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SUMMARY

In this paper we compare various methods of calibration that can be used in practice to improve
the accuracy of reduced-order models based on Proper Orthogonal Decomposition. The bench mark
configuration retained corresponds to a case of relatively simple dynamics: a two-dimensional flow
around a cylinder for a Reynolds number of 200. We generalize to the first and second-order the
method of calibration based on Tikhonov regularization recently used in [1]. Finally, we show that for
this flow configuration this procedure is the most effective in terms of reduction of errors.
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1. INTRODUCTION

Within a relatively short period of a few years, reduced-order modeling by Proper Orthogonal
Decomposition (POD) has gained a significant importance in fluid mechanics and turbulence.
This sudden increase of interest is mainly linked to recent developments of technological
facilities (computers, data acquisition systems) which now allow easier and faster data
recording, ready-to-use for the POD (space-time correlations). However, in the majority of the
applications, the studies are not carried out up to a complete and accurate representation of the
flow dynamics by POD, even if the procedure is now well-known. The latter requires a Galerkin
projection of the governing equations (in general the Navier-Stokes equations) onto the spatial
POD functions, to obtain after truncation in the POD subspace, a set of ordinary differential
equations representing the dynamics of the original system. Then, how can we explain that
the most promising approaches in terms of applications: optimization and optimal control
problems, real-time flow control, parametric studies, continuation methods,. . . are hardly used
in the literature? The major barrier to the expansion of POD Galerkin approach is essentially
the lack of accuracy of the reduced-order models obtained. Indeed, it is often difficult to
represent with a sufficient accuracy, the dynamics at short times of the original system with
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2 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

the parameters of control used to determine the POD basis. In these conditions, what can
be expected from the ability of POD-based reduced-order models to represent the dynamics
of the system at long times (bifurcation studies, for instance) or to predict the dynamics of
the system for parameters of control different from those used to determine the POD basis
(flow control applications)? Recently, various studies [2, 3, 4, 5, 6, 7], presenting numerical
methods termed as calibration, appeared in the literature in order to improve the accuracy
of POD-based reduced-order models thanks to solutions of optimization problems. The idea
is simple, since the temporal dynamics of the POD model is known in advance, it is possible
to use this information to correct whole or part of the coefficients issued from POD Galerkin.
However, according to our knowledge of the literature, there is no trace of any comparative
study of these methods. It is then difficult to claim which is the most effective method in terms
of reduction of errors. The initial objective of this paper is to use a bench mark configuration,
simple from the point of view of dynamics, to analyze thoroughly these various approaches,
and, if possible, to release a more effective strategy. Incidentally, this approach led us to extend
the method of calibration based on Tikhonov regularization [8] recently used in [1] to the first
and second-order [9].

This manuscript is organized as follows. Section 2.1 introduces the Proper Orthogonal
Decomposition in the general context of approximation functions. Then, the POD Galerkin
approach is described for a generic controlled flow configuration (section 2.2.1). In the next
subsection (section 2.2.2), the equations of the reduced-order model based on POD are
simplified in order to give an overall picture of the methods of calibration. In section 2.3,
the bench mark flow configuration used in this study is first described, then the necessity of
introducing methods of calibration to improve the accuracy of the POD model is motivated.
Section 3 is dedicated to the presentation of the existing methods of calibration, within an
unified framework. The various choices of definitions of errors between the calibrated dynamics
and that of the original system are first presented in section 3.1. Then, we show in section
3.2 that in the case of affine functions of errors, the minimization of the normalized errors
leads to the resolution of a linear system. To conclude section 3, the method of calibration
suggested in [3] is presented in section 3.3. The various methods of calibration used so far in
the literature are then compared on the bench mark configuration in section 4. Finally, we
introduce in section 5 the method of calibration based on the Tikhonov regularization, which
we have developed in this paper, and present the results of a comparative study to determine
the most effective method of calibration.

2. REDUCED-ORDER MODELING BASED ON A POD GALERKIN APPROACH

2.1. Proper Orthogonal Decomposition

Given a set of data, elements of a high dimensional space (potentially infinite), the main
idea of the Proper Orthogonal Decomposition (POD) is to determine a subspace of reduced
dimension which is optimal in the sense that the error of projection on this subspace
is minimal. To formulate this statement more precisely, we introduce H a Hilbert space
with inner product (·, ·)H and induced norm ‖ · ‖H . In the majority of the applications,
and it will be our case besides, H corresponds to L2(Ω), with Ω the spatial domain. Let
U = {u(x, tm) = um}m=1,...,Nt

be a set of Nt snapshots taken over a time interval [0, T ], with
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CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 3

x ∈ Ω. Then, the aim of the POD is to find a subspace S of dimension NPOD ≪ Nt, such that
the error E (‖u− PSu‖H) is minimized†. Here, E (·) denotes an average operator over m, for

instance an ensemble average (E (u) = 1
Nt

∑Nt

m=1 u
m), and PS the orthogonal projection onto

S. The procedure is then equivalent to minimize the expression

1

Nt

Nt∑

m=1

∥
∥
∥
∥
um − PSu

m

∥
∥
∥
∥

2

H

=
1

Nt

Nt∑

m=1

∥
∥
∥
∥
um −

NPOD∑

j=1

aPj (tm)Φj

∥
∥
∥
∥

2

H

,

where {Φj}j=1,...,NPOD
is a basis for the subspace S and {aPj }j=1,...,NPOD

refer to temporal
coefficients corresponding to the POD expansion (as indicated by the superscript P ). It can
be shown ([10] or [11] for instance) that this minimization problem leads to the eigenvalue
problem:

RΦj = λjΦj j = 1, · · · , NPOD,

where R = E (u⊗ u∗). Here, ⊗ denotes the dyadic product between two vectors u and u∗

where the ∗ superscript indicates complex conjugate.

Since R is linear, self-adjoint and positive semi-definite on H , the spectral theory applies
and guarantees that:

1. we may choose Φj to be orthonormal, i.e. aPj (tm) = (um,Φj),
2. we have λ1 ≥ λ2 ≥ · · · ≥ λNPOD

≥ 0 where λj (j = 1, · · · , NPOD) are the largest NPOD

eigenvalues of R.

This approach is called direct method and corresponds to the formulation introduced
originally in [12]. However, when the input data come from numerical simulations, it is much
more efficient to use an alternate way of computing the POD eigenfunctions. This method,
known as method of snapshots [13], consists of writing the POD modes as linear combinations
of the snapshots:

Φj(x) =

Nt∑

m=1

bmj um(x).

The vectors bj =
(

b1j , · · · , bNt

j

)T

are then determined as the solutions of a new eigenvalue

problem given by:

Cbj = λjbj ,

where C is a Nt ×Nt correlation matrix with Cij = 1
Nt

(
ui,uj

)
. This matrix is self-adjoint, as

for the direct method. It follows that the vectors bj are orthogonal with respect to the inner
product defined by:

(bj ,bk)T =
1

Nt

Nt∑

m=1

bmj bmk .

