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‡

September 2014

Abstract

We examine the conditions under which iterative elimination of weakly
dominated strategies refines the set of proper outcomes of a normal-form
game. We say that the proper inclusion holds in terms of outcome if the set
of outcomes of all proper equilibria in the reduced game is included in the
set of all proper outcomes of the original game. We show by examples that
neither dominance solvability nor the transference of decision-maker indiffer-
ence condition (TDI ∗ of Marx and Swinkels [1997]) implies proper inclusion.
When both dominance solvablility and the TDI ∗ condition are satisfied, a pos-
itive result arises: the game has a unique stable outcome. Hence, the proper
inclusion is guaranteed.
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1 Introduction

Iterative elimination of weakly dominated strategies (IEWDS) in normal-form
games is a rather controversial procedure. The main criticism against such a proce-
dure is, perhaps, the most basic one: this procedure is order-dependent. Different
strategy profiles might survive through this procedure. For instance, removing
one weakly dominated strategy at a time rather than all of them simultaneously
might lead to different solutions of a game. However, there are games in which the
procedure becomes order-independent. The TDI ∗ (transference of decision-maker
indifference) condition proposed by Marx and Swinkels [1997] ensures that this is
the case for normal-form games. Roughly speaking, this condition implies that if a
player is indifferent between two pure strategy profiles that differ solely on his ac-
tion, then the rest of the players are also indifferent. The class of games satisfying
this condition is broad, including examples such as first-price auctions, oligopoly
games, and patent races.

Independently of these conditions, there are several scholars who have argued
that the procedure has an interest per se. For example, Farquharson [1969] sug-
gests the sophisticated voting principle according to which a reasonable equilib-
rium must survive IEWDS. Within the more general framework of finite games,
Mertens stability (Mertens [1989]) is the equilibrium concept that satisfies the
most comprehensive list of desirable game-theoretical properties. Note that, again,
stability against iterated elimination of dominated strategies is one of the axioms.

Our work builds a bridge between these two strands of the literature, of which
we provide a summary in the next subsection.

1.1 Overview of the results

As previously discussed, the set of strategies which remain after elimination of
weakly dominated strategies depends on the order of elimination. Consider, for
instance, the following game with x > 0 and y > 0:

L R
T 2,1 x,1
B 2,y 0,0

Depending on the order, the set of remaining strategies is either {T }×{L}, {T ,B}×{L}
or {T } × {L,R}. However, as remarked by Marx and Swinkels [1997], the order is
irrelevant as long as the game satisfies the TDI ∗ (transferrence of decision-maker
indifference1) condition. In this game, TDI ∗ is satisfied if and only if (x,y) = (2,1).
For such values of x and y, all fully-reduced games are equivalent in terms of

1For a formal definition, see Section 2.
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payoffs. We ask whether an analogous statement can be made for the set of per-
fect/proper equilibrium payoffs. Indeed, (T ,L) is the unique undominated strat-
egy profile, hence it is the unique perfect and proper equilibrium of the game
for any x > 0 and y > 0. However, removing a weakly dominated strategy (either
B or R) enlarges the set of perfect/proper equilibria. Moreover, the payoff of all
perfect/proper equilibria does not depend on the order by which the weakly dom-
inated strategies are removed, if and only if the TDI ∗ condition is satisfied.

Order dependence of the set of perfect/proper equilibria has been studied in
the literature (see, for instance, Borm [1992] or Myerson [1997]). However, they
focus on the equilibrium strategies rather than on the equilibrium payoffs as we
do. Moreover, in their examples, there is a unique perfect/proper equilibrium
payoff, and thus the payoff becomes trivially order-independent. Therefore, the
first question that we address is the following:

Question A. For the games which satisfy the TDI ∗ condition, is the set of per-
fect/proper equilibrium payoffs unaffected by the elimination of weakly dom-
inated strategies?

Since the TDI ∗ condition imposes indifferences in terms of the payoffs, it may
be a good candidate to guarantee payoff invariance. However, the answer to Ques-
tion A is negative. We provide two examples, in Section 3.2 for perfect equilibrium
and in 4.1 for proper equilibrium.

The main reason behind the negative answer seems to be related to the exis-
tence of connected components of equilibria with a continuum of outcomes. Ex-
amples of such components can be found in Govindan and McLennan [2001] and
Kukushkin et al. [2008].2 We slightly modify the previously mentioned examples
in order to prove that elimination of weakly dominated strategies might enlarge
the set of perfect and proper equilibria, even in terms of outcomes.

