = wt , (2)

dt+1 = Rt+1st +Qt+1xt+1 + Pt+1at+1. (3)

Generations derive utility from consumption, where their two-period intertemporal

utility function dependens on the level of consumption when young ct and when old

dt+1. We assume an additively separable life-cycle utility function U (ct, dt+1) =

u (ct) + βu (dt+1) , where β ∈ (0, 1) is the subjective discount factor. In particu-

lar, we adopt a logarithmic instantaneous utility function u since we are mainly

concerned with the existence of the competitive equilibrium and its qualitative

properties.

Taking the prices of the energy resource and wages as given, the representative

agent born at time t maximizes her utility by choosing young and old periods’

consumption, and the ownership rights of the energy resource. The corresponding
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optimization problem of the representative consumer is formalized as follows:

max
{ct,dt+1,st,et+1}

ln ct + β ln dt+1

subject to

ct + st + Ptat = wt ,

dt+1 = Rt+1st +Qt+1xt+1 + Pt+1at+1,

et+1 = Π(et − xt) = at

ct ≥ 0, dt+1 ≥ 0, et+1 ≥ 0, E0 > 0 given.

We get the following first-order conditions:

dt+1

ct
= βRt+1, (4)

Pt+1

Pt
=

Rt+1

Π
, (5)

Pt+1 = Qt+1. (6)

Equation (4) gives the equalization of discounted marginal utilities, where the

marginal rate of substitution between current and future consumption is equal to

their relative prices. Equation (5) is the non-arbitrage condition between the differ-

ent types of savings (savings related to investment and ownership rights). Finally

equation (6) is a non-arbitrage condition, which implies that in the equilibrium

the asset price and the extracted energy price are the same. This last result is

indeed consistent with Olson and Knapp (1997) and Valente (2008). Moreover,

notice that equations (5) and (6) are equivalent to the Hotelling rule presented in

Mourmouras (1991).

2.3 Firms

2.3.1 Final good sector

Firms operating in the final good sector are owned by the old households. Firms

produce the final good with a Cobb-Douglas constant returns to scale technology.

Equation (7) presents this production function at any date t. The exogenous
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disembodied total factor productivity is represented by Zt (equation 8). With

constant returns to scale, the number of firms does not matter and the production

is independent of the number of firms that use the same technology. We are

so concerned with the problem of a representative firm. Under this perfectly

competitive environment, at each period t, taking the prices of inputs, the initial

technology level, and the initial level of capital stock as given, the representative

firm maximizes its profit by choosing the amount of labor and physical capital

(equipment) inputs:

max
{Kt,Nt}∞t=0

πt = Yt − PK
t Kt − wtNt,

s.t. Yt = ZtK
α
t N

1−α
t 0 < α < 1, (7)

Zt+1 = (1 + z)Zt z ≥ 0. (8)

At an interior solution of the firm’s optimization problem, where all variables

are expressed in per-worker terms (kt ≡ Kt/Nt), the following first-order conditions

are satisfied equating the price of the inputs to their marginal benefits:

αyt = PK
t kt, (9)

(1− α)yt = wt. (10)

Equation (11) summarizes the market clearing condition of the economy. The

final good is either consumed by young agents, Ct, by old agents (generation t−1),

Dt, or invested for the production of the future capital stock, St:

Yt = Ct +Dt + St. (11)

2.3.2 Physical capital sector

In the standard OLG literature, the new capital stock at time t + 1 is fully de-

termined by the savings made at time t, which are equal to the investments.

However, following Pérez-Barahona (2011), since the physical capital production

is relatively more energy-intensive than consumption we model the accumulation

of capital stock to be determined not only by the savings made at time t, but also
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by the energy that it requires.8 The usage of natural resource introduces then

a new constraint on economic growth through the capital accumulation sector.

In equation (12) the new capital at t + 1, Kt+1, is produced from the natural

energy resources Xt+1 and the investment made at time t, It , with the following

Cobb-Douglas technology:

Kt+1 = Bθ
t+1X

θ
t+1I

1−θ
t 0 < θ < 1, (12)

St = It, (13)

Bṫ+1 = (1 + b)Bt, b ≥ 0. (14)

It is worthwhile to mention that the savings St are still equal to the invest-

ments (equation 13). However, only a fraction of the investments can generate the

new capital stock. Bt is the technological progress in the equipment good sector.