†Remind that for any orthogonal projection PS we have ‖u‖2H = ‖u − PSu‖
2
H + ‖PSu‖

2
H . Then, minimizing

E
(

‖u − PSu‖
2
H

)

is equivalent to maximizing E
(

‖PSu‖
2
H

)

.
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4 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

By extension, the inner product associated with the direct method will henceforth be denoted
(Φj ,Φk)Ω where by definition:

(Φj ,Φk)Ω =

∫

Ω

Φj(x) ·Φk(x) dx,

with · the notation of the standard Euclidean inner product.

2.2. POD Reduced-Order Model based on Galerkin projection

2.2.1. General description For incompressible flows, the motion of the fluid is described by
the incompressibility condition and the Navier-Stokes equations,

∇ · u = 0,

∂tu = N (u)−∇p with N (u) = − (u · ∇)u+
1

Re
∆u.

In these equations, all variables (u velocity vector and p pressure) are assumed to be non-
dimensional and Re is the Reynolds number.

The POD Reduced-Order Model (POD ROM) is then constructed by applying the Galerkin
projection to the governing equations. Since by construction the eigenfunctions Φi are
divergence-free for an incompressible flow, they can be used as test functions to derive the
variational formulation of the Navier-Stokes equations:

(∂tu,Φi)Ω = (N (u),Φi)Ω − (∇p,Φi)Ω . (1)

Using the relation ∇ ·Φi = 0, the pressure term can be rewritten as a boundary term:

(∇p,Φi)Ω =

∫

Ω

Φi · ∇p dx =

∫

Ω

∇ · (pΦi) dx =

∫

∂Ω

pΦi · n dx = Pi,

where n is the outward unit normal at the boundary surface ∂Ω. If the snapshots um employed
for the POD are zero on the boundary, then Φi = 0 on ∂Ω and the pressure term vanishes. In
most of the applications [14, 2, 4], the contribution of the pressure term is simply neglected as
a first approximation.

To carry on our developments, we have to specify the variable on which the POD will be
applied. Beyond the idea of a correct representation of the flow physics, we would like to
simplify as much as possible the analytical expressions of the coefficients associated to the
POD ROM. In the previous paragraph, we point out that prescribing Φi = 0 on the boundary
is relevant for the pressure term. We will thus use a lifting procedure discussed thoroughly
in [15]: if the boundary conditions are time-independent (uncontrolled flow for instance), the
original set of snapshots U is replaced by U ′ = {um − um}m=1,...,Nt

where um = E(u); if the
boundary conditions are time-dependent (flow controlled at the boundary for instance), the
POD is applied to U ′′ = {um−γmuc−um}m=1,...,Nt

where γm = γ(tm) characterizes the time
evolution of the control and uc is the actuation mode. In practice, this mode is determined
as a particular solution of the Navier-Stokes equations, where the boundary conditions on the
controlled part of ∂Ω are equal to the spatial evolution of the control, and where the boundary
conditions on the uncontrolled part are set to zero (see [16] for an application to the controlled
cylinder wake).
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CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 5

In the general formulation, the velocity expansion of u over the POD modes Φj writes:

u(x, t) = um(x) + γ(t)uc(x) +

NPOD∑

j=1

aj(t)Φj(x). (2)

By substituting (2) into the Galerkin projection (1), we obtain after some algebraic
manipulations [17] the following expression for the reduced-order model in the presence of
control:

ȧRi (t) = AGP
i +BGP

ij aRj (t) + CGP
ijk aRj (t)a

R
k (t)− Pi(t) (3a)

+DGP
i γ̇(t) +

(

EGP
i + FGP

ij aRj (t)
)

γ(t) +GGP
i γ2(t)

aRi (0) = aPi (0) = (u(x, 0)− um(x) − γ(0)uc(x),Φi)Ω , (3b)

where the Einstein summation is used and all subscripts i, j, k run from 1 to Ngal. Here,
Ngal < NPOD corresponds to the number of Galerkin modes retained in the reduced-order
model. This number of modes is assumed to be sufficient to reproduce accurately the flow (see
section 2.3 to evaluate Ngal). The coefficients AGP

i , BGP
ij , CGP

ijk , DGP
i , EGP

i , FGP
ij and GGP

i

depend explicitly on Φ, um and uc (see Appendix I). The superscripts R are introduced for
the temporal coefficients ai are to indicate that these coefficients are obtained by integrating in
time the system of ODEs (3). Similarly, we introduce the superscripts GP for the coefficients
of the POD ROM to stress that these coefficients are obtained directly by Galerkin projection.

2.2.2. Simplification of the POD ROM In practice, the POD ROM (3) will not necessarily be
integrated in time with the coefficients determined by the method of POD Galerkin. Indeed,
whole or part of the coefficients may either be unknown (in the case of experimental data for
instance) or known with an insufficient level of accuracy to reproduce correctly the original
dynamics (see section 2.3 for an example). It is thus necessary to identify, or in other words
calibrate, whole or part of the coefficients. Since the structure of (3a) is not modified by the
pressure term [18], we can consider without restricting the generality Pi(t) = 0.

In section 3, the various methods of calibration encountered in the literature will be presented

within a unified framework. Therefore we introduce aR(t) =
(

aR1 (t), · · · , aRNgal
(t)

)T

, vectorial

solution of (3), to rewrite compactly (3a) as:

ȧRi (t) = fi(yi, a
R(t)) + gi(zi, a

R(t), γ) i = 1, · · · , Ngal, (4a)

where fi(yi, a
R(t)) = Ai +Bij a

R
j (t) +Qijk a

R
j (t)a

R
k (t), (4b)

and gi(zi, a
R(t), γ) = Di γ̇(t) +

(

Ei + Fij a
R
j (t)

)

γ(t) +Giγ
2(t) (4c)

with j = 1, · · · , Ngal and k = 1, · · · , j. In (4a), yi and zi denote the unknown coefficients
corresponding to respectively the uncontrolled and controlled part of (3a), i.e.
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6 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

yi =















Ai

Bi1

...
BiNgal

Qi11

...
QiNgalNgal















∈ R
Nyi and zi =












Di

Ei

Fi1

...
FiNgal

Gi












∈ R
Nzi ,

where Nyi
= 1+Ngal+

Ngal(Ngal+1)
2 and Nzi = 3+Ngal. In (4b), the coefficients Qijk correspond

to the symmetric part of Cijk only, i.e. Qijk = 1/2 (Cijk + Cikj) for i, j = 1, · · · , Ngal and
k = 1, · · · , j. This modification of the expression of the quadratic term is justified by the fact
that it is impossible to differentiate Cijk from Cikj by any technique of calibration.