We then move to the games in which iterated elimination of weakly dominated
strategies singles out a unique strategy profile: dominance-solvable games. As
above, we know from the literature that the surviving profile needs not be a proper
equilibrium of the game. However, here we are concerned with the set of pay-
offs. As far as our knowledge goes, the outcome of the solution induced by the
dominance-solvability is included (and often coincides with) the outcome of all
proper equilibria in terms of the payoffs in the examples given in the literature.
Therefore, the second question we address is the following:

Question B. For the dominance-solvable games, does the surviving payoff coin-
cide with the one associated to a perfect/proper equilibrium?

The answer turns out to be negative again, as shown in the example in Section
4.2. This happens because IEWDS and properness choose different profiles in the

2See also Pimienta [2010], which proves that such components do not exist in three-outcome
bimatrix games.

3



Nash component. When the Nash component includes a continuum of outcomes
as in the example, IEWDS and properness need not induce the same outcome.
Note that the novelty of the example is that the surviving payoffs obtained by any
order of elimination are different from the proper payoffs.

Given the answers to Questions A and B, we are ready to present our main
result:

Claim. For the dominance-solvable games which satisfy the TDI ∗ condition, the
surviving payoffs coincide with the unique stable payoffs, hence with those
associated to a proper equilibrium.

The work is structured as follows. Section 2 introduces the canonical frame-
work in which we work. Section 3 presents the results dealing with perfection,
and Section 4 is focused on the relationship between properness and IEWDS.

2 The setting

Let Γ be an n-person normal-form game Γ = (S1, . . . ,Sn;U1, . . . ,Un;N ), where N =
{1,2, . . . ,n} is the set of players, each Si is a non-empty finite set of pure strategies,
and each Ui is a real-valued utility function defined on the domain S =

∏
i∈N Si .

For any finite set M, let ∆(M) be the set of all probability distributions over M.
Thus, ∆(Si) is the set of mixed strategies for player i in Γ . Similarly, ∆0(Si) stands
for the set of completely mixed strategies for player i in ∆(Si). Furthermore, for any
mixed strategy σi , its support is denoted by Supp(σi) = {si ∈ Si | σi(si) > 0}.

The utility functions are extended to mixed strategies in the usual way:

Uj(σ1, . . . ,σn) =
∑

(s1,...,sn)∈S1×...×Sn

 n∏
i=1

σi(si)

Uj(s1, . . . , sn).

The pure strategy s∗j is a best response to σ−j for player j iff

Uj(s
∗
j ,σ−j) = max

s′j∈Sj
Uj(s

′
j ,σ−j).

An ε-perfect equilibrium of a normal-form game is a completely mixed strategy
profile, such that whenever some pure strategy si is a worse reply than some other
pure strategy ti , the weight on si is smaller than ε. A perfect equilibrium of a
normal-form game is a limit of ε-perfect equilibria as ε→ 0.

An ε-proper equilibrium of a normal-form game is a completely mixed strategy
profile, such that whenever some pure strategy si is a worse reply than some other
pure strategy ti , the weight on si is smaller than ε times the weight on ti . A proper
equilibrium of a normal-form game is a limit of ε-proper equilibria as ε→ 0.
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For W ⊆ S, let the strategies in W that belong to i be denoted Wi = W ∩ Si .
Say that W ⊆ S is a restriction of S if ∀i, Wi , ∅. Note that any restriction W of S
generates a unique game given by strategy spaces Wi and the restriction of Ui to∏n
i=1Wi .

Definition 1. [Weak Dominance] Let σi , τi ∈ ∆(Si) and let W be a restriction of S.
Then,
(i) σi very weakly dominates τi on W if Ui(σi ,γ−i) ≥ Ui(τi ,γ−i)∀γ−i ∈W−i =

∏
j,iWj ,

and
(ii) σi weakly dominates τi onW if σi very weakly dominates τi onW , and, in addition,
Ui(σi ,γ ′−i) > Ui(τi ,γ

′
−i) for some γ ′−i ∈W−i . We write σi �W τi .

Definition 2. [Redundancy] Let σi , τi ∈ ∆(Si). Then σi is redundant to τi on restric-
tion W if for all γi ∈ W−i , U (σi ,γ−i) = U (τi ,γ−i). A strategy τi is redundant on W if
there is σi ∈W redundant to τi .

