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What is known about the Value 1 Problem for Probabilistic Automata?

The value 1 problem is a decision problem for probabilistic automata over finite words: are there words accepted by the automaton with arbitrarily high probability? Although undecidable, this problem attracted a lot of attention over the last few years. The aim of this paper is to review and relate the results pertaining to the value 1 problem. In particular, several algorithms have been proposed to partially solve this problem. We show the relations between them, leading to the following conclusion: the Markov Monoid Algorithm is the most correct algorithm known to (partially) solve the value 1 problem.

Introduction

In 1963 Rabin [START_REF] Michael | Probabilistic automata[END_REF] introduced the notion of probabilistic automata, which are finite automata with randomized transitions. This powerful model has been widely studied and has applications in many fields like image processing [START_REF] Culik | Digital images and formal languages[END_REF], computational biology [START_REF] Durbin | Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids[END_REF] and speech processing [START_REF] Mohri | Finite-state transducers in language and speech processing[END_REF]. Several algorithmic properties of probabilistic automata have been considered in the litterature. For instance, Schützenberger [START_REF] Schützenberger | On the definition of a family of automata[END_REF] proved in 1961 that functional equivalence is decidable in polynomial time (see also [START_REF] Tzeng | A polynomial-time algorithm for the equivalence of probabilistic automata[END_REF]), and even faster with randomized algorithms, which led to applications in software verification [KMO + 11].

However, many natural decision problems are undecidable, and part of the literature on probabilistic automata is about undecidability results. For example the emptiness, the isolation and the value 1 problems are undecidable, as shown in [START_REF] Paz | Introduction to probabilistic automata[END_REF][START_REF] Bertoni | Some recursive unsolvable problems relating to isolated cutpoints in probabilistic automata[END_REF][START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF]. To overcome untractability results, a lot of effort went into finding subclasses of probabilistic automata for which natural decision problems become decidable. For instance, the papers [KVAK10,CKV + 11] look at restrictions implying a decidable model-checking problem against ωregular specifications, and the paper [START_REF] Chadha | Probabilistic automata with isolated cut-points[END_REF] investigates whether assuming isolated cut-points leads to decidability for the emptiness problem.

We focus here on the efforts made to understand the value 1 problem. The aim of this paper is to review and relate the attempts made in this direction over the last few years [GO10,CSV11,FGO12,CT12,BBG12,FGKO14].

Definitions

Let Q be a finite set of states. A probability distribution over Q is a function

δ : Q → [0, 1] such that q∈Q δ(q) = 1.
Let A be a finite alphabet. The transitions of a probabilistic automaton are given by a function ∆ : Q × A → D(Q); equivalently, for each letter a ∈ A we consider a probabilistic transition matrix M a , which is a square matrix in [0, 1] Q×Q such that every row of M a is a probability distribution over Q. The value of M a (s, t) is the probability to go from state s to state t when reading the letter a.

Given an input word w ∈ A * , we denote P A (s w -→ t) the probability to go from state s to state t when reading the word w.

Formally, if w = a 1 a 2 • • • a n then P A (s w -→ t) = (M a 1 M a 2 • • • M an )(s, t).

Definition 1 (Probabilistic automaton).

A tuple A = (Q, A, q 0 , ∆, F ) represents a probabilistic automaton, where Q is a finite set of states, A is the finite input alphabet, q 0 ∈ Q is the initial state, ∆ define the transitions and F ⊆ Q is the set of accepting states.

Definition 2 (Acceptance probability). The acceptance probability of a word w ∈ A * by A is f ∈F P A (q 0 w -→ f ), denoted P A (w).

Definition 3 (Value). The value of A, denoted val(A), is the supremum acceptance probability over all possible input words:

val(A) = sup w∈A * P A (w) .
(1)

We are interested in the following decision problem:

Given a probabilistic automaton A, decide whether val(A) = 1.

An Equivalent Formulation and the Exact Computational Complexity

The first result about the value 1 problem is its surprising undecidability, obtained with an elementary proof by Hugo Gimbert and Youssouf Oualhadj in [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF].