In vectorial formulation, the controlled POD ROM given by (4a) is finally:

ȧR(t) = f(y, aR(t)) + g(z, aR(t), γ), (5)

where for the uncontrolled contribution:

f =








f1
f2
...

fNgal








∈ R
Ngal ; y =








y1

y2

...
yNgal








∈ R
Ny with Ny = NgalNyi

,

and, for the controlled contribution:

g =








g1
g2
...

gNgal








∈ R
Ngal ; z =








z1
z2
...

zNgal








∈ R
Nz with Nz = NgalNzi .

Here, f and g can be evaluated easily using the coefficients of the model y and z (see
Appendix II).

For the sake of clarity, the rest of the paper is limited to uncontrolled flows, i.e. γ = 0 or
g = 0, in (5). One of the interests of (5) is to clearly demonstrate that for a given value of
γ the extension to controlled flows is straightforward (see [1] for a recent application of the
calibration techniques to a controlled wake flow).

2.3. Two-dimensional cylinder wake flow at Re = 200

The reduced-order modeling approach based on POD is now applied to a two-dimensional
incompressible cylinder wake flow at Re = 200. The database was computed using a finite-
element code (DNS code Icare, IMFT/University of Toulouse, see [19] for details) and contains
Nt = 200 two-dimensional snapshots of the flow velocity, taken over a period T = 12 i.e. over
more than two periods of vortex shedding (Tvs = 5). Typical iso-values of the longitudinal
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CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 7

Figure 1. Iso-values of the longitudinal velocity fluctuation.

velocity are shown in Fig. 1.

Following the discussion of section 2.2.1, the method of snapshots introduced in section 2.1
is applied to the velocity fluctuation. The first six spatial eigenfunctions Φi are represented in
Fig. 2 and the relative kinetic energy is plotted in logarithmic scale for the first 40 POD modes
in Fig. 3. The energy is clearly concentrated in a very small number of modes: the first six
POD modes are sufficient to represent 99.9% of the flow energy and we thus consider Ngal = 6
to derive the POD ROM.

The POD ROM (5) is then integrated in time with a classical fourth-order Runge-Kutta
scheme and a time step of 10−3T . A set of predicted time histories for the mode amplitudes
aRi (t) is obtained, and compared to the set of POD temporal eigenfunctions aPi (t). As shown in
Fig. 4, the original dynamics is globally well reproduced but the accuracy is not perfect. Indeed,
the most energetic mode is well reconstructed, while for the higher modes the maxima remain
over-estimated. Besides that, a constant phase shift can quickly occur between the dynamics
of the model and that of the original one (see mode 3 for instance). If the final objective is to
use the POD ROM in a phase control strategy, then these errors can lead to the failure of this
control strategy. This relatively bad performances of the model may be attributed to

i) the structural instability of the Galerkin projection [20, 21, 14],
ii) the truncation of the POD basis (dissipative scales associated to higher POD modes are

not sufficiently present in the model),
iii) the fact that the set of data does not perfectly respect the weak formulation

(5): inaccurate treatment of the boundary terms and the pressure contribution,
incompressibility not verified (experimental data),

iv) an insufficient numerical precision to compute the POD ROM coefficients.

It is thus necessary to introduce calibration techniques in order to reproduce accurately the
dynamics of reference using the POD ROM.
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8 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

(a) Mode 1. (b) Mode 2.

(c) Mode 3. (d) Mode 4.

(e) Mode 5. (f) Mode 6.

Figure 2. The first 6 spatial POD eigenfunctions are visualized by iso-values of their norm (‖Φi‖Ω).

3. EXISTING CALIBRATION METHODS

Many methods of calibration have already been proposed in the literature. Let us quote for
example the different techniques based on least-square minimization [2, 3, 5], those consisting
in solving a constrained optimization problem, iteratively [22] or simultaneously [6], the recent
method termed intrinsic stabilization introduced in [7], and finally the calibration procedure
suggested by [3]. To compare fairly the previous procedures on the case of the cylinder wake
flow (see section 4), we first introduce various criteria of error (section 3.1), along the lines of
[3]. Then, we emphasize in section 3.2 that the problem of minimization reduces to a linear
system when the errors are affine functions of y. Finally, the calibration procedure suggested
in [3] is presented, as the Tikhonov regularization method proposed in this paper (section 5)
constitutes an alternative to their approach.
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CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 9
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Figure 3. POD eigenvalues in logarithmic scale. ENt corresponds to twice the energy contained in the

database (ENt =
∑Nt

j=1 λj).
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a
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−0.2

(c) Mode 6

Figure 4. Comparison between the temporal evolutions of the projected ✷ (POD) and predicted �

(POD ROM) mode amplitudes. No calibration was used for the POD ROM.

3.1. Definitions of errors

3.1.1. State calibration method with dynamical constraints The objective of the POD-based
model (5) is to represent, as accurately as possible, the dynamics given by the POD temporal
eigenfunctions. It is then natural to seek the coefficients y which minimize the error

e(1)(y, t) = aP (t)− aR(t),

under the constraint of the Cauchy problem defined by:

(PC)

{

ȧR(t) = f(y, aR(t)),

aR(0) = aP (0).

Since e(1) ∈ R
Ngal and is time-dependent, we rather seek to minimize

I(1)(y) = 〈‖e(1)(y, t)‖2Λ〉To
,
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10 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

where 〈·〉To
is a time average operator over [0, To] (To ≤ T ) and ‖ · ‖Λ is a norm of RNgal . 〈·〉To

corresponds in this paper to the arithmetic time-average on N equally spaced elements of the
interval [0, To]:

〈g(t)〉To
=

1

N

N∑

k=1

g(tk) with tk = (k − 1)∆t and ∆t =
To

N − 1
.

For the norm, we introduce Λ ∈ R
Ngal×Ngal the symmetric definite positive matrix associated

to ‖ · ‖Λ and define for any e ∈ R
Ngal :

‖e‖2Λ = eTΛe.

The matrix Λ introduced in the definition acts as a weight function: it allows to balance the
importance of specific POD modes. When Λ = INgal

for example, all POD modes have the
same importance in terms of error.

The minimization of I(1) under the constraints of PC corresponds to a nonlinear constrained
optimization problem. Until now, this problem is solved only for Λ = INgal

i.e. minimizing:

I(1)(y) =
1

N

N∑

k=1

Ngal∑

i=1

(
aPi (tk)− aRi (tk)

)2
.

In [22], the constrained optimization problem built on I(1) was solved iteratively to find
optimal eddy viscosities. In [2], the same iterative approach is used to determine a linear model
for the pressure contribution of the Galerkin projection. More recently, a similar approach was
used in [6] to determine the constant and linear coefficients of the POD ROM. However, in this
case, the constrained optimization problem was solved simultaneously with a pseudo-spectral
discretization of the variables.