Following Marx and Swinkels [1997], we define nice weak dominance, and the
TDI and TDI ∗ conditions.

Definition 3. [Nice Weak Dominance]. Let σi , τi ∈ ∆(Si). σi nicely weakly dominates
τi on restriction W if σi weakly dominates τi on W and for all γ−i ∈W−i , Ui(σi ,γ−i) =
Ui(τi ,γ−i) implies U (σi ,γ−i) =U (τi ,γ−i).3

Definition 4. [TDI]. Game Γ satisfies TDI if ∀i ∈N,∀si , ri ∈ Si ,Ui(si , s−i) =Ui(ri , s−i) =⇒
Uj(si , s−i) =Uj(ri , s−i).

In a game which satisfies TDI , if an agent is indifferent between two pure-
strategy profiles which differ only on her action, then the indifference is trans-
ferred to the other agents as well. Marx and Swinkels [1997] show that if a game
satisfies TDI , then it generically satisfies TDI ∗.

Definition 5. [TDI ∗]. Game Γ satisfies TDI ∗ if for all restrictions W , ∀i ∈ N , and
∀si ∈ Si , if si is very weakly dominated onW by σi ∈ ∆(Si \si), then ∃σ ′i ∈ ∆(Si \si) such
that either si is weakly dominated on W by σ ′i or si is redundant on W to σ ′i .

If a game satisfies TDI ∗, then whenever player i is indifferent between strate-
gies si and σi , fixing the profile of opponents’ strategies s−i , either all players are
indifferent between profiles (si , s−i) and (σi , s−i), or there is some strategy σ ′i such
that i strictly prefers σ ′i over si and σi given s−i .

Remark: For games satisfying TDI ∗, weak dominance is equivalent to nice
weak dominance.

3This notion is defined as Nice Weak Dominance* in Marx and Swinkels [1997]. However, we
omit * in this paper for simplicity.
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Definition 6. [Reduction] Let V be a restriction of S, and let W be a restriction of
V . Then W is a reduction of V by weak dominance if W = V \ {X1, ...,Xm}, where
∀k, Xk ⊂ S, and ∀x ∈ Xk, ∃z ∈ V \ {X1, ...,Xk} such that z weakly dominates x on
V \ {X1, ...,Xk−1}. W is a full reduction of V by weak dominance if W is a reduction of
V by weak dominance and no strategies in W are weakly dominated on W .

In other words, a reduction is the result of iteratively removing sets of strate-
gies that are weakly dominated. A full reduction is one in which no weakly dom-
inated strategies are left. Note that the same definition applies if replacing weak
dominance by nice weak dominance or very weak dominance.

Let Γ k denote the reduced game after k rounds of successive reductions, and
let Ski ⊆ S

k−1
i , Sk ⊆ Sk−1 be the corresponding strategy spaces. We write S0 = S and

limk→∞S
k = ∩∞k=0S

k = S∞. Γ∞ denotes the reduced game with strategy space S∞

and the restriction of Ui to S∞.

Definition 7. [Dominance Solvability]. The game Γ is dominance-solvable if there
exists a sequence Γ 0,Γ 1, . . . ,Γ∞ such that:

(a) Γ k+1 is a reduction from Γ k,

(b) Γ 0 = Γ ,

(c) in Γ∞, each player has exactly one pure strategy.

3 Perfect equilibria

For any game Γ = (S,U ), let P e(Γ ) denote its set of perfect equilibria and P ro(Γ )
denote its set of proper equilibria. The sets of (Nash) equilibria and undominated
equilibria of Γ are respectively denoted Ne(Γ ) and UNe(Γ ).

By iterated weak dominance, there exists a finite number of orders (as there is
a finite number of strategies, and we assume that at least one strategy is deleted at
each stage until the game is fully reduced). Let Θ be the set of all possible orders
of reduction. Successive reductions of a game Γ due to order o ∈Θ are as follows:

Γ 0
o = Γ = (S,U ), Γ 1

o = (S1
o ,U ), Γ 2

o = (S2
o ,U ), . . . , Γ∞o = (S∞o ,U )

with S io ⊇ S i+1
o .

Γ∞o stands for the fully reduced game obtained through iterated weak domi-
nance by the order of reduction o.