In contrast to Zt, Bt is energy-saving and specific to the accumulation of physical

capital. If Bt increases, the productivity of the natural resources in the production

of equipment rises. Consequently, a lower amount of energy would be necessary to

produce the same amount of new physical capital. Changes in Bt also represent

investment-specific technological change, which is assumed to affect exclusively the

equipment sector.

In the equipment sector, at each period t, the representative firm maximizes

its profit by choosing the amount of energy resources that will be used in the

production process:

max
{Xt}∞t=0

πt = PK
t Kt −QtXt,

s.t. Kt = Bθ
tX

θ
t I

1−θ
t−1 ,

taking as given the prices of capital (PK
t ) and resource input (Qt), and the initial

level of capital stock. At an interior solution of the equipment firm’s optimization

8We should observe that in our economy energy is not a direct input to produce the final

good. As in Pérez-Barahona (2011), this simplification is considered in order to highlight the

importance of the energy intensity differences between consumption and equipment sectors.
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problem the following first-order condition is satisfied:

Qt = θαYtX
−1
t . (15)

The profit of investing in capital RtSt−1 at time t should be equal to the profit

of producing new capital (1 − θ)PK
t Kt to prevent arbitrage opportunities.9 We

then obtain the following condition:

Rt = (1− θ)PK
t B

θ
1−θ
t X

θ
1−θ
t K

θ
θ−1

t . (16)

2.4 The competitive equilibrium

The dynamic competitive equilibrium for this OLG natural resource economy

is defined as a sequence of prices
{
wt, Rt, P

K
t , Pt, Qt

}∞
t=0

and feasible allocations

{ct, dt, st, et, at, xt, it, yt, kt+1}∞t=0, given the positive initial values for S−1, E0, Z0,

B0, N0, and the law of motion of exogenous technological progresses Zt and Bt,

such that the consumers maximize their life-time utility, firms maximize their prof-

its, and all markets clear at every period t. This equilibrium is therefore a solution

of the system of equations (1)-(16).

3 Equilibrium dynamics

The main focus of our paper is to study the dynamics around a steady-state

equilibrium. We therefore assume no technological progress, i.e., b = z = 0. As

in Mourmouras (1991), Farmer (2000) and Bednar-Friedl and Farmer (2013), the

intertemporal equilibrium dynamics can be reduced to a two-dimensional system,

which represents the law of motion of the resource stock, Et, and the extraction, Xt.

Using the equipment technology (12), the condition (13), the budget constraints

9Choosing the optimal resource stock (equation 15), the maximum profit that the represen-

tative firm can obtain is given by

π∗
t = PKt Kt − θPKt BθtXθ−1

t I1−θt−1Xt = (1− θ)PKt Kt.
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and first-order conditions (2)-(5) of the households’ problem, and the first-order

conditions (10) of the firms’ maximization problem, we obtain the equation below

for kt+1:

k
1

1−θ
t+1 = B

θ
1−θ
t+1 x

θ
1−θ
t+1

[
σ(1− α) + θα(1− et

xt
)

]
yt, (17)

with σ ≡ β/(1 + β). In addition, taking equations (5), (6), (9), (15) and (16), the

following difference equation for kt+1 arises:

Πk
1

1−θ
t+1 xt

ytxt+1

= α(1− θ)B
θ

1−θ
t+1 x

θ
1−θ
t+1 . (18)

Substituting for kt+1 in the above equations yields (19) below, which describes

the dynamics of resource extraction. Since it also depends on the resource stock

et, we rewrite (1), the law of motion of the natural resource, as (20).

xt+1 = Π

(
β

(1+β)
(1− α) + αθ

α(1− θ)

)
xt −

Πθ

(1− θ)
et, (19)

et+1 = Π(et − xt). (20)

The linear planar system (19) and (20) describes the dynamics of our economy,

which can be rewritten in matrix form as[
xt+1

et+1

]
=

[
ψ1 ψ2

ψ3 ψ4

][
xt

et

]
≡ Ψ

[
xt

et

]

with ψ1 ≡
Π

(1− θ)
β

(1 + β)

(1− α)

α
+

Πθ

(1− θ)
,

ψ2 ≡ − Πθ

(1− θ)
,

ψ3 ≡ −Π,

ψ4 ≡ Π.

Lemma 1 (steady-states) The steady-state equilibria (x∗, e∗) of our economy are

characterized by the following equations:

x∗ = ψ1x
∗ + ψ2e

∗, (21)

e∗ = ψ3x
∗ + ψ4e

∗. (22)

These equations have two sets of steady-states:
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(i) If {ψ1 = 1} or {ψ1 6= 1 and ψ4 = 1} or {ψ1 6= 1, ψ4 6= 1 and (1− ψ4) 6=
ψ2ψ3

(1−ψ1)
} there is a unique steady-state (x∗, e∗) = (0, 0) .

