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Passive separation control using a
self-adaptive hairy coating

JUL IEN FAVIER , ANTOINE DAUPTAIN†,
DAVIDE BASSO AND ALESSANDRO BOTTARO

DICAT, Universita di Genova, Via Montallegro 1, 16145, Genova, Italy

A model of hairy medium is developed using a homogenized approach, and the fluid
flow around a circular cylinder partially coated with hair is analyzed by means of nu-
merical simulations. The capability of this coating to adapt to the surrounding flow is
investigated, and its benefits are discussed in the context of separation control. This
fluid-structure interaction problem is solved with a partitioned approach, based on the
direct resolution of the Navier-Stokes equations together with a non-linear set of equa-
tions describing the dynamics of the coating. A volume force, arising from the presence
of a cluster of hair, provides the link between the fluid and the structure problems. For
the structure part, a subset of reference elements approximates the whole layer. The dy-
namics of these elements is governed by a set of equations based on the inertia, elasticity,
interaction and losses effects of articulated rods. The configuration chosen is that of the
two-dimensional flow past a circular cylinder at Re = 200, a simple and well documented
test case. Aerodynamics performances quantified by the Strouhal number, the drag and
the maximum lift in the laminar unsteady regime are modified by the presence of the
coating. A set of parameters corresponding to a realistic coating (length of elements,
porosity, rigidity) is found, yielding an average drag reduction of 15% and a decrease of
lift fluctuations by about 40%, associated to a stabilization of the wake.

1. Introduction

The manipulation of fluid flows to bring about performance enhancements on air/water
vehicles is a topic of growing interest in the fluid mechanics community. Besides the
highly stimulating and fundamental problems raised by the control of the non-linear
Navier-Stokes equations, flow control has a tremendous economical and ecological impact
on society (see Gad-el-Hak (2000) for a detailed survey). In this context, it is particu-
larly worthwhile to analyze swimming and flying animals, in order to import novel ideas
into technological applications. Not surprisingly many efficient locomotion techniques are
found in Nature, as they have survived the tests of evolution over millions of years and
reached a high level of adaptation. One interesting example is represented by the feathers
over the wings of birds. Even though it is difficult to monitor their dynamics due to the
animal’s rapid motion, they are believed to play a crucial role in the aerodynamics of
birds. As mentioned in the excellent review on biological surface by Bechert et al. (1997)
and Meyer et al. (2007), the pop-up of feathers observed on snapshots and movies of
landing birds is probably relevant for the control of flow separation.
Several drag-reducing biological surfaces inspired by aquatic animals have also shown

their efficiency:
• riblets are inspired by the skin of sharks (Bechert & Bartenwerfer 1989; Luchini et al.

1991) and allow to reduce the shear stress compared to a smooth surface; they have been
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successfully tested on large airplanes (Viswanath 2002), although in-service application
appears to be prevented by the need to replace the riblet film every two or three years;
• the presence of bumps on whale flippers can delay stall and thus enhance hydrody-

namics manoeuvrability performances (van Nierop et al. 2008);
• the release of trapped air bubbles from the skin of a penguin appears to have an

effect on the reduction of skin friction (Xu et al. 2002).

By looking at this short list it may appear that straightforward mimicry of nature might
lead to novel and efficient technological applications. The task is however not so straight-
forward. In-depth understanding of physical mechanisms is required to manufacture effi-
cient actuators since a biological skin is meant to handle multiple functions: for example
the presence of mucus on the skin of fish may protect it against parasites and infections,
and has a drag reducing function as well. Thus, direct imitation of the skin of fish in the
effort to minimize drag might yield a sub-optimal solution, since the skin performs many
other functions.