It is simple to understand that the set of perfect equilibria of a reduced game
is not nested in the whole set of perfect equilibria. The next well-known example
proves that removing eitherM, C or bothM and C leads to different sets of perfect
equilibria for the reduced games, whereas the unique perfect equilibrium of the
whole game is (T ,L).

6



L C
T 2,1 1,1
M 2,1 0,0

However, despite this path-dependent procedure, we can state the following
result.

Proposition 1. For any order of reduction o ∈Θ, P e(Γ ko )∩ P e(Γ ) , ∅ ∀k ≥ 1.

Proof. We omit the definition of Mertens stable sets (Mertens [1989] for a complete
definition). We simply use three of its properties. First, stable sets always exist.
Second, stable sets are connected sets of normal-form perfect equilibria (connect-
edness). Third, stable sets of a game contain stable sets of any game obtained by
deleting a pure strategy which is at its minimum probability in any normal form ε-
perfect equilibrium in the neighborhood of the stable set (iterated dominance and
forward induction). Hence, the last property applies in particular to any weakly
dominated strategy. Therefore, there exists at least one stable set of Γ ko which is in-
cluded in a stable set of Γ k−1

o . As any point in a stable set is a perfect equilibrium,
we can directly conclude.

We can therefore state the next corollary without proof.

Corollary 1. For any order of reduction o ∈Θ, P e(Γ∞o )∩ P e(Γ ) , ∅.

3.1 Bimatrix games

Within the set Θ, let m stand for the maximal simultaneous reduction by weak
dominance in which all mixed and pure strategies that are weakly dominated by
some (mixed) strategy are removed at each step.

Proposition 2. Let Γ be a bimatrix game. By maximal simultaneous reduction, P e(Γ 1
m) ⊆

P e(Γ ). Moreover, P e(Γ∞m ) ⊆ P e(Γ ).

The opposite direction of the inclusion in Proposition 2 does not hold in gen-
eral. To see this, let us consider the example in Myerson [1978]. There are two
players with three strategies each. There are two perfect equilibria (T ,L) and
(M,C); however the only equilibrium that survives maximal simultaneous dele-
tion is (T ,L).

L C R
T 1,1 0,0 -9,-9
M 0,0 0,0 -7,-7
B -9,-9 -7,-7 -7,-7

To see why, it suffices to understand that M �S B and that C �S R in Γ . Further-
more, in the game Γ 1 in which both B and R have been deleted, both T �S1 M and
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L �S1 C, hence only (T ,L) is perfect in the fully reduced game, and it is the unique
proper equilibrium of the game.

We now state the proof of Proposition 2.

Proof. Let σ be a perfect equilibrium in the game Γ 1
m. In bimatrix games, an equi-

librium is perfect if and only it is undominated. An equilibrium σ is undominated
if each of its components σi of σ is undominated. Suppose that σ is not a perfect
equilibrium in Γ = Γ 0

m.
Either σ is not an equilibrium in Γ or σ is an equilibrium in such a game,

but some of the strategies in σ are dominated in Γ . In the former case, this is a
contradiction with the definition of iterated dominance, since an equilibrium σ of
a reduced game is an equilibrium of the whole game. In the latter case, some of
the strategies in σ are dominated in Γ so that by maximal simultaneous reduction,
the strategy σ is not present in Γ 1

m, a contradiction.

Proposition 3. Let Γ be a bimatrix game satisfying TDI ∗. For any order of reduction,
the set of perfect outcomes of any fully reduced game is a subset of the set of perfect
outcomes of Γ .

Proof. By Proposition 2, the set of perfect equilibria of the fully reduced game Γ∞m
is a subset of the set of perfect equilibria of Γ . As stated by Marx and Swinkels
[1997], in any game satisfying TDI ∗, any two full reductions by weak dominance
are the same up to the addition or removal of redundant strategies. Moreover, the
set of perfect equilibria is invariant to the addition of redundant strategies (see for
instance Kohlberg and Mertens [1986]). It thus follows that the set of outcomes of
any fully reduced game is a subset of the set of outcomes of the whole game.

3.2 Finite Games

To see why Proposition 2 does not hold with more than two players, let us consider
the next example (van Damme [1996] page 29).