(ii) If {ψ1 6= 1, ψ4 6= 1 and (1− ψ4) = ψ2ψ3

(1−ψ1)
} there is a continuum of steady-

states such that x∗ = ψ2

1−ψ1
e∗.

Proof. A steady-state (x∗, e∗) in this economy is a fixed point of (19) and (20),

where xt+1 = xt = x∗ and et+1 = et = e∗. Since Π ≥ 1, ψ1, ψ4 > 0, and ψ2, ψ3 < 0,

the sets (i) and (ii) are easily determined from (21) and (22)

From the linear system (21) and (22), one can verify that there is either a unique

steady-state (x∗, e∗) = (0, 0), or a continuum of them where natural resources are

not necessarily drained. If resources are non-renewable (Π = 1) the only possible

steady-state, without technical progress, is (x∗, e∗) = (0, 0) because ψ4 = 1 (set i).

However, the natural replenishing property of renewable resources (Π > 1, thus,

ψ4 6= 1) allows the economy to avoid depletion (set ii).

3.1 Stability and exhaustible resources

As pointed out in the introduction, the objective of this work is to study the

dynamic implications of the energy intensity assumptions of the economy. In par-

ticular, our intention is to provide an alternative explanation for the non-classical

behavior of exhaustible resources, which was empirically identified in the liter-

ature. Even if Section 2 offers a general framework for both exhaustible and

renewable resources, from now on, we will concentrate on non-renewable resources

and the dynamics around the corresponding unique steady-state (x∗, e∗) = (0, 0).

We analyze below the stability of the system, the occurrence of indeterminacy and

bifurcations, and the subsequent possibility of non-monotone convergence. In this

regard, we find out that the share of energy in the equipment production plays a

fundamental role, together with the discount rate and the share of physical capital

in the final good production. Notice finally that our conclusions will be global
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since the dynamics of the economy are described by a linear system.10

We denote by λ1 and λ2 the eigenvalues of Ψ in the matrix form of the dynam-

ical system (19) and (20). Let us define β̃ ≡ β
(1+β)

(1−α)
α

> 0. The next proposition

fully describes the dynamics of our economy by means of studying λ1 and λ2. In

particular, we identify cases where complex dynamics arise, allowing the economy

to reproduce the non-classical response described before. These conditions are in-

deed deeply related to the assumption of considering that the equipment sector is

more energy intensive than the final good production.

Proposition 1 (stability) For non-renewable resources and different parameter

combinations, the stability of the zero steady-state changes such that:

1. For 1
2
≤ θ < 1, the dynamics are non-complex and the eigenvalues are on

the different side of one (λ1 > 1 and 0 < λ2 < 1) so that the steady-state is

a saddle.

2. For 0 < θ < 1
2

and 2(1 − 2θ) ≤ β̃, the dynamics are non-complex and the

eigenvalues are on the different side of one (λ1 > 1 and 0 < λ2 < 1) so that

the steady-state is a saddle.

3. For 1
4
≤ θ < 1

2
and β̃ < 2(1 − 2θ), the dynamics are non-complex and the

eigenvalues are on the different side of one (λ1 > 1 and 0 < λ2 < 1) so that

the steady-state is a saddle.

4. For 0 < θ < 1
4
, β̃ < 2(1 − 2θ) and β̃ + 1

β̃
> 2(1 − 2θ), the dynamics are

non-complex and the eigenvalues are on the different side of one (λ1 > 1 and

0 < λ2 < 1) so that the steady-state is a saddle.

5. For 0 < θ < 1
4

and β̃ + 1
β̃
< 2(1− 2θ) the dynamics are complex:

10The results of this paper correspond to global dynamics: they are valid regardless how far

away the economy is from the steady-state. Therefore, in contrast to linearization and local

dynamics, we provide a more general outcome.
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(a) If θ < 1− β̃ both eigenvalues (in absolute value) are smaller than one,

so indeterminacy occurs and the steady-state is stable.

(b) If θ > 1 − β̃ both eigenvalues (in absolute value) are greater than one,

so the equilibrium dynamics are monotone unstable.