3.1.2. State calibration method From a mathematical point of view, the minimization
problem based on I(1) is not well posed: several solutions may coexist and convergence is
not even guaranteed (see [3] for some arguments). Therefore, it was proposed in [3] to suppress
the dynamical constraint in the definition of e(1).

After integration in time of the POD ROM, the error e(1) can be rewritten as:

e(1)(y, t) = aP (t)− aP (0)−
∫ t

0

f(y, aR(τ)) dτ.

To suppress the nonlinear constraint, the occurrence of aR in the last term can be replaced
by aP . We then introduce a new error e(2) defined as:

e(2)(y, t) = aP (t)− aP (0)−
∫ t

0

f(y, aP (τ)) dτ.

In the literature, the minimization of I(2)(y) = 〈‖e(2)(y, t)‖2Λ〉To
was considered in [3] to

determine all the coefficients of the model and more recently in [23] to evaluate the constant
and linear coefficients for an unsteady transonic flow. In both cases, all modes have the same
contribution, i.e. Λ = INgal

, and the following error is minimized:

I(2)(y) =
1

N

N∑

k=1

Ngal∑

i=1

(

aPi (tk)− aPi (0)−
∫ tk

0

fi(y, a
P (τ)) dτ

)2

.
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CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 11

3.1.3. Flow calibration method The third criterion of error is obtained by taking the temporal
derivative of the e(1) criterion:

d

dt

(

e(1)(y, t)
)

= ȧP (t)− f(y, aR(t)),

and by replacing aR by aP in order to suppress the nonlinear constraint. The following error
is thus obtained:

e(3)(y, t) = ȧP (t)− f(y, aP (t)).

The idea suggested by [3] to minimize I(3)(y) = 〈‖e(3)(y, t)‖2Λ〉To
seems natural because it

is equivalent to impose that the temporal POD eigenfunctions aP are solutions of the flow
model given by f . For this reason, this least-square procedure was proposed independently by
[2] to evaluate a linear model for the pressure term coming from the Galerkin projection and
by [5] to identify all the coefficients of the model starting from experimental data obtained by
PIV. All these applications were carried out for Λ = INgal

i.e. with the aim of minimizing:

〈‖e(3)(y, t)‖2INgal
〉To

=
1

N

N∑

k=1

Ngal∑

i=1

(
ȧPi (tk)− fi(y, a

P
i (tk)

)2
.

3.2. Affine functions of errors

For the state calibration method (section 3.1.2) and the flow calibration method (section 3.1.3),
the corresponding errors are affine with respect to y. We can then demonstrate (see Appendix
III) that minimizing

I(i)(y) = 〈‖e(i)(y, t)‖2Λ〉To
for i = 2, 3

gives rise to the linear system

A(i)y = b(i), (6)

where A(i) ∈ R
Ny×Ny and b(i) ∈ R

Ny are defined in Appendix III.

3.3. Calibration procedure proposed in [3]

The general idea is to determine the coefficients y
(i)
α , which characterize uniquely the calibrated

model, as the solution of the optimization problem based on the functional:

J (i)
α (y) = (1− α)E(i)(y) + αD(y) with i = 2, 3.

α ∈ [0, 1] is a weighting parameter; E(i)(y) is a measure of the normalized error between the
behavior of the data i.e. aP (t), and the behavior of the polynomial model defined by y whose
state is aR(t); D(y) is a measure of the difference between the coefficients of the model y

and the coefficients obtained from the Galerkin projection yGP . For α = 0, the calibrated
model is fully optimized (we will see in section 4 that in this case the linear system (6) is
ill-conditioned) and for α = 1, the coefficients from the Galerkin projection are recovered. E(i)

and D are defined as:

E(i)(y) =
〈‖e(i)(y, t)‖2Λ〉To

〈‖e(i)(yGP , t)‖2Λ〉To

=
I(i)(y)

I(i)(yGP )
,
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12 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

and

D(y) =
‖y− yGP ‖2Π
‖yGP ‖2Π

,

where ‖ · ‖Π is a semi-norm on the polynomial vector space. For any y ∈ R
Ny , ‖y‖Π is defined

by

‖y‖2Π = yTΠy,

where Π ∈ R
Ny×Ny is a non-negative symmetric matrix. For Π = INy

, all the coefficients are
calibrated and have the same weight in the calibration. For values different from INy

, a partial
calibration is possible (see [3] for the only example present in the literature). In section 4, our
numerical experiments will be carried out for Π = INy

.

Finally, it can be shown (Appendix IV) that for i = 2 or 3, the minimization of J (i)
α amounts

to solve the linear system:

A(i)
α y = b(i)

α , (7)

with

A(i)
α =

1− α

I(i)(yGP )
A(i) +

α

‖yGP ‖2Π
Π,

and

b(i)
α =

1− α

I(i)(yGP )
b(i) +

α

‖yGP ‖2Π
ΠyGP .

The questions which remain open are:

1. How to fix the weighting parameter α, and what is the optimal choice?
2. How to apply this procedure of calibration in the case of experimental data, for which

the coefficients coming from the Galerkin projection are usually not available?

Table I. Normalized errors E (i) and costs of the calibration D. Comparison between the results obtained
by: i) minimizing I(1) under the constraint of PC , ii) minimizing I(3) with the determinations of the
linear (L), constant and linear (C and L) and eddy-viscosity terms (V ) and iii) Intrinsic Stabilization

[7].

Method of calibration Control terms
√

E (1)(y)
√

E (2)(y)
√

E (3)(y)
√

D(y)

Minimization of I(1) C and L 2.60 10−2 2.43 10−1 2.44 10−1 1.53 10−1

under the constraint of PC

Minimization of I(3) L 6.78 10−2 8.85 10−1 3.86 10−1 3.28 10−2

Minimization of I(3) C and L 3.19 10−2 2.46 10−1 2.68 10−1 3.27 10−2

Minimization of I(3) V 7.85 10−1 8.72 10−1 9.18 10−1 1.19 10−2

Intrinsic Stabilization [7] C and L 6.26 10−2 3.29 10−1 3.07 10−1 3.27 10−2
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CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 13
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Figure 5. Comparison between the temporal evolutions of the projected ✷ (POD) and predicted

� (POD ROM) mode amplitudes. The POD ROM is calibrated by minimization of I(3) with
determination of all the coefficients (constant, linear and quadratic). The linear system is not

regularized.

4. APPLICATION TO THE CYLINDER WAKE FLOW

The methods of calibration presented in section 3 are applied to the cylinder wake flow of
section 2.3. In section 4.1, the coefficients of the model are found by first minimizing I(1)

under the constraint of PC , and then by minimizing I(3). In the subsequent section 4.2, the

results determined by minimizing J (2)
α and J (3)

α are presented. The choice of the weighting
parameter α and its impact on the POD ROM are discussed.