L C
T 1,1,1 1,0,1
M 1,1,1 0,0,1

A

L C
T 1,1,0 0,0,0
M 0,1,0 1,0,0

B

In such a game, both L �S C and A �S B. There is just one perfect equilibrium
in Γ : (T ,L,A). Nevertheless, applying maximal simultaneous reduction removes C
and B from S, so that (T ,L,A) and (M,L,A) are both perfect equilibria in the fully
reduced game. In other words, removing weakly dominated strategies may enlarge
the set of perfect equilibria.
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Yet, the outcome is not enlarged in this example. One might wonder whether
inclusion holds in terms of outcomes. The answer is again negative, as the follow-
ing example shows.

This example is a modified version of the one present in Govindan and McLen-
nan [2001], with the addition of a weakly dominated strategy X for player 3 (as
long as the payoff for player 3 in each of the outcomes is strictly positive). This is
an outcome game that satisfies TDI and TDI ∗.

L R
T a a
M b b
B a b
D e f

U

L R
T c c
M d d
B c d
D e f

D

L R
T c c
M d d
B 0,0,0 0,0,0
D e f

X

There is a connected component of equilibria with a continuum of outcomes
with support {T ,M,B,D}×{L,R}×{U,D}. Hence, in the fully reduced game without
X, this game has a continuum of perfect equilibria.

However, in the whole game, in any sequence of ε-perfect equilibria,U1(T ,σ ε−1) >
U1(B,σ ε−1) so that there is not a perfect equilibrium with both T and M in the sup-
port. There is not a continuum of outcomes anymore in the set of perfect equilib-
ria. Hence, the perfect outcomes of the reduced game are a superset of the set of
perfect outcomes of the whole game. Therefore, it is not even the case that IEWDS
restricts the set of perfect outcomes.

4 Proper Equilibria

4.1 A non-solvable game

This section presents an example showing that the proper outcomes of the whole
game and of the reduced game may differ even if the TDI ∗ condition is satisfied.
This example is a modification of the one provided by Kukushkin et al. [2008]:
more precisely, two strictly dominated strategies (X and Y ) have been added. The
game satisfies TDI and TDI ∗. There are four outcomes: a, b, c and d. Let ai , for
example, stand for the payoff for player i associated to outcome a.

L C R S
T c a b b
M d a a b
B c d b c
X 0,0 1,1 1,1 0,0
Y 1,1 0,0 0,0 1,1

9



Note that X and Y are strictly dominated by T , B and M as long as

a1,b1, c1,d1 > 1. (a)

We assume that this inequality holds. If we remove this pair of strategies, the
reduced game Γ∞ = Γ \ {X,Y } has no dominated strategies. Moreover, there is a
connected component C with a continuum of outcomes as proved by Kukushkin
et al. [2008] provided that

d1,b1 < a1, c1 and d2 < b2 < a2, c2, (b)

and that
b2(d1 − c1) + b1(c2 − d2) + c1d2 − c2d1 , 0. (c)

This component is defined by the following strategies:

σ1(u2) =
1

a2 − b2 + c2 − d2
(b2 − d2, c2 − b2, a2 − d2),

and

σ2(u1; t) =
(

a1 − b1

a1 − b1 + c1 − d1
− (a1 − b1)t

a1 − d1
,
(c1 − b1)t
a1 − d1

c1 − d1

a1 − b1 + c1 − d1
− (c1 − d1)t
a1 − d1

, t

)
.

We assume that (a), (b) and (c) hold, so that it is easy to check that the pair (σ1,σ2)
defines a completely mixed strategy equilibrium in Γ∞, provided t is positive and
small enough.

We now prove that there exists a continuum of equilibria in C which are not
proper in Γ , proving that the sets of proper equilibria of both games differ even in
terms of outcomes. Note that every equilibrium in C is an equilibrium in Γ and is
also perfect, as every undominated equilibrium is perfect in bimatrix games.

We consider the sequences σ ε = (σ ε1 ,σ
ε
2 ) of ε-proper equilibria converging to-

wards the strategy profiles in C.
By the definition of properness, U2(L,σ ε1 ) =U2(S,σ ε1 ), as both are in the support

of player 2’s strategy. As the utility payoffs of L and S only differ when player 1
plays strategies T and M, it follows that in any ε-proper equilibrium, σ ε1 (M) =
c2−b2
b2−d2

σ ε1 (T ). Moreover, we must have that U2(C,σ ε1 ) = U2(R,σ ε1 ) so that σ ε1 (B) =
a2−b2
b2−d2