Proof. For exhaustible resources Π = 1. If (1 + ψ1)2 ≥ 4(ψ1 + ψ2) the two

eigenvalues of Ψ are real and given by λ1,2 = (1+ψ1)
2
± 1

2

√
(1 + ψ1)2 − 4(ψ1 + ψ2).

Moreover, λ1,2 > 0 since the det(Ψ) > 0 and Tr(Ψ) > 1.11 This implies that non-

monotonic dynamics is only possible if the eigenvalues are complex: if (1 +ψ1)2 <

4(ψ1 + ψ2), λ1,2 = (1+ψ1)
2
± i1

2

√
4(ψ1 + ψ2)− (1 + ψ1)2. We identify the cases of

complex dynamics in the Appendix. Let us directly consider the stability analysis:

1. For 1
2
≤ θ < 1, the dynamics are non-complex as the discriminant ∆ ≡ (1 +

ψ1)2− 4(ψ1 +ψ2) > 0 (see Claim 2 in Appendix). Since λ1,2 > 0, comparing

λ1 and λ2 with 1, one can observe that the dynamics are stable iff both

eigenvalues are smaller than one. This is equivalent to (1+ψ1)
2

< 1−
√

∆
2

. This

is however impossible because (1+ψ1)
2

> 1 −
√

∆
2

(see Claim 3 in Appendix).

Therefore, stability cannot occur.

Let us study the possibility of saddle equilibrium or monotone unstable dy-

namics. The steady-state is saddle iff the two eigenvalues are on the different

side of one. As λ1,2 > 0, this condition is equivalent to λ1 > 1 and λ2 < 1

(notice that, from Claim 1, λ1 > λ2). Taking the expression of λ1,2, the

condition reduces to 1 −
√

∆
2

< (1+ψ1)
2

< 1 +
√

∆
2

. In contrast to that, the

equilibrium dynamics are monotone unstable iff λ1 > 1 and λ2 ≥ 1. This

is equivalent to check that (1+ψ1)
2
≥ 1 +

√
∆
2

. Since the dynamics are non-

complex for 1
2
≤ θ < 1, we can conclude from Claim 3 that (1+ψ1)

2
< 1 +

√
∆
2

.

We have also proved in Claim 3 that (1+ψ1)
2

> 1−
√

∆
2

. Therefore, 1−
√

∆
2
<

(1+ψ1)
2

< 1 +
√

∆
2

and, consequently, the steady-state is a saddle.

11Notice that, λ1λ2 = det(Ψ) = ψ1 + ψ2 > 0. Since det(Ψ) > 0, λ1,2 6= 0 and their sign

coincide. Moreover, λ1 + λ2 = Tr(Ψ) = 1 +ψ1 > 1. We can then conclude that both eigenvalues

are strictly positive.
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2. For 0 < θ < 1
2

and β̃ ≥ 2(1− 2θ) the dynamics are non-complex (Claim 2).

Therefore, from Claim 3, (1+ψ1)
2

< 1 +
√

∆
2

. From the same claim we also

know that, if 0 < θ < 1
2

and β̃ ≥ 2(1 − 2θ), (1+ψ1)
2

> 1 −
√

∆
2

. We can then

conclude that 1−
√

∆
2
< (1+ψ1)

2
< 1 +

√
∆
2

, thus the steady-state is a saddle.

3. We know from Claim 3 that, if 1
4
≤ θ < 1

2
and β̃ < 2(1 − 2θ), 1 −

√
∆
2
<

(1+ψ1)
2

. Moreover, (1+ψ1)
2

< 1 +
√

∆
2

because we are in a case on non-complex

dynamics (see Claim 3). Therefore, as above, the steady-state is a saddle.

4. It is easy to very that statements 5 and 6 in Claim 3 are also valid for

0 < θ < 1
4

and β̃ < 2(1 − 2θ) if the dynamics are non-complex. Following

Claim 2, we are in a case of non-complex dynamics. We can then conclude

that 1−
√

∆
2
< (1+ψ1)

2
< 1 +

√
∆
2

, thus the steady-state is a saddle.

5. From Claim 2, we know that this is the case of complex dynamics. Taking the

formulas for λ1,2 above, one can verify that |λ1| = |λ2| =
√

β̃
(1−θ) . Comparing

|λ1| = |λ2| with 1, we can directly conclude that the dynamics are stable iff

the modulus of both eigenvalues is smaller than one. This condition is in

fact equivalent to β̃ < (1 − θ). Similarly, the dynamics are unstable iff

the modulus of both eigenvalues is larger than one, which corresponds to

β̃ > (1− θ).