4.1. Minimization of I(1) under the constraint of PC and minimization of I(3)

In Table I, the normalized errors and costs of the calibration are reported for the minimization
of I(1), under the constraint of PC , and for the minimization of I(3). In that case, different
control parameters are considered: determination of the linear, constant and linear, eddy
viscosity terms of the model. The results are compared with those obtained by the intrinsic
stabilization scheme recently suggested in [7].

It is found that the most effective method of calibration in terms of reductions of normalized
errors corresponds to the minimization of I(1) under the constraint of the Cauchy problem
PC , for any specific criterion E(i) considered. For the minimization of I(3), the results confirm
the intuitive idea that the normalized error decreases as the number of calibration variables
increases. Indeed, for this method of calibration, the lowest normalized error is systematically
obtained for the determination of constant and linear coefficients. For the corresponding costs
of calibration, it is found that for the minimization of I(1) under the constraint of PC ,

√
D is

approximately equal to 15% whereas the cost is only of 3% in the case of the minimization
of I(3). Since the normalized errors are of the same order of magnitude in both methods, we
are tempted to claim that the minimization of I(3), with the determination of the constant
and linear coefficients, is more effective than the other approaches of calibration. However,
the economic argument (ratio of savings over costs) commonly used in flow control to assess
the efficiency of control strategies, makes here little sense, because the main objective of
the calibration is to determine POD ROMs of improved accuracy. For the methods based
on identification of parameters, the cost corresponds to the numerical implementation of the
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14 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

calibration and not to the variation of the coefficients from their value determined by POD
Galerkin, as the conclusions drawn by [3] may let it think. The cost of calibration, as it is
defined by D, is interesting, but especially as an indication, as it is difficult in practice to
use this criterion to determine the method of calibration to apply (see section 4.2). Lastly,
concerning the intrinsic stabilization scheme, one notes that, on this flow configuration, it is
always less effective in terms of normalized errors than other methods.

Since the minimization of I(1), under the constraint of PC , and the minimization of I(3)

with determination of the constant and linear coefficients seem both as effective, we have tried
to use the calibration based on minimization of I(3) to determine all the coefficients. Figure
5 shows that the POD ROM calibrated in this way diverges quickly during the numerical
integration. This behavior, which can seem surprising for this simple kind of dynamics, will be

explained in section 4.2 by the ill-conditioning of A
(3)
0 (see Fig. 8).
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Figure 6. Normalized errors E (i) and costs of the calibration D obtained using the minimizations of

J (2)
α and J (3)

α , for α varying in {0.05, 0.1, · · · , 1} (top) and δ varying in {0.05, 0.1, · · · , 1} (bottom).

4.2. Minimizations of J (2)
α and J (3)

α

In this section, the calibration is carried out by minimizing the functionals J (2)
α and J (3)

α

suggested in [3]. Their idea was to determine the coefficients of calibration as solutions of
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CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 15

an optimization problem aiming at minimizing a weighted average of the normalized error,
and a term measuring the variation of the coefficients from their value obtained by POD
Galerkin. The main difficulty is to evaluate efficiently, and possibly using an optimal procedure,
the value of the weighting parameter α. Figure 6 (top) represents the evolutions of the

normalized errors and the calibrations costs obtained by minimizing J (2)
α and J (3)

α as α is

varied (α ∈ {0.05, 0.1, · · · , 1}). Note that by definition of the functional J (i)
α , only E(2)(y

(2)
α ),

E(3)(y
(3)
α ), D(y

(2)
α ) and D(y

(3)
α ) are monotone functions of α. In addition, since the curves of

errors and costs vary extremely rapidly when α tends to 1, we have made the same choice as
in [3], and introduced also a variation of these variables according to a parameter δ defined in
increasing bijection with α on [0, 1]. The weighting parameter α is defined by:

α =
δ

ζ(i) (1− δ) + δ
with ζ(i) =

I(i)(yGP )

I(i)(0)
,

and is displayed as a function of δ in Fig. 7, with δ ∈ {0.05, 0.1, · · · , 1}. The results computed
with a linear variation of δ on [0, 1] are represented in Fig. 6 (bottom). Numerically, when
α tends to 0, the trend tends towards a decrease of the normalized error (better calibrated
model), and towards an increase of the cost of calibration (model more modified). In practice,
it is thus difficult to exploit these curves to choose the value of the appropriate weighting
parameter α. Of course, it is always possible to arbitrarily choose a criterion, ensuring a
specific balance between the reduction of the normalized error and the cost of calibration.
However, as it has already been discussed in the previous section, the cost of the calibration
measured by the criterion D is not fully relevant. Then, we may wonder if it would not be more
convenient to simply minimize the normalized error by setting α = 0. The answer is given in

Fig. 8, by showing that matrices A
(2)
α and A

(3)
α become very ill-conditioned as α goes to 0. The

suggestion of [3] to add the term of calibration cost D to the functional can be interpreted as
a particular method of regularization of the matrix A(i), which is, by nature, ill-conditioned.
Moreover, the drawback of the procedure is the choice of the weighting parameter α which

is not straightforward. In addition, minimizing J (2)
α and J (3)

α is impossible when coefficients
resulting from Galerkin projection are not available (case of the majority of the experimental
data). In the next section, we thus propose another method of regularization directly based
on the minimization of I(3).

5. CALIBRATION BY TIKHONOV REGULARIZATION

5.1. Filter factors and discrete Picard condition

The minimization of the functional I(3) amounts to solving the linear system A(3)y = b(3)

where A(3) and b(3) are given in Appendix III. For the sake of clarity, the superscript is
omitted and we thus write simply the linear system as Ay = b. In practice, the right-hand
side is contaminated by approximation errors related to the numerical evaluation of the time-
derivatives of the POD eigenfunctions (remind that e(3)(0, t) = ȧP (t)). To understand the
influence of these errors on the solution of the linear system, the concept of filter factors is
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Figure 7. Evolution of α with respect to δ.
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Figure 8. Condition numbers K(A
(i)
α ) (i = 2, 3) obtained during the minimizations of J (2)

α and J (3)
α ,

with α varying in {0., 0.002, · · · , 1} (left) and α varying in {0., 0.0002, · · · , 0.002} (right).

introduced. To do so, the Singular Value Decomposition [24] is applied to the matrix A:

A = UΣV T =

Ny∑

j=1

ujσjv
T
j ,

where U =
(
u1, · · · ,uNy

)
and V = (v1, · · · ,vNy) are orthogonal matrices containing the left

uj and right vj singular vectors, and where Σ = diag
(
σ1, · · · , σNy

)
is a diagonal matrix with

the singular values σj arranged in non-increasing order such that

σ1 ≥ · · · ≥ σNy
≥ 0.