σ ε1 (T ). Hence, it follows that σ ε1 (B) = a2−b2
c2−b2

σ ε1 (M) (*).
Finally, in any equilibrium with full support for player 2, it must be the case

that U2(R,σ ε1 ) =U2(S,σ ε1 ). This implies that

a2σ
ε
1 (M) + b2σ

ε
1 (B) + σ ε1 (X) = b2σ

ε
1 (M) + c2σ

ε
1 (B) + σ ε1 (Y ).
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Due to (*), one can check that the previous equality implies that σ ε1 (X) = σ ε1 (Y ).
Hence, U1(X,σ ε2 ) =U1(Y ,σ ε2 ), as otherwise there is a contradiction with the defini-
tion of ε-properness. However, this implies that

σ ε2 (C) + σ ε2 (R) = σ ε2 (L) + σ ε2 (S).

Clearly, there exists a continuum of equilibria in C which do not satisfy the con-
straint, proving the claim.

4.2 Dominance-Solvable Games

Dominance Solvability need not imply Properness

In the following example, the unique strategy profile that survives all orders of
IEWDS need not be proper. Note that the game does not satisfy TDI . Furthermore,
the outcomes by dominance solvability and properness need not coincide. We
focus on a bimatrix game in which each player has three strategies. Let us note
that L strictly dominates C.

L C R
T 2,3 1,0 0,4
M 2,2 0,0 1,-1
B 2,3 1/2,-1 1/2,4

The set of Nash equilibria equals player 1 randomizing between his three strate-
gies, with the probability ofM being higher or equal than 1/4, and player 2 playing
L. Within this set, the unique pure strategy equilibrium is (M,L). Such an equilib-
rium is not proper, since whenever the probability of player 1 playing M becomes
sufficiently close to 1, player 2 strictly prefers to play C over R. Therefore, due
to the definition of ε-properness, player 1 strictly prefers to play T rather than to
play M for any ε > 0.

Furthermore, any order of IEWDS singles out the singleton (M,L). To see this,
it suffices to understand that it will first remove C, then T and B (simultaneously
or sequentially), and finally strategy R.

Hence, the strategy profile (M,L) satisfies three interesting features: (i) it is
the unique strategy profile that survives in any order of IEWDS, (ii), it is not a
proper equilibrium of the whole game and (iii) it does not lead to the same payoff
outcome as any proper equilibrium of the whole game.

This happens because IEWDS and properness choose different profiles in the
Nash component. When the Nash component includes a continuum of outcomes
as in this example, IEWDS and properness need not induce the same outcome.
One may think that this phenomenon is not surprising when we only consider
dominance by pure strategies; the IEWDS is a purely ordinal concept, whereas
the properness depends on the expected payoffs from the deviations, hence on
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the cardinality of the payoffs. However, the above example does not hinge on the
exact cardinality of the payoffs, in the sense that we can find a class of games with
the same structure; the fact that the solution (M,L) is not proper depends on the
dominance relations between the pure strategies.

Therefore, one way to ensure that both concepts lead to the same prediction is
to impose a condition on the payoff structure which provides restrictions on the
other players’ payoffs given a deviation of a player by a mixed strategy. One such
condition is TDI ∗, not just TDI , since the dominance by mixed strategy matters,
as in the example of Myerson [1997] (Table 5.2). The following Theorem shows
that when TDI ∗ is combined with dominance solvability, the outcome of the Nash
component is singled out, and thus the predictions by the IEWDS and by the
properness coincide.

A Positive Result

Before stating our main positive result, we list four properties of stable sets (see
Mertens [1989] for a complete definition).

1. Stable sets always exist (Existence).

2. Stable sets are connected sets of normal-form perfect equilibria (Connected-
ness).

3. Stable sets of a game contain stable sets of any game obtained by deleting
a pure strategy which is at its minimum probability in any normal form ε-
perfect equilibrium in the neighborhood of the stable set (Iterated Dominance
and Forward Induction).

4. Every stable set contains a proper (hence sequential) equilibrium (Backward
Induction.).

Let us recall that the set of Nash equilibria consists of finitely many connected
components (Kohlberg and Mertens [1986]).

Observation 1: Let Γ be a normal-form game that is dominance solvable while
satisfying TDI ∗. We let X and Y be two full reductions by weak dominance. X and
Y are the same up to the addition or removal of redundant strategies (Marx and
Swinkels [1997]). Moreover, since Γ is dominance solvable, there exists an order
of reduction that isolates a singleton s = (s1, . . . , sn). Therefore, any pure strategy
profile t in both X and Y satisfies Ui(t) =Ui(s) for any i ∈N .