The proposition clearly shows that energy intensity differences among economic

sectors has important dynamic implications. In contrast to the standard approach,

where a monotone converge of resource stock and extraction is predicted, our econ-

omy can also exhibit complex dynamics. This outcome is deeply related to the

assumption that the equipment sector is more energy intensive than the final good

production. Our property of non-monotone converge actually provides an alterna-

tive explanation to the empirically supported fact of the non-classical behaviour of

exhaustible resources: resource stock and extraction can transitory increase (thus

energy prices can temporally decrease) before converging to the zero steady-state.
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Proposition 1 points out the role played by the share of resources in the ac-

cumulation of physical capital, θ. When the share of energy in the production of

equipment is high (1
2
≤ θ < 1), we get the usual saddle-path dynamics. However,

for a lower share (0 < θ < 1
2
) the economy can reproduce situations of com-

plex dynamics and, in particular, non-monotone convergence. In this respect, two

additional elements become fundamental through the parameter β̃: the share of

physical capital in the final good production (α) on the one hand, and the indi-

viduals’ discount rate (β) on the other. For combinations of (α, β) such that β̃

would be low enough (i.e., lower than 2(1− 2θ)), complex dynamics arise. In this

case, an additional upper-bound for θ appears in order to ensure the stability of

the steady-state. This is statement 5 (a) in the proposition, which corresponds

to the non-classical response of exhaustible resources. Since energy resources are

non-renewable in this economy, the variable stock of resources et in the system

(19)-(20) cannot increase. However, differing from non-complex dynamics, the

extraction of resources (variable xt) can increase during some periods, eventually

converging (asymptotically) to the steady-state. Replacing Yt in (15) by (7), and

Kt by (12) afterwards, we get the usual negative relationship between extraction

and energy prices Qt. Therefore, energy prices can transitory decrease, rising later

on as extraction approaches to the steady-state. This possibility of non-monotonic

convergence is an important property of our framework. It highlights in fact the

influence of the energy intensity assumptions on the dynamic predictions of the

model.

The parameters described above are related to the importance that each gener-

ation gives to energy resources. In particular, they affect the value of the ownership

rights for the natural resources at, which are sold from one generation to the next.

In economies where θ is small (lower than 1/4 in our model), energy resources

are relatively unimportant with respect to the other inputs in the equipment tech-

nology. Therefore, future generations give little value to the ownership rights of

resources. The current generation would then not have many incentives to leave

resources to the next generation, increasing thus the extraction when old. This
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will continue until energy becomes relative scarce. At this moment, the value of

the ownership rights raises, creating new incentives to reduce extraction and, con-

sequently, increasing the amount of resources left to the next generation.12

We should observe that the non-classical behaviour also depends on the share

of equipment in the technology of final good and the discount rate through the pa-

rameter β̃. Proposition 1 (statement 5) identifies boundaries for β̃. The condition

in (a) can be rewritten as β̃ < 1 − θ, providing an upper limit. Moreover, it also

implies that β̃ < 2(1− 2θ) since (1− θ) < 2(1− 2θ) for 0 < θ < 1/4. The second

condition β̃ + 1/β̃ < 2(1 − 2θ) concludes then that β̃ cannot be too small either.

Let us consider a reference economy for 0 < θ < 1/4 where α and β are such the

conditions of statement 5 (a), and so the boundaries for β̃, hold. For a higher

discount rate β, the parameter β̃ will increase and, therefore, the upper limit may

not be respected anymore.13 However, this effect can be counterbalanced if the

economy has a higher share of physical capital in the technology of final goods (α).

The interpretation is the following. A higher discount rate implies greater concern

of consumers for their old age and, consequently, for the amount of resources they

are going to extract or leave (sell) to the next generation. Since energy is not

very important in this economy (0 < θ < 1/4), the next generation will not value

so much the ownership rights. Therefore, as above, the current generation may

increase the resource extraction for some periods. Nevertheless, a larger share of

equipment in final good technology would increase how much future generations

value energy resources and the corresponding ownership rights, ensuring then that

extraction will eventually decreases.

Notice finally that the upper bound for β̃ allow us to identify limit cycles. We

show in the next corollary that the critical value (1−θ) reveals indeed the existence

of a hopf-type bifurcation. Hopf cycles appear when a steady-state loses or gains

stability due to a change in a parameter, and meanwhile a cycle either emerges

12Since consumers are non-altruistic and live for two periods, ownership rights prevent the old

generation from extracting all resources.
13From the definition of β̃, it is easy to see that ∂β̃/∂β > 0 and ∂β̃/∂α < 0.
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from or collapses into the steady-state (for further details, see among others, Asea

and Zak, 1999; Kind, 1999; and Yüksel, 2011).

