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Abstract. The value 1 problem is a decision problem for probabilistic automata

over finite words: are there words accepted by the automaton with arbitrarily

high probability? Although undecidable, this problem attracted a lot of attention

over the last few years. The aim of this paper is to review and relate the results

pertaining to the value 1 problem.

In particular, several algorithms have been proposed to partially solve this prob-

lem. We show the relations between them, leading to the following conclusion:

the Markov Monoid Algorithm is the most correct algorithm known to (partially)

solve the value 1 problem.

1 Introduction

In 1963 Rabin [Rab63] introduced the notion of probabilistic automata, which

are finite automata with randomized transitions. This powerful model has been

widely studied and has applications in many fields like image processing [CK97],

computational biology [DEKM99] and speech processing [Moh97]. Several al-

gorithmic properties of probabilistic automata have been considered in the lit-

terature. For instance, Schützenberger [Sch61] proved in 1961 that functional

equivalence is decidable in polynomial time (see also [Tze92]), and even faster

with randomized algorithms, which led to applications in software verifica-

tion [KMO+11].

However, many natural decision problems are undecidable, and part of the

literature on probabilistic automata is about undecidability results. For example

the emptiness, the isolation and the value 1 problems are undecidable, as shown

in [Paz71,BMT77,GO10]. To overcome untractability results, a lot of effort

went into finding subclasses of probabilistic automata for which natural deci-

sion problems become decidable. For instance, the papers [KVAK10,CKV+11]

look at restrictions implying a decidable model-checking problem against ω-

regular specifications, and the paper [CSV13] investigates whether assuming

isolated cut-points leads to decidability for the emptiness problem.



We focus here on the efforts made to understand the value 1 problem. The

aim of this paper is to review and relate the attempts made in this direction over

the last few years [GO10,CSV11,FGO12,CT12,BBG12,FGKO14].

2 Definitions

Let Q be a finite set of states. A probability distribution over Q is a function

δ : Q → [0, 1] such that
∑

q∈Q δ(q) = 1.

Let A be a finite alphabet. The transitions of a probabilistic automaton are

given by a function ∆ : Q × A → D(Q); equivalently, for each letter a ∈ A

we consider a probabilistic transition matrix Ma, which is a square matrix in

[0, 1]Q×Q such that every row of Ma is a probability distribution over Q. The

value of Ma(s, t) is the probability to go from state s to state t when reading the

letter a.

Given an input word w ∈ A∗, we denote PA(s
w
−→ t) the probability to go

from state s to state t when reading the word w. Formally, if w = a1a2 · · · an
then PA(s

w
−→ t) = (Ma1Ma2 · · ·Man)(s, t).

Definition 1 (Probabilistic automaton). A tuple A = (Q,A, q0,∆, F ) repre-

sents a probabilistic automaton, where Q is a finite set of states, A is the finite

input alphabet, q0 ∈ Q is the initial state, ∆ define the transitions and F ⊆ Q

is the set of accepting states.

Definition 2 (Acceptance probability). The acceptance probability of a word

w ∈ A∗ by A is
∑

f∈F PA(q0
w
−→ f), denoted PA(w).

Definition 3 (Value). The value of A, denoted val(A), is the supremum accep-

tance probability over all possible input words:

val(A) = sup
w∈A∗

PA(w) . (1)

We are interested in the following decision problem:

Given a probabilistic automaton A, decide whether val(A) = 1.

3 An Equivalent Formulation and the Exact Computational

Complexity

The first result about the value 1 problem is its surprising undecidability, ob-

tained with an elementary proof by Hugo Gimbert and Youssouf Oualhadj in [GO10].



In a related yet seemingly different line of work, Christel Baier, Marcus

Größer and Nathalie Bertrand undertook a thorough study of probabilistic Büchi

automata [BG05,BBG08,BBG09,BBG12]. One of the results obtained there is

the undecidability of the emptiness problem for probabilistic Büchi automata

with probable semantics. It turns out that the two problems are actually Turing-

equivalent:

– the value 1 problem for probabilistic automata over finite words,

– the emptiness problem for probabilistic Büchi automata with probable se-

mantics.

A first (very simple) reduction has been explained in [BBG12]: from a proba-

bilistic automaton A over finite words, one can construct a probabilistic Büchi

automaton A′ of linear size, such that val(A) = 1 if and only if A′ is non-empty

for the probable semantics. The converse reduction is more involved, and fol-

lows from [CSV13], but here the constructed automaton is of exponential size.

Even better, the exact computational complexity has been given in [CSV13]:

both problems are Σ0
2 -complete.

Theorem 1 ([BBG12,CSV13]). The value 1 problem for probabilistic automata

over finite words and the emptiness problem for probabilistic Büchi automata

with probable semantics are Turing-equivalent and Σ0
2 -complete.

4 Decidable Subclasses of Probabilistic Automata

Several subclasses of probabilistic automata were constructed in order to decide

the value 1 problem on such instances.

The first class was the ♯-acyclic automata by Gimbert and Oualhadj [GO10].

Later but concurrently, two different works have been published in the very

same conference. The first one introduces simple automata and structurally sim-

ple automata, by Krishnendu Chatterjee and Mathieu Tracol [CT12]. The sec-

ond, by Hugo Gimbert, Youssouf Oualhadj and the author introduces leaktight

automata [FGO12].

Although geared towards the same goal (deciding the value 1 problem), the

two classes came from different perspectives. The paper of Krishnendu Chatter-

jee and Mathieu Tracol relies on a theorem from Probability Theory, called the

jet decompositions of (infinite) Markov Chains. The paper of Hugo Gimbert,

Youssouf Oualhadj and the author relies on a theorem from Algebra, called Si-

mon’s theorem, asserting the existence of factorization trees of bounded height.

Subsequent studies [FGKO14] showed that the class of leaktight automata

actually strictly contains all the other classes, implying that the Markov Monoid



Algorithm used to decide the value 1 problem for leaktight automata actually

decides the value 1 problem for all cases where it is known to be decidable.
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Conclusion and Perspectives

In this paper, we discussed some recent developments about the value 1 prob-

lem. We first gathered some results from the literature, explaining that it is ac-

tually Turing-equivalent to the emptiness for probabilistic Büchi automata with

the probable semantics, and Σ0
2-complete. Then we presented the different at-

tempts to decide the value 1 problems on subclasses of probabilistic automata.

As a conclusion, the Markov Monoid Algorithm introduced in [FGO12], used

to decide the value 1 problem for leaktight automata, is actually the most correct

algorithm known so far, as the class of leaktight automata strictly contains all

other classes for which the value 1 problem is known to be decidable.

This motivates a deeper understanding of this algorithm. We know that the

Markov Monoid Algorithm cannot solve the value 1 problem, as this prob-

lem is undecidable, but then what is the problem solved by this algorithm? In

other words, can we characterize for which probabilistic automata the Markov

Monoid Algorithm finds a value 1 witness?
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