The so-called Gray paradox of the compliant skins of dolphins is a striking example of
the difficulty to mimick a biological surface. It was believed that the impressive swimming
ability of dolphins was due to the compliance of their skin, able to delay transition to
turbulence and/or maintain a laminar boundary layer on the surface of the dolphin’s
body. Many studies were inspired by the original observations of Gray & Sand (1936),
starting with the theories of Benjamin (1960) and Landahl (1962), and later with the
analyses of disturbances developing in boundary layers over compliant plates (Carpenter
& Garrad 1985, 1986). It is now clear that Gray’s premises were flawed, as mentioned by
Fish & Lauder (2006) and confirmed recently by Hœpffner et al. (2008); the latter authors
have shown that compliance can yield very large transient disturbance amplifications
compared to smooth surfaces, potentially dangerous for the onset of turbulence. Fish &
Lauder (2006) have demonstrated that the drag reduction observed on dolphins is linked
mostly to behavioral functions of the animal, mainly related to its breathing habits.

Coming back to the presence and function of feathers on the wings of birds, we aim
here at making progress in understanding the effect of the feathers (or similar protuber-
ances) on the aerodynamic performances. All birds have six different types of feathers
covering their body, performing different tasks during flight. They are adapted to flight
conditions, and used for many purposes, including to shape the wings, insulate and pro-
tect the animal’s skin. This type of system is then clearly very complex to model, but
the property of interest here is the ability of the wings to adapt to the surrounding flow
to influence the aerodynamics (cf. figure 1). The assumption that the raising of feath-
ers during birds’ landing phases plays a role in the increase of the lift coefficient of the
wing has to be demonstrated. It is probable that this pop-up is not coincidental, but is
due to a self-adaptation of birds’ wings to the separated flow during landing, in order
to control it. Outstanding questions are then: do the feathers act like classical slats on
commercial airplanes wings which locally increase the angle of attack? Do they behave
like vortex generators stabilizing the recirculation zone by redistributing energy? Is it
more of a slowing down effect due to the suddenly popped-up porous fence or another
effect affecting the stability of the boundary layer towards separation?

The physical mechanism is not clearly identified so far: although the impact on the flow
is as yet undefined, we believe, along with Bechert et al. (1997), that the phenomenon
is worth studying since there are indications that “these small feathers are important

for the flight control of birds at high lift conditions during landing.” Indeed, the control
of the recirculation zone would explain the amazing manoeuvrability aptitudes of birds,
experiencing high angles of attack with a perfect wing stability. Incidentally it has already
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Figure 1. Raising of birds feathers, observed during landing phases. Left: snapshot of
a pelican just before landing (thus gliding flight). Right: pop-up of feathers observed on
the upper-side of the wings during the landing of an egret (courtesy of J R Compton,
http://www.jrcompton.com/birds/).

been found that a static porous layer can be used as a mean of boundary layer separation
control (Bruneau & Mortazavi 2008).
The study of the flow past hairy coatings finds many applications: for example in

the study of thick bundles of immersed vegetation (Sukhodolova et al. 2004) and wind-
exposed plants (De Langre 2008) in strong interaction with the surrounding fluid flows.
Another possible application of porous fuzzy coatings is found in the realm of sports:
for example the felt of a tennis ball plays an important role on the aerodynamics of the
ball (Mehta & Pallis 2001) and new techniques of digital imaging have recently been
implemented by Steele et al. (2006) to properly assess the quality of the textile surface
roughness, predict ball performances and develop acceptable wear limits. Finally, new
concepts of sensors and actuators for flow control are based on tiny rod-like elements,
whose deflection provides a measure of the wall shear stress (Brücker et al. 2005; Große
& Schröder 2008).
In this paper we build a simplified model of hairy coating, with the following “feather-

like” characteristics:
• porous, since fluid can flow through the feathers; the non-homogenous character of

the coating formed by the different types of feathers, more or less packed, is taken into
account through a density parameter,
• non-isotropic, as fluid is oriented along a specific direction as it enters the layer, just

like in realistic feathers,
• compliant, since the layer can bend and deform according to the surrounding flow.