Corollary 1 (hopf bifurcation) Assume that 0 < θ < 1
4

and β̃ + 1
β̃
< 2(1 − 2θ).

Indeterminacy occurs for β̃ < 1 − θ; a hopf bifurcation arises for β̃ = 1 − θ; and

the steady-state is unstable for β̃ > 1− θ.

For small values of the share of energy in the equipment production, depending

on its interaction with the capital share in the final good technology and the

discount rate, the equilibrium trajectories could be indeterminate, implying the

possibility of multiple equilibria (see Benhabib and Gali, 1995, for a survey). If

β̃ < 1− θ, in contrast to saddle stability, there would be multiple paths tending to

the (unique) steady-state since many values of x0 ≥ 0 would be compatible with

this equilibrium. Moreover, as showed before, the convergence in this case will be

non-monotonic. If β̃ > 1−θ cycles arise, but the economy will not converge to the

steady-state. These unstable dynamics can be interpreted considering again the

importance that each generation gives to energy resources. Assume an economy

with (α, β) such that it converges, non-monotonically, to the steady-state. If we

sufficiently increase β and reduce α, the subsequent larger β̃ may induce cycles

that will not converge to the steady-state (if β̃ is greater than 1 − θ). As before,

a greater discount rate (β) implies that generations are more concerned about

their old age and, therefore, about how much they will extract or leave to the

next generation. If at the same time the importance of equipment input in the

final good production (α) lowers, energy would not be central either. Therefore,

the next generation will not value natural resources much, reducing the incentives

of the old generation to replace extraction by ownership rights. Let us lastly

mention that since resources are non-renewable in this paper, the non-monotonic

trajectories corresponding to β̃ ≥ 1 − θ will end up in the steady-state but in

a finite time, i.e., non-asymptotically. Because the quantity of resources cannot

increase, the current stock et is an upper-limit to how much the economy can

extract in that period. Since the stock of resources always shrinks with extraction,

the economy will completely deplete the resources in a finite time if β̃ ≥ 1 − θ.
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The zero steady-state then emerges, but as a corner solution.14

4 Concluding remarks

Although the literature widely assumes the same technology for consumption

and capital accumulation sector, data suggest that physical capital production

is relatively more energy-intensive than consumption and, thus, the usage of non-

renewable resources can limit growth through the equipment production. Using an

overlapping generations (OLG) natural resources model, we examine the dynamic

implications of differentiating the energy intensities of physical capital sector and

final good production. The model assumes that the equipment sector is more en-

ergy intensive than consumption, where energy is obtained from the extraction of

natural resources. In contrast to the standard approach, we model the accumula-

tion of physical capital to be determined not only by the savings but also by the

energy that it requires.

We find that the introduction of energy-intensity differentiation among sectors

has important implications for the standard results in the area. Richer dynamics

other than saddle arise. In particular, energy extraction and prices can follow a

non-monotonic trend that is consistent with the empirical finding about the non-

classical behaviour of exhaustible resources. From an economic policy perspective,

we believe that this paper provides a meaningful contribution too. On the one

hand, we have identified a new component that improves our understanding about

the puzzling issue of non-monotonic response of exhaustible resources. Our work

makes compatible the theoretical predictions with the empirics in this regard. On

the other hand, since proper policymaking depends on economic forecasts, “appro-

priately modeling the nature of the time series can be invaluable to forecasters”

(Lee et al., 2006). In this line, a general message of our paper is that the assump-

tions about the energy-intensity differences among sectors should be taken with

14Notice that stable (unstable) cycles can be sustained, for β̃ = (>)1 − θ, if the stock of

resources were not subject to the positivity constrain et ≥ 0.
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caution in the design of economic policies.

Several issues can be considered in future research. As pointed out before,

our framework can be also applied to renewable resources by considering Π > 1.

This would potentially create even richer dynamics. In particular, convergence

to steady-states without exhaustibility may be possible since resources naturally

reproduce. Extraction, moreover, would not necessarily induce lower future stock

of resources. This could allow then, in contrast to the corner solutions observed

before, the emergence of the long-run cycles. Following the same direction, another

interesting hypothesis to examine is the role played by the regeneration law of nat-

ural resources. One could indeed consider alternative regeneration specifications

to the usual linear replenishing of resources. In this respect, a logistic reproduction

law has been often recommended to study forestry problems (Farmer, 2000; and

Bednar-Friedl and Farmer, 2013, among others).