In a related yet seemingly different line of work, Christel Baier, Marcus Größer and Nathalie Bertrand undertook a thorough study of probabilistic Büchi automata [BG05,BBG08,BBG09,BBG12]. One of the results obtained there is the undecidability of the emptiness problem for probabilistic Büchi automata with probable semantics. It turns out that the two problems are actually Turingequivalent:

the value 1 problem for probabilistic automata over finite words, the emptiness problem for probabilistic Büchi automata with probable semantics.

A first (very simple) reduction has been explained in [START_REF] Baier | Probabilistic ω-automata[END_REF]: from a probabilistic automaton A over finite words, one can construct a probabilistic Büchi automaton A ′ of linear size, such that val(A) = 1 if and only if A ′ is non-empty for the probable semantics. The converse reduction is more involved, and follows from [START_REF] Chadha | Probabilistic automata with isolated cut-points[END_REF], but here the constructed automaton is of exponential size. Even better, the exact computational complexity has been given in [START_REF] Chadha | Probabilistic automata with isolated cut-points[END_REF]: both problems are Σ 0 2 -complete.

Theorem 1 ([BBG12,CSV13]). The value 1 problem for probabilistic automata over finite words and the emptiness problem for probabilistic Büchi automata with probable semantics are Turing-equivalent and Σ 0 2 -complete.

Decidable Subclasses of Probabilistic Automata

Several subclasses of probabilistic automata were constructed in order to decide the value 1 problem on such instances. The first class was the ♯-acyclic automata by Gimbert and Oualhadj [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF].

Later but concurrently, two different works have been published in the very same conference. The first one introduces simple automata and structurally simple automata, by Krishnendu Chatterjee and Mathieu Tracol [START_REF] Chatterjee | Decidable problems for probabilistic automata on infinite words[END_REF]. The second, by Hugo Gimbert, Youssouf Oualhadj and the author introduces leaktight automata [START_REF] Fijalkow | Deciding the value 1 problem for probabilistic leaktight automata[END_REF].

Although geared towards the same goal (deciding the value 1 problem), the two classes came from different perspectives. The paper of Krishnendu Chatterjee and Mathieu Tracol relies on a theorem from Probability Theory, called the jet decompositions of (infinite) Markov Chains. The paper of Hugo Gimbert, Youssouf Oualhadj and the author relies on a theorem from Algebra, called Simon's theorem, asserting the existence of factorization trees of bounded height.

Subsequent studies [START_REF] Fijalkow | Deciding the value 1 problem for probabilistic leaktight automata[END_REF] showed that the class of leaktight automata actually strictly contains all the other classes, implying that the Markov Monoid Algorithm used to decide the value 1 problem for leaktight automata actually decides the value 1 problem for all cases where it is known to be decidable. leaktight [START_REF] Fijalkow | Deciding the value 1 problem for probabilistic leaktight automata[END_REF] simple [START_REF] Chatterjee | Decidable problems for probabilistic automata on infinite words[END_REF] structurally simple [CT12]

♯-acyclic [GO10] deterministic

Conclusion and Perspectives

In this paper, we discussed some recent developments about the value 1 problem. We first gathered some results from the literature, explaining that it is actually Turing-equivalent to the emptiness for probabilistic Büchi automata with the probable semantics, and Σ 0 2 -complete. Then we presented the different attempts to decide the value 1 problems on subclasses of probabilistic automata. As a conclusion, the Markov Monoid Algorithm introduced in [FGO12], used to decide the value 1 problem for leaktight automata, is actually the most correct algorithm known so far, as the class of leaktight automata strictly contains all other classes for which the value 1 problem is known to be decidable. This motivates a deeper understanding of this algorithm. We know that the Markov Monoid Algorithm cannot solve the value 1 problem, as this problem is undecidable, but then what is the problem solved by this algorithm? In other words, can we characterize for which probabilistic automata the Markov Monoid Algorithm finds a value 1 witness?