Since U and V are orthogonal matrices (UUT = V V T = INy
), the solution y of the linear
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CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 17

Figure 9. Visual check of the discrete Picard condition corresponding to the minimization of I(3) with
determination of all the coefficients (constant, linear and quadratic) and application of the Tikhonov

regularization (L = I ; y0 = yGP ).

system is given by‡:

y =

Ny∑

j=1

1

σj

uT
j bvj =

Ny∑

j=1

hj

1

σj

uT
j bvj with hj = 1 for j = 1, · · · , Ny,

where hj are the filter factors. This relation clearly illustrates the numerical difficulties
encountered when the linear system is solved without precautions. Indeed, if the Fourier
coefficients |uT

j b|, corresponding to the smaller singular values σj , do not decrease sufficiently
fast compared to the singular values, the solution is dominated by the terms in the sum
corresponding to the smallest σj . This behavior can be assessed by inspecting the discrete
Picard condition plotted in Fig. 9: for j ≃ 80, the singular values decay faster than the Fourier
coefficients |uT

j b|. As a result, the solution obtained presents many oscillations around zero,
and thus appears to be completely random (see Fig. 10 for the solution without regularization).
To fix this, the first idea is to modify the filter factor hj so that it behaves like an ideal low-pass

‡It can be shown easily (see Appendix III) that y is also the solution of the linear least-squares problem

miny ‖Ay − b‖22.
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18 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER
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Figure 10. Comparison between solutions obtained with and without regularization, for the
minimization of I(3), with the determination of all the coefficients (constant, linear and quadratic).
The linear system is regularized by Tikhonov with L = I and y0 = yGP . Note that for Ngal = 6,

Ny = 168.

filter:

hj =

{

1 if j ≤ 80,

0 if j > 80.

For the cylinder wake flow, this procedure may be appropriate since the temporal dynamics
is relatively simple (see the abrupt falling-off in the singular values for j ≃ 80). However, this
method is not suitable for more complex dynamics (3-D turbulent flow for instance) for which
the singular values decrease continuously. It is thus necessary to modify the filter factors in a
more sophisticated way.

5.2. Tikhonov regularization

Undoubtedly, the most common and well-known method of regularization is the Tikhonov
regularization [25]. The idea is to seek the regularized solution yρ as the minimizer of the
following weighted functional

Φρ(y) = ‖Ay − b‖22 + ρ‖L (y − y0) ‖22,
where the first term corresponds to the residual norm, and the second to a side constraint
imposed on the solution. ρ is called the regularization parameter and L represents the discrete
approximation matrix of a differential operator. This matrix is typically either the identity

ha
l-0

10
73

97
8,

 v
er

si
on

 1
 - 

11
 O

ct
 2

01
4



CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 19

matrix of order Ny (derivative of order zero), or a banded matrix of dimension (Ny − d)×Ny

approximation of the derivative operator of order d. In particular, for d = 0, d = 1 and d = 2,
the method is termed zeroth, first and second-order Tikhonov regularization respectively.
Thereafter, these operators will be denoted L = I (d = 0), L = FOD (d = 1) and L = SOD
(d = 2).

Intuitively, the regularization can be seen as a balance between two requirements:

1. yρ should give a small residual Ayρ − b,
2. L (yρ − y0) should be small with respect to the 2-norm.
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Figure 11. L-curve corresponding to the minimization of I(3), with the determination of all the
coefficients (constant, linear and quadratic) and application of the Tikhonov regularization (L = I ;

y0 = yGP ). The "corner" of the L-curve is at ρ = 6.78 10−8.

By using the same type of argument that that of section 5.1 to justify the introduction of
filter factors hj , it becomes possible to prove that for y0 = 0, the regularized solution yρ can
be written as follows:

yρ =

Ny∑

j=1

hj

1

σj

uT
j bvj with hj =

σ2
j

σ2
j + ρ

if L = INy
,

and

yρ =

Ny−d
∑

j=1

hj

1

σj

uT
j bxj +

Ny∑

j=Ny−d+1

uT
j bxj with hj =

γ2
j

γ2
j + ρ

if L 6= INy
.
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20 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

Here γj (j = 1, · · · , Ny − d) are the generalized singular values of (A,L) and xj the jth
column of X ∈ R

Ny×Ny (see Appendix V for the definition of the Generalized Singular Value
Decomposition).

The regularization parameter ρ needs now to be computed. To do so, the L-curve method
implemented in the package Regularization Tools [26] is used throughout the paper.
The L-curve method is based on the analysis of the curve representing the semi-norm of
the regularized solution ‖Lyρ‖2, versus the corresponding residual norm ‖Ayρ −b‖2. In most
of the cases, this curve exhibits a typical L shape (see Fig. 11). The corner of the L-curve
represents a fair compromise between the minimization of the norm of the residual (horizontal
branch) and the semi-norm of the solution (vertical branch). In [26], the detection of the corner
is based on the maximization of the curvature of the L-curve.
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Figure 12. Comparison between the temporal evolutions of the projected ✷ (POD) and predicted

� (POD ROM) mode amplitudes. The POD ROM is calibrated by minimizing I(3), with the
determination of all the coefficients (constant, linear and quadratic). The linear system is regularized

by Tikhonov with L = I and y0 = yGP .

5.3. Comparison of the different types of Tikhonov regularization

Table II. Normalized errors E (i) and costs of the calibration D. Comparison between the results
obtained by minimizing I(3), with the determination of all the coefficients (constant, linear and
quadratic), for different types of Tikhonov regularization. The case L = FOD is not reported because

the numerical integration of the calibrated model is diverging.

Type of Tikhonov regularization
√
E (1)(y)

√

E (2)(y)
√

E (3)(y)
√

D(y)

L = I ; y0 = 0 4.14 10−3 2.33 10−1 6.27 10−2 8.90 10−1

L = I ; y0 = yGP 2.33 10−3 2.33 10−1 6.31 10−2 5.67 10−1

L = SOD ; y0 = 0 2.27 10−1 2.28 10−1 1.14 10−1 1.22
L = SOD ; y0 = yGP 5.21 10−3 2.32 10−1 7.07 10−2 3.44 10−2

In this section, the various types of Tikhonov regularization introduced in section 5.2 are
compared on the configuration of the cylinder wake flow. Table II reports the normalized errors
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Figure 13. Comparison between the modal energetic contents obtained before and after calibration.
The POD eigenvalues are reported for reference. The POD ROM is calibrated by minimizing I(3),
with the determination of all the coefficients (constant, linear and quadratic). The linear system is

regularized by Tikhonov with L = I and y0 = yGP .

and costs of the calibration obtained by zeroth and second-order Tikhonov regularization. The
case of first-order Tikhonov regularization (L = FOD) is not mentioned because it is diverging,
despite the regularization carried out. On average over all the criteria of normalized errors,
the case L = I and y0 = yGP appears to be the most effective. Consequently, this type of
Tikhonov regularization is retained for the comparison of section 5.4. In Fig. 12, the temporal
evolutions of the POD modes are compared with those predicted by the calibrated reduced-
order model. Contrary to the results presented in Fig. 4 there is no clear difference in the
dynamics. The immediate consequence is that the modal energy distribution associated to the
calibrated model now corresponds perfectly to the POD energy (see figure 13). However, it is
worth mentioning that the finite-time thermodynamics (FTT) formalism recently suggested
in [27] is more satisfactory because the calibration techniques are rather a posteriori methods
whereas the FTT is a flow modeling approach in itself.