5 Appendix

5.1 Proof of Proposition 1

Claim 1 For non-renewable resources, the discriminant ∆ ≡ (1+ψ1)2−4(ψ1+ψ2)

cannot be zero. In fact,

∆ > (<)0⇔ 2 (1− 2θ)− β̃ < (>)
1

β̃
. (23)

Moreover, for real eigenvalues, λ1 > λ2.

Proof. Let us prove that ∆ 6= 0. By contradiction, we assume that ∆ = 0.

Therefore (1 + ψ1)2 = 4(ψ1 + ψ2). Since ψ1 = β̃+θ
1−θ and ψ2 = − θ

(1−θ) , the pre-

vious condition is equivalent to
(

1+β̃
1−θ

)2

= 4β̃
1−θ . This is only possible iff β̃ =

(1− 2θ) ±
√

(1− 2θ)2 − 1. Since (1− 2θ)2 < 1, β̃ would be a complex number.

This contradicts however our definition of β̃, which is a real number. We indeed

conclude that ∆ > (<)0 iff 2 (1− 2θ)− β̃ < (>) 1
β̃
. Finally, from the expression of
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the real eigenvalues, we can directly observe that λ1 > λ2 since ψ1 > 0 and ∆ 6= 0

Claim 2 Whether the dynamics are complex or not depends on the following pa-

rameter combinations:

1. For 1
2
≤ θ < 1 or {0 < θ < 1

2
and β̃ > 2(1 − 2θ)} the dynamics are

non-complex.

2. For 1
4
≤ θ < 1

2
and β̃ < 2(1− 2θ) the dynamics are non-complex.

3. For 0 < θ < 1
4

and β̃ + 1
β̃
> 2(1− 2θ) the dynamics are non-complex.

4. For 0 < θ < 1
4

and β̃ + 1
β̃
< 2(1− 2θ) the dynamics are complex.

Proof. The dynamics are (non-)complex iff ∆(>) < 0.

1. For 1
2
≤ θ < 1 or {0 < θ < 1

2
and β̃ > 2(1 − 2θ)}, it is easy to verify that

2 (1− 2θ)− β̃ < 1
β̃

since β̃ > 0. Therefore, from Claim 1, ∆ > 0.

2. By contradiction. Let us assume, for 1
4
≤ θ < 1

2
and β̃ < 2(1 − 2θ), that

∆ < 0. Claim 1 would then imply that 2 (1− 2θ) > 1
β̃

+β̃. Therefore, since all

terms are non-negative, we conclude that 2 (1− 2θ) > 1
β̃

and 2 (1− 2θ) > β̃.

This can be rewritten as 2 (1− 2θ) > β̃ > 1
2(1−2θ)

. The condition holds iff

4 (1− 2θ)2 > 1. This reduces to 2 (1− 2θ) > 1 since (1− 2θ) > 0. Hence

θ < 1
4
, which contradicts our initial assumption on θ.

3. It follows from equation (23).

4. It follows from equation (23).

Finally notice that the case β̃ + 1
β̃

= 2(1 − 2θ) is not possible since ∆ 6= 0 (see

Claim 1)

Claim 3 Considering the definition of ∆ in Claim 1, we can establish the following

results:

21



1. If 1
2
≤ θ < 1 then 1−

√
∆
2
< 0.

2. For non-complex dynamics, 1 +
√

∆
2
> (1+ψ1)

2
.

3. If 1
2
≤ θ < 1 then (1+ψ1)

2
> 1−

√
∆
2
.

4. If 0 < θ < 1
2

and β̃ > 2(1− 2θ) then (1+ψ1)
2

> 1−
√

∆
2
.

5. If 1
4
≤ θ < 1

2
and β̃ < 2(1− 2θ) then 1−

√
∆
2
> 0.

6. If 1
4
≤ θ < 1

2
and β̃ < 2(1− 2θ) then (1+ψ1)

2
> 1−

√
∆
2

.

Proof.