Such properties are those which appear to us as the most important in modeling birds’
feathers. The possibility of shape adaptation of this wall coating is tested and analysed
on a classical and academic configuration of separated flow: the motion around a two-
dimensional circular cylinder at Reynolds number Re = 200. The numerical framework
is presented to clearly illustrate the simulation procedures relative to fluid and structure
parts, the assumptions on which the model is built, its perspectives of further applications
and limitations.
As this domain of investigation is naturally related to the studies of flows through

arrays of fibers, we will base our work on experimental, theoretical and numerical results
on such configurations (Howells 1998; Koch & Ladd 1997). Various models of different
orders of approximation are built for the drag per unit length, as a function of the
density of fibers, in Howells (1998). Different organizations of fibers (parallel, random)
are assessed and estimates are made to take into account the effects of finite length,
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Figure 2. The three zones of the computational domain (not to scale).

curvature and neighbouring fibers interactions, leading to results in good agreement with
experiments. These theoretical developements will be useful to derive an expression of
the volume force used in this article.
Schematically, the domain of study is decomposed into three zones corresponding to a

solid body, a surrounding fluid in motion and a mixed fluid-solid portion representing the
hairy coating. In figure 2 the fluid area is included between the fixed boundary (Γf ) of
the fluid domain, and the fixed boundary (Γs) of the cylinder. The hairy layer between Γs

and the moving boundary Γh is in interaction with the fluid. There is no mass exchange
between fluid and solid domains and the temperature is assumed to be constant and
uniform throughout.
The first sections of the article are dedicated to a description of the numerical treat-

ment of the fluid and structure parts, and how the two-way coupling between the two
is achieved. The application that follows refers to the control of the unsteady wake and
it illustrates the potential of the approach. In the following the elements forming the
coating will be referred to as pillars, hair, cilia, beams or fibers, always to mean the same
thing.

2. Fluid domain

2.1. Equations

The simulation of the unsteady flow around a cylinder of diameter D is performed
by solving the discrete version of the incompressible Navier-Stokes equations in a two-
dimensional periodic domain. The equations are given below, with U Eulerian velocity,
p pressure, µ dynamic viscosity, ρ density and F a volume force:

ρ[
∂U

∂t
+ (U.∇)U] = −∇p+ µ∇2U+ F ; ∇·U = 0. (2.1)

A sketch of the domain over which equations (2.1) have been discretized is provided

in figure 3. The Reynolds number is defined as Re =
ρ||U∞||D

µ
, with U∞ the free

stream velocity. The volume force F in (2.1) is decomposed into three contributions
F = Fc + Fb + Fh:
(a) Fc is introduced to account for the presence of the solid cylinder, i.e. it renders
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Figure 3. Computational domain of the fluid problem for the flow around a coated cylinder of
diameter D. One cell over ten is represented on the mesh. The immersed boundary method is
used for the solid cylinder through the function Mc, the hairy layer through the function Mh

and a buffer zone through the function Mb.

equal to zero the fluid velocity inside the circular obstacle. This volume force is computed
using the immersed boundary method described in Peskin (2002), i.e.

Fc = Mc

(

αc

∫ t

t0

(0−U) dt+ βc(0−U)

)

. (2.2)

Mc is a non-dimensional scalar field equal to one inside the cylinder, zero outside, as
shown in figure 3. Appropriate values of the positive constants αc and βc are found
to be respectively 1 and 6/∆t, with ∆t the time step of the computations. With
this set of parameters, the velocity within the cylinder section is always such that
∫

V1
||U||/||U∞||dxdy < 10−5, where the volume of integration V1 is the volume of the

cylinder per unit depth.
(b) A buffer zone of thickness ∆Xb is imposed with a volume force Fb to damp the

unsteady structures in the wake of the cylinder, before they reach the end of the domain.
Since the domain is periodic, this buffer volume force is also used to ensure that the
inflow speed is equal to U∞ on the left-hand side of the domain (figure 3):

Fb = Mb

(

αb

∫ t

t0

(U∞ −U) dt + βb(U∞ −U)

)

. (2.3)

Mb is equal to one inside the buffer layer, zero outside. Here αb and βb are set to 0.8
and 15/∆t, such that the velocity at the exit of the buffer zone in a control volume V2

of thickness D is
∫

V2
(1− ||U||/||U∞||)dxdy < 10−5.