5.4. Comparison of the most effective calibration methods

To conclude, we compare in this section the three most effective methods of calibration
presented in this paper on the configuration of the wake flow. Table III gives the normalized
errors and the costs of the calibration obtained by minimization of I(1) under the constraint of

PC , by minimization of J (3)
α for α = 0.001 and by minimization of I(3) with determination of

all the coefficients of the model and application of the most effective Tikhonov regularization
i.e. L = I and y0 = yGP . Except for the E(3) criterion where

√

E(3)(y) = 6.29 10−2 for the

ha
l-0

10
73

97
8,

 v
er

si
on

 1
 - 

11
 O

ct
 2

01
4



22 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

minimization of J (3)
α and

√

E(3)(y) = 6.31 10−2 for the minimization of I(3) with Tikhonov
regularization, the numerical experiments prove that the normalized errors are minimized by
the calibration based on Tikhonov regularization. The difference between these methods of

calibration can be analyzed in a finer way by introducing the modal errors I(j)
i defined§ for

i = 1, · · · , Ngal and j = 1, · · · , 3 as:

I(j) (y) =

Ngal∑

i=1

I(j)
i (y) .

The modal errors I(1)
i are represented in Fig. 14 for the various calibration techniques

presented in Table III. For all POD modes, the minimization of I(3) using the Tikhonov

regularization is more effective than the minimization of J (3)
α for α = 0.001. Additionally,

these methods clearly outperform the minimization of I(1) under the constraint of PC for the
higher POD modes. The main interest of the calibration technique based on the Tikhonov
regularization is that the choice of the parameter of regularization ρ is determined by the
L-curve without any intervention of the user.

Table III. Normalized errors E (i) and costs of the calibration D. Comparison between the results

obtained by: i) minimizing I(1) under the constraint of PC , ii) minimizing J (3)
α with α = 0.001, and

iii) minimizing I(3) with the determination of all the coefficients (constant, linear and quadratic) and
application of the Tikhonov regularization (L = I ; y0 = yGP ).

Method of calibration Control terms
√
E (1)(y)

√

E (2)(y)
√

E (3)(y)
√

D(y)

Minimization of I(1) C and L 2.60 10−2 2.43 10−1 2.44 10−1 1.53 10−1

under the constraint of PC

Minimization of J (3)
α (α = 0.001) C, L and Q 3.01 10−3 2.33 10−1 6.29 10−2 5.05 10−1

Minimization of I(3) with Tikhonov C, L and Q 2.33 10−3 2.33 10−1 6.31 10−2 5.67 10−1

regularization (L = I ; y0 = yGP )

6. CONCLUSIONS AND OUTLOOK

In the first part of this paper, we have presented within a unified framework the various
methods of calibration used so far in the literature to identify the coefficients of the POD
ROM. Afterwards, we have applied these methods to a 2-D cylinder wake flow, to understand
these techniques in details, and, if possible, to release a more effective strategy. We have thus
showed that the minimization of I(1), under the constraint of the Cauchy problem PC , is
much more effective than the methods based on the minimization of I(3), or than the Intrinsic
Stabilization scheme. We have then continued by applying the procedure suggested in [3],

§Rigorously, these modal errors can be introduced only when Λ is the identity matrix of size Ngal.

ha
l-0

10
73

97
8,

 v
er

si
on

 1
 - 

11
 O

ct
 2

01
4



CALIBRATION OF POD ROM USING TIKHONOV REGULARIZATION 23
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 1  2  3  4  5  6

POD mode i

I(
1
)

i

No calibration

Min. of I(1)

under the constraint of PC

Min. of J (3)
α (α = 0.001)

Min. of I(3) with Tikhonov
regularization (L = I ; y0 = yGP )

Figure 14. Modal errors I(1)
i . Comparison between the results obtained by: i) minimization of I(1)

under the constraint of PC , ii) minimization of J (3)
α with α = 0.001 and iii) minimization of I(3) with

determination of all the coefficients (constant, linear and quadratic) and application of the Tikhonov

regularization (L = I ; y0 = yGP ). We remind that I(1) (y) =
∑Ngal

i=1 I(1)
i (y).

which is based on the minimization of a weighted sum of the normalized error, and of a term
measuring the variation of the coefficients of the model to their values obtained by POD
Galerkin. In substance, the idea is identical to what is usually made in optimal control ([28]
for instance). Indeed, the cost functional is built as the sum of two terms, the first being a
measure of the objective of the optimization, and the second corresponding to the cost of the
control. However, as far as the identification is concerned, the variation of the coefficients of
the calibrated model from their values obtained by POD Galerkin, is not relevant because the
main objective is to improve the accuracy of the model. Also, in the case of experimental data,
the coefficients resulting from POD Galerkin do not even exist in the majority of the cases.
Finally, it can be shown numerically that adding the cost of the calibration to the functional
to be minimized, comes down to improve the conditioning of the linear systems associated
to the minimization of I(2) and I(3). As the choice of the parameter α is relatively tricky,
even arbitrary, the linear system associated to the minimization of I(3) is regularized by the
method of Tikhonov. For our test-case, the zeroth-order regularization (L = I) with y0 = yGP

is the most effective among all the types of Tikhonov regularization considered. Lastly, our
numerical experiments demonstrate that the Tikhonov regularization outperforms, in terms of
normalized errors, the minimization of I(1) under the constraint of PC and the minimization of

J (3)
α with α = 0.001. Compared to the approach suggested in [3], the interest of the Tikhonov

regularization is that the value of the parameter of regularization ρ is determined automatically,
via the L-curve method.
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24 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

The calibration by Tikhonov regularization presented here still needs to be tested on
flow configurations corresponding to more complex dynamics: 3-D turbulent flow obtained
by numerical simulations, and challenging experimental data. The extension to actuated
configurations with known control parameters should be straightforward. On the other hand,
calibrating a reduced-order model, so that it can represent the evolution of dynamics when the
control law varies, is a more complex task. A basic idea consists in determining a POD basis
starting from snapshots coming from several control laws, and then to calibrate the model for
all the control laws considered. Recently, this approach was applied for the first time in [1] to
identify a robust model of actuated wakes.