Theorem 1. Let Γ be a dominance-solvable game satisfying TDI ∗ and let s be a sur-
viving profile. Any equilibrium with s present in its support is payoff-equivalent to
s.
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Proof. Let σ be an equilibrium of Γ with σi(si) > 0, ∀i ∈ N . We have three possible
cases: (case 1) σ is a pure-strategy equilibrium, (case 2) σ is a mixed-strategy
equilibrium with exactly one player playing a mixed strategy, or (case 3) at least
two players play a mixed strategy in σ .

Case 1. If σ is a pure-strategy equilibrium, then σ = s so that U (σ ) =U (s) holds
by definition.

Case 2. If σ is a mixed-strategy equilibrium in which just one player plays a
mixed strategy, we let j be such a player, and hence let #Supp(σj) ≥ 2. It follows
that σ−j = s−j . Therefore, Uj(sj , s−j) =Uj(tj , s−j) for any sj , tj ∈ Supp(σj). Since TDI ∗

holds, it follows that U (sj , s−j) =U (tj , s−j), and hence U (σ ) =U (s), as wanted.
Case 3. Assume finally that σ is a mixed-strategy equilibrium in which at least

two players play a mixed strategy (#Supp(σi) ≥ 2 for at least two players in N ).
Since the game is dominance solvable and satisfies TDI ∗, we know that every

order of deletion o leads to a fully reduced game G∞o in which all pure strategy
combinations t satisfy U (t) = U (s) (Observation 1). Since nice weak dominance
is equivalent to weak dominance in TDI ∗ games, without loss of generality we
can consider the order of maximal elimination e that removes at each step every
nicely weakly dominated strategy. We let Dke denote the set of pure nicely weakly
dominated strategies after k steps of elimination according to e.

3.a: If there is no nicely weakly dominated strategy in S (which is equivalent
to D0

e = ∅), then G is a fully reduced game so that every pure-strategy profile t in S
satisfies U (t) =U (s). Hence U (σ ) =U (s), as wanted.

3.b: If, on the contrary, D0
e , ∅, then we let mi in D0

e . If mi is in the support of
σ , there are two possibilities: either σi(mi) = 1 or σi(mi) < 1.

If σi(mi) = 1, then since σi(si) > 0 for all i ∈ N , we must have that mi = si . Since
now si is nicely weakly dominated, there must exist some ti that nicely weakly
dominates it in S. If Ui(ti ,σ−i) > Ui(si ,σ−i), then si is not a best response, proving
that σ is not an equilibrium. Hence, it must be the case that Ui(ti ,σ−i) =Ui(si ,σ−i).
However, the definition of nice weak dominance implies that ifUi(ti ,σ−i) =Ui(si ,σ−i)
then U (ti ,σ−i) =U (si ,σ−i).

If σi(mi) < 1, the equilibrium conditions imply that for every i ∈N , Ui(si ,σ−i) =
Ui(mi ,σ−i) for any mi ∈ Supp(σi). However, nice weak dominance implies that if
Ui(si ,σ−i) =Ui(mi ,σ−i) then U (si ,σ−i) =U (mi ,σ−i).

In both cases, the equilibrium payoff can be reached without the nicely weakly
dominated strategy in the support.

3.c: Given that the payoff of σ does not depend on any nicely weakly dominated
strategy in D0

e , it must depend on the strategies in S \D0
e .

We let S1 be the restriction S \D0
e . Note that the game G1 = (S1,u) is the one

obtained after one step of removing all nicely weakly dominated strategies.
3.d: If there are no nicely weakly dominated strategies in this restriction (i.e.D1

e =
∅), then the game is fully reduced so that every pure-strategy combination t satis-
fies U (t) =U (s), and hence U (σ ) =U (s), as wanted.
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3.e: If, on the contrary, D1
e , ∅, the equilibrium payoff can be attained without

the nicely weakly dominated strategies. Since the game is dominance solvable,
iterating this procedure until no nicely weakly dominated strategy is left leads to
a game in which any pure-strategy combination has the same payoff as s, proving
that U (σ ) =U (s), as wanted.

Theorem 2. Let Γ be a dominance-solvable game that satisfies TDI ∗. Then:

(i) Under any order of iterative elimination of weakly dominated strategies, the out-
come is the unique stable one.