(c) The hairy layer is imposed with a force Fh, evaluated as the drag force past a
cluster of tiny beams of various density and orientation (cf. § 3.1). Fh vanishes strictly
outside the volume occupied by the coating.
For the three immersed boundary domains, it is necessary to smooth the edges of the

filter functions by using a progressive interpolation. A hyperbolic tangent function is
used on Mb for the buffer zone, and a distributed interpolation approach is employed
for the cylinder and the hairy layer (Mc and Mh), following the methodology described
in Dauptain et al. (2008).

2.2. Resolution and convergence

To solve (2.1), a finite difference formulation is used on a regular cartesian mesh made
up by 800 × 400 cells in a 40D × 20D domain; we have ensured that this resolution
yields grid-converged results for the flow past a cylinder. Staggered flow variables are
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Figure 4. Spatial convergence of the fluid solver. Left: Domain geometry with fluid and solid
parts non aligned with the mesh. Right: Norm of the error versus grid spacing.

used. The solver uses the explicit Adams-Bashforth scheme for the convective part, and
the semi-implicit Crank-Nicolson method for the viscous part. The Poisson equation for
the pressure and the implicit step are treated by the conjugate gradient method (due
to the periodic boundary conditions the matrices involved are symmetric and positive
definite). This method is second order in time and space. Moreover, the periodicity of
the domain and the use of the immersed boundary method allow straightforward and
accurate computations of the energy balance terms and of aerodynamic loads. The time
scales of fluid and structures phenomena are comparable; a restrictive condition on the
time step of the simulation is imposed to make sure that such phenomena are properly
captured.
To validate the immersed boundary method, a convergence study is performed on a

two dimensional Poiseuille flow (figure 4, left frame). The domain is a periodic square,
and the walls are not aligned with the mesh, with an inclination of 45o. The error E
plotted in figure 4 (right frame) is the norm of the difference between the theoretical
profile U th and the velocity U on a cross section of the duct at the computational nodes
i = 1, . . . , N :

E =
1

NUmax

√

√

√

√

N
∑

i=1

(

U th
i − Ui

)2
. (2.4)

Grids ranging from 21 × 21 to 105 × 105 are tested to check the global order of the
solver. Figure 4 demonstrates second-order convergence of the spatial resolutions for
grids finer than 36× 36. As far as the laminar flow past a cylinder is concerned, the lift
and drag coefficients found in the literature (He et al. 2000; Bergmann et al. 2005) are
well reproduced (see §6.1) and this is sufficient evidence for the solver to be considered
suitable for the present investigation.

2.3. Communications with the structure part

The link between the fluid and the structure problems is done via the volume force Fh,
either expressed in the fluid discretization space (Fh

ij) or in the structure discretization

space (Fh
k). The state variables of the fluid equations (U, p and F) are discretized in the

space of dimensions Nx × Ny (Uij , pij and Fij). On the other hand, the dynamics of



Passive separation control using a self-adaptive hairy coating 7

the hairy layer is described via the angular positions θk of each reference element, with
k = 1, . . . , Nc (cf. 3.2), corresponding to a discretization in a space of dimension Nc.

3. Hairy domain

The coating is a dense cluster of hair and is described with a homogenized approach,
as a non-isotropic, compliant layer of variable porosity. The motion in time of the layer
is modelled by a set of non-linear equations derived from the dynamical equilibrium of
the system. The coupling with the fluid part is described hereafter.

3.1. Homogenized drag model

The interaction of the hairy medium with the flow is taken into account with an estimate
of the drag force past the cluster of hair sketched in figure 5a. This force per unit volume
Fh is assumed to be decomposed into a normal and a tangential component:

• Fh
t estimated as the drag force past a cluster of very long thin cylinders aligned with

the flow,
• Fh

n approximated by the drag force past a random cluster of cylinders orthogonal to
the flow.