APPENDIX

I. POD ROM COEFFICIENTS

The coefficients of the POD ROM (3) obtained by Galerkin projection (GP) are:

AGP
i = − (Φi, (um · ∇)um)Ω − 1

Re

(
(∇⊗Φi)

T , ∇⊗ um

)

Ω
+

1

Re
[(∇⊗ um)Φi]∂Ω ,

BGP
ij = − (Φi, (um · ∇)Φj)Ω − (Φi, (Φj · ∇)um)Ω − 1

Re

(
(∇⊗Φi)

T , ∇⊗Φj

)

Ω

+
1

Re
[(∇⊗Φj)Φi]∂Ω ,

CGP
ijk = − (Φi, (Φj · ∇)Φk)Ω ,

DGP
i = − (Φi, uc)Ω ,

EGP
i = − (Φi, (uc · ∇)um)Ω − (Φi, (um · ∇)uc)Ω − 1

Re

(
(∇⊗Φi)

T , ∇⊗ uc

)

Ω

+
1

Re
[(∇⊗ uc)Φi]∂Ω ,

FGP
ij = − (Φi, (Φj · ∇)uc)Ω − (Φi, (uc · ∇)Φj)Ω ,

GGP
i = − (Φi, (uc · ∇)uc)Ω ,

with [u]∂Ω =

∫

∂Ω

u · n dx and
(

P , Q
)

Ω
=

∫

Ω

P : Qdx =

nc∑

i, j=1

∫

Ω

PijQji dx. Here,

nc is the number of components of u. When the flow is not controlled, uc = 0 and
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DGP
i = EGP

i = FGP
ij = GGP

i = 0. When U = {ui}i=1,...,Nt
, we have um = 0 and AGP

i = 0.

II. EVALUATION OF f AND g

The values of fi and gi (see section 2.2.2 for their definitions) can be easily determined if we
know the coefficients yi and zi. Indeed, fi belongs to the space of polynomials of degree 2 in
Ngal variables: aR1 (t), · · · , aRNgal

(t). Therefore, let

m(t) =















1
aR1 (t)

...
aRNgal

(t)

aR1 (t)a
R
1 (t)

...
aRNgal

(t)aRNgal
(t)















∈ R
Nyi

be the vector containing the natural monomial basis of this space, we can write:

fi(yi, a
R(t)) = m(t) · yi.

Similarly, if we define

q(t) =












γ̇(t)
γ(t)

γ(t)aR1 (t)
...

γ(t)aRNgal
(t)

γ2(t)












∈ R
Nzi ,

we have:
gi(zi, a

R(t), γ) = q(t) · zi.
We can deduce from these expressions that f can be computed at any time instant t, as

the product of a block diagonal matrix M where each block is equal to mT by the vector y.
Similarly, g can be obtained as the product of a block diagonal matrix Q where each block is
given by qT by the vector z.

III. MINIMIZATION OF I(2) AND I(3)

For i = 2 and 3, e(i) is an affine function with respect to y ∈ R
Ny (see sections 3.1.2 and

3.1.3). Therefore, we introduce the application

e(i)(·, t) :RNy → R
Ngal

y 7→ E(i)(t)y + e(i)(0, t) with E(i)(t) ∈ R
Ngal×Ny .

By identification with the expressions of the errors e(i) (i = 1, 2), one finds immediately
that:
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26 L. CORDIER, B. ABOU EL MAJD AND J. FAVIER

• for i = 2

E(2)(t)y = −
∫ t

0

f(y, aP (τ)) dτ and e(2)(0, t) = aP (t)− aP (0)

• for i = 3

E(3)(t)y = −f(y, aP (t)) and e(3)(0, t) = ȧP (t),

where f can be evaluated using the method described in Appendix II.

Assuming that Λ is symmetric, we can prove that for i = 2 and 3:

I(i)(y) = 〈‖e(i)(y, t)‖2Λ〉To
= yT 〈E(i)(t)TΛE(i)(t)〉To

y + 2 〈e(i)(0, t)TΛE(i)(t)〉To
y

+ 〈e(i)(0, t)TΛe(i)(0, t)〉To
,

= yTA(i)y − 2b(i)T y + c(i),

where

A(i) = 〈E(i)T (t)ΛE(i)(t)〉To
∈ R

Ny×Ny ,

b(i) = −〈E(i)T (t)Λe(i)(0, t)〉To
∈ R

Ny ,

c(i) = 〈e(i)(0, t)TΛe(i)(0, t)〉To
∈ R.

If Λ is a symmetric matrix, then A(i) is also symmetric by construction. In that case,
minimizing the quadratic function I(i) is equivalent to solve the linear system defined by:

A(i)y = b(i).

IV. MINIMIZATION OF J (i)
α

The functional J (i)
α can also be written as:

J (i)
α (y) = χα

A I(i)(y)
︸ ︷︷ ︸

f1(y)

+χα
Π ‖y − yGP ‖2Π
︸ ︷︷ ︸

f2(y)

,

by denoting

χα
A =

1− α

I(i)(yGP )
and χα

Π =
α

‖yGP ‖2Π
.

In Appendix III, we have demonstrated that when Λ is a symmetric matrix we have

f1(y) = yTA(i)y−2b(i)T y+c(i). Similarly, it can be shown that f2(y) = yTΠy−2yGP T
Πy+

yGP T
ΠyGP if we assume that Π is symmetric.

Since f1 and f2 are two quadratic functions, it is simple to evaluate their gradients at y.
One obtains:

∇f1 (y) = 2
(

A(i)y − b(i)
)

and ∇f2 (y) = 2Π
(
y − yGP

)
.
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By definition, the functional J (i)
α is minimal at y

(i)
α when ∇J (i)

α

(

y
(i)
α

)

= 0. Minimizing

J (i)
α (y) for i = 2 or 3 is then equivalent to solve the linear system:

A(i)
α y(i)

α = b(i)
α ,

with
A(i)

α = χα
A A(i) + χα

Π Π,

and
b(i)
α = χα

A b(i) + χα
Π ΠyGP .

Note that for α = 0, χα
A = 1

I(i)(yGP )
and χα

Π = 0. Inserting these relations into (7), the linear

system (6) is recovered.

V. GENERALIZED SINGULAR VALUE DECOMPOSITION

Let A ∈ R
m×n and L ∈ R

p×n be given with m ≥ n ≥ p. There exist orthogonal matrices
U ∈ R

m×n and V ∈ R
p×p and a nonsingular matrix X ∈ R

n×n such that

A = U

(
Σ 0
0 In−p

)

X−1 , L = V (M, 0)X−1

where Σ = diag(σ1, · · · , σp) and M = diag(µ1, · · · , µp) with 0 ≤ σ1 ≤ · · · ≤ σp ≤ 1 and
1 ≥ µ1 ≥ · · · ≥ µp ≥ 0. Furthermore, it holds that σ2

j + µ2
j = 1 for j = 1, · · · , p. The values

γj = σj/µj (j = 1, · · · , p) are called the generalized singular values of (A,L). The jth column
xj of X is the right singular vector associated with σj .
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