(ii) For any equilibrium of the fully reduced game, there is a proper equilibrium of Γ
which induces the same outcome.

Proof. Since the game satisfies TDI ∗, all fully reduced games lead to the payoff
associated with s, the surviving singleton. Moreover, the inclusion property of
Mertens sets ensures that s is stable. Hence, there must exist some proper equilib-
rium in G with payoff identical to s (Backwards Induction property of stable sets).
In addition, since some order isolates s, then there is at most one stable set. Finally,
all equilibria in the component of s lead to the same payoff (Theorem 1). Hence,
the outcome of s is the unique stable one.

Why do we need TDI ∗ rather than TDI?
The main logic behind Theorem 1 is that all orders of deletion are equivalent

under TDI ∗. More specifically, nice weak dominance and weak dominance coin-
cide whenever the game satisfies TDI ∗. The proof of the theorem relies on the fact
that (iteratively) applying nice weak dominance does not enlarge the set of Nash
payoffs. Does the same result hold if we only apply TDI?

Suppose that a singleton is selected by some order of IEWDS. The outcome of
this singleton must coincide with that of a proper equilibrium of the whole game
if this precise order satisfies nice weak dominance (i.e. all removed strategies are
nicely weakly dominated). Yet, the set of proper outcomes might be enlarged by
applying IEWDS in a game satisfying TDI but not TDI ∗, as shown by the next
example, related to the one provided by Marx and Swinkels [1997] (p.233).

L C R
T 2,1 4,3 0,2
M 0,3 3,1 4,2
B 1,4 1,4 1,4
D 1,4 0,3 0,2

This game satisfies TDI but not TDI ∗. Indeed, the strategy R is very weakly
dominated by 1/2L+1/2C in S \{D,B}, but is neither weakly dominated nor redun-
dant on S \{D,B}. Moreover, this game is dominance solvable. After eliminating R,
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the strategies M,B and D are strictly dominated by T . Then, eliminating L leads
to (T ,C) as the surviving profile.

On the contrary, if we only eliminate D and B from S, then we are left with
the fully reduced game {T ,M} × {L,C,R}. In this game, there is a set of completely
mixed strategy equilibria (hence proper) of the following type:

(1/2T + 1/2M, (pL+ qC + (1− p − q)R)), as long as 6p+ 5q = 4.

However, some equilibria of this set are not proper equilibria of the whole
game. Indeed, note that as far as R is in the support of an equilibrium (take
for instance the equilibrium in which p = ε and q = (4 − 6ε)/5), this equilibrium
cannot be proper in the whole game, since R is weakly dominated by 1/2L+ 1/2R
in S. Therefore, the set of proper equilibria might be enlarged by IEWDS in a
dominance-solvable game that satisfies TDI but fails to satisfy TDI ∗.

5 Conclusion

In this paper we explore the conditions under which simplification of the game by
IEWDS can be applied to analyze strategic stability of the equilibria.

It turns out that, surprisingly, neither the TDI ∗ condition of Marx and Swinkels
[1997] nor dominance solvability alone is sufficient to guarantee that the set of
proper equilibria of the reduced game is included in the set of proper equilibria of
the whole game (proper inclusion). Our examples show that the negative results
are obtained even in terms of the equilibrium outcome.

We elaborated on finding examples in which the TDI ∗ condition alone is not
sufficient; indeed IEWDS may enlarge the set of proper outcomes. Dominance
solvability alone is not sufficient either: we give an example in which the outcome
singled out by dominance solvability does not coincide with any proper outcome
of the whole game.

If the game satisfies both TDI ∗ and dominance solvability, we show that proper
inclusion holds. Moreover, the uniqueness of the stable outcome is guaranteed.

There is a large class of games for which our sufficient conditions are satisfied
(see a recent work by Milgrom and Segal [2014] on deferred-acceptance auctions).
For example, in many strategic interactions in political competition, such as vot-
ing, players’ payoffs depend solely on the outcome, which is determined by the
social choice, such as the winner of the election. The TDI ∗ condition is relevant in
many situations (see Marx and Swinkels [1997]). Even in games in which the DS
condition is not satisfied, if the outcome is isolated, proper inclusion is guaran-
teed. We can safely apply IEWDS to simplify the game and analyze the strategic
stability of the whole game by focusing on the reduced game.

This paper provides a set of sufficient conditions under which we can take ad-
vantage of both the simplicity of IEWDS and the robustness of strategic stability.
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