In order to evaluate these components, we introduce the packing density φ = Vhair/Vlayer,
ratio of the volume occupied by the hair (solid) over the total sampling volume. This
quantity varies continuously between 0 (no cilia) and 1 (solid) inside the layer. Another
variable is defined inside the layer, the unit orientation vector d, characterizing the
direction of each element of the coating. Both of these variables are schematically shown
in figure 5b.

In the fixed reference frame of the cylinder, we can define for any point P belonging to
a reference element, its associated velocity Vh. The velocity in P relative to a fiber-like
element is thus Uh = U −Vh. Its component tangent to the element is the projection
Uh

t = (Uh.d), while the normal component is Uh
n = Uh−Uh

t . The drag force component
tangential to each element of the coating is assumed to depend on φ and Uh

t :

||Fh
t || = f1(φ,Reht ). (3.1)

A similar hypothesis is made for the normal component:

||Fh
n|| = f2(φ,Rehn), (3.2)

with Reht and Rehn the Reynolds numbers based on the element’s diameter and the local

fluid velocity: Reht =
||Uh

t ||dh
ν

and Rehn =
||Uh

n||dh
ν

.

Each element of the coating is assumed to be a rigid fiber of circular cross-section, so
that Fh

n corresponds to the force exerted by an array of random cylinders as sketched in
figure 6. It is quite complex to cope with the multiple interactions among the cylinder
wakes when Re becomes large, and the approximation of the normal contribution Fh

n

is thus limited to moderate values of the Reynolds numbers Rehn, up to 180. We use
theoretical and empirical scaling models presented in Koch & Ladd (1997) to estimate
this contribution of the force, as a function of Rehn, and the packing density φ. According
to their results, it is acceptable to employ a linear function of Rehn as:

Fh
n

µ||Uh
n||

= c0(φ) + c1(φ)Rehn, (3.3)
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Figure 5. Homogenized model of the furry coating and sketch of the volume force F
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h at any point P of

the layer, while the single element moves at velocity V
h. (b) Gray scale of the packing density

φ and vector d orientation of the elements within the hairy layer. At point P, tangential and
normal velocity components used to estimate the two components of Fh are displayed.

U
h
n dh

Figure 6. Configuration for the evaluation of the normal component of the drag force.

Fh
n being the normal force per cilium and unit length, such that ||Fh

n|| =
4φ

πd2h
Fh

n . The

coefficient c0 represents the Stokes’ drag and c1 is the inertial drag which governs the
behavior in the larger-than-zero Re-regime. These two coefficients are function of the
packing density φ of the porous medium corresponding to the configuration of figure 6.
The coefficient c0 is estimated using Brinkman’s law at Rehn = 0 (Stokes’ flow limit); c1
is evaluated from the behaviour of the ratio c1/c0 over a wide range of φ given in Koch &
Ladd (1997). Their work also shows that this mixed theoretical/empirical approximation
provides good agreement with the measurements.

For the non-dimensional tangential contribution
Fh

t

µ||Uh
t ||

, we derive an analytical ex-

pression, in the Stokes approximation, on the configuration of figure 7 corresponding to
the axial flow between concentric cylinders. Using cylindrical coordinates and assuming

a steady, fully developed axisymmetric flow (
∂

∂z
=

∂

∂θ
=

∂

∂t
= 0) with ur = uθ = 0, we

obtain an expression for the radial velocity around one cylinder between a fiber of radius
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Figure 7. Configuration for the evaluation of the tangential component of the drag force.

r1 = dh/2 and the average pore of radius r2 = r1/
√
φ:

u(r) =
Fh
t

4µ
(2r22 ln

r

r1
+ r21 − r2). (3.4)

Fh
t refers to the tangential component of the force, per unit volume. To introduce the

incoming velocity ||Uh
t || of the model, we then compute the mass flux D of the flow

passing through the cilia interspace D = ρπ(r22 − r21)||Uh
t ||(1 − φ), which is also equal to:

D = ρ

∫ 2π

0

dθ

∫ r2

r1

u(r)r dr. (3.5)