1. Let us first show that 1 −
√

∆
2
6= 0. Suppose the contrary, 1 =

√
∆
2

. Then

β̃ = (1−2θ)±2
√

2θ2 − 3θ + 1. For θ = 1/2, β̃ = 0 and we find a contradiction

because β̃ > 0. Let us study 1/2 < θ < 1. It can be verified that in this

case 2θ2 − 3θ + 1 6= 0: 2θ2 − 3θ + 1 = 0 for θ = 0 or θ = 1/2. We can

actually proof that 2θ2 − 3θ + 1 < 0: assuming that 2θ2 − 3θ + 1 > 0,

3 < 1
θ

+ 2θ; however, for 1/2 < θ < 1, it is easy to check that 3 > 1
θ

+ 2θ.

Nevertheless, this result implies that β̃ is complex, which is a contradiction

and, consequently, 1−
√

∆
2
6= 0. In fact, we can show that 1 −

√
∆
2
< 0. Let

us assume the contrary, 1−
√

∆
2
> 0. This would imply that 4(1− θ)2 − 1 >

β̃
[
β̃ − 2(1− 2θ)

]
. However, for 1

2
≤ θ < 1, the RHS> 0 while LHS< 0. So

we get a contradiction.

2. By contradiction. Let us assume 1 +
√

∆
2
≤ (1+ψ1)

2
. This is equivalent to

(ψ1 − 1)2 ≥ ∆(> 0). Since ∆ = (1+ψ1)2−4(ψ1 +ψ2), the previous condition

would imply that 0 ≥ −4ψ2. But this is impossible because ψ2 < 0.

3. From statement 1 of this claim, we already know that 1−
√

∆
2
< 0 if 1

2
≤ θ < 1.

Our result is then verified since ψ1 > 0.

4. Let us consider, by contradiction, that (1+ψ1)
2
≤ 1 −

√
∆
2

. This would imply

that ψ1 − 1 ≤ −
√

∆. We know that ψ1 − 1 = β̃−(1−2θ)
1−θ , which is strictly

positive since β̃ ≥ 2(1 − 2θ) > (1 − 2θ) > 0. We then get a contradiction

since −
√

∆ < 0.
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5. Let us first show that 1−
√

∆
2
6= 0. Suppose the contrary, 1 =

√
∆
2

. Then, β̃ =

(1−2θ)±2
√

2θ2 − 3θ + 1. For 1
4
≤ θ < 1

2
, one can verify that 2θ2−3θ+1 > 0

and (1 − 2θ) > 0. We can show that β̃ = (1 − 2θ) + 2
√

2θ2 − 3θ + 1 is

impossible: let us rewrite β̃ = (1 − 2θ) +
√

(1− 2θ)2 + [4(1− θ)2 − 1]; it is

easy to check that 0 < β̃ < 2(1− 2θ) < (1− 2θ) +
√

(1− 2θ)2 + a for a > 0;

recalling a = 4(1 − θ)2 − 1, since 4(1 − θ)2 − 1 > 0 for 0 < θ < 1/2, the

previous expression provides the contradiction β̃ < β̃. Similarly, β̃ = (1 −
2θ)− 2

√
2θ2 − 3θ + 1 cannot hold either: since β̃ > 0, this would imply that

(1−2θ) >
√

(1− 2θ)2 + [4(1− θ)2 − 1]; however, (1−2θ) <
√

(1− 2θ)2 + a

for a > 0; as above, recalling a = 4(1− θ)2− 1(> 0) gives us a contradiction.

We know now that 1 −
√

∆
2
6= 0. In order to show that 1 −

√
∆
2
> 0, let us

assume 1−
√

∆
2
< 0. This would imply that β̃[β̃− 2(1− 2θ)] > 4(1− θ)2− 1.

But this is not possible since the LHS< 0 and the RHS> 0.

6. By contradiction. We assume (1+ψ1)
2
≤ 1−

√
∆
2

, which would imply (ψ1−1) ≤
−
√

∆. On the one hand, −
√

∆ < 0 because we are in a situation of non-

complex dynamics. On the other hand, (ψ1 − 1) = β̃−(1−2θ)
1−θ , where we can

identify two cases for β̃ < 2(1 − 2θ): (i) (1 − 2θ) ≤ β̃ < 2(1 − 2θ) and (ii)

β̃ < (1− 2θ) < 2(1− 2θ). Case (i) yields a contradiction since (ψ1 − 1) > 0.

Case (ii) would imply (ψ1 − 1)2 ≥ ∆, which is impossible for non-complex

dynamics (see proof of Claim 3, statement 2).
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Yüksel M. (2011), “Capital dependent population growth induces cycles”, Chaos,

Solitons and Fractals, 44, 759–763.

27