After substituting u(r) by its expression in (3.4). integrating and introducing the packing
density φ = r21/r

2
2, the following expression is found:

Fh
t

µ||Uh
t ||

=
8φ(1 − φ)

r21
(

φ− 1 +
2

φ− 1
lnφ− 2

)

. (3.6)

At this point, we recall that Fh
t is a force per unit volume of fluid (which is equal to

(1− φ)Vlayer). The force per unit length of cilium is finally Fh
t = Fh

t (1− φ)πr22 , leading
to

Fh
t

µ||Uh
t ||

=
8π(1− φ)2

φ− 1 +
2

φ− 1
lnφ− 2

. (3.7)

Similarly to the normal contribution, Fh
t is the tangential force for one pillar and

per unit length of the pillar, such that the volume force is ||Fh
t || =

4φ

πd2h
Fh

t . We then

assume for the tangential force the same scaling in Reynolds number as for the normal
contribution, obtaining the behaviour displayed in figure 8.
The angle that each element makes with the wall determines the relative magnitude of

the tangential and normal velocity components. In the case of equivalent tangential and
normal velocity magnitudes (i.e. when a fiber element is inclined at 45o), the tangential
component of the force is typically much smaller that the normal one, as illustrated in
figure 8. This difference in the two contributions tends to align the fibers with the flow.
Once the elements are parallel to the flow, the normal component of the force becomes
negligible with respect to the tangential one. These approximations of the forces are
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Figure 8. Dimensionless normal force
Fh

n

µ||Uh
n||

(bold lines) and tangential force
Fh

t

µ||Uh
t ||

(thin

lines) as functions of the packing density φ. Three local Reynolds number (Reht or Rehn depending
on the case) are considered (0, 1 and 10), corresponding to the typical values encountered in
the simulations. The theoretical values obtained by Howells (1998) for the longitudinal drag
(diamond) and the normal drag (circles) in slow flow are shown. Vertical dashed lines indicate
the minimum, maximum and mean values of φ used for the results of section §6.3.

in good agreement with the theoretical results by Howells (1998). Slight differences are
observed on the tangential contribution, which we have computed analytically, mainly
because the effect of the finite length of the cylinders is taken into account in Howells’
model (cf. §1).
Using this approach, the hairy layer is now described in terms of homogenized volume

forces, allowing the communications with the fluid. The next paragraph deals with the
dynamics of the coating, i.e. its evolution in time as a result of the forcing exerted by
the fluid.

3.2. Dynamical model for the hairy coating

Modelling a realistic coating would normally require an extremely large number of fibers.
The high number of degrees of freedom needed in this case is reduced using an homoge-
nized approach: we thus assume that a few reference elements are sufficient to approxi-
mate the dynamics of the whole layer (figure 9a). The forces at play are supposed to be
concentrated on reference cilia, which are equally spaced. A control volume surrounds
each reference cilium. The model describing the dynamical evolution in time of the refer-
ence cilia is illustrated in figure 9b. Each element is a thin rigid pillar of length l hinging
on the wall, and its mass is placed in the middle of the rod. A pillar can oscillate in the
plane around its equilibrium angle θeq. To model the behaviour of the layer realistically,
all cilia are linked to their immediate neighbours with a non-linear spring of stiffness Ks,
which is active only when two elements become too close to one another (to counter-
act the compression effect). Another feature of the model, controlled by the parameter
Kr, is used to mimick the tendency of each reference cilium to stay around θeq. These
mechanisms of interaction and rigidity are explained below; they are inspired by a model
developed by Py et al. (2006) to study the effect of the wind over a flexible crop canopy.
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of the layer. The control volume around one reference cilium is shown in gray. (b) Dynamical
model of reference cilia based on mass, interaction, inertial, losses and rigidity effects.
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Figure 10. Moment of rigidity as a function of the angle of one reference cilium θ(k). The
angle of equilibrium is chosen to be θeq=20o, and θmin and θmax are set to −40o and 60o.

The temporal evolution of reference cilia is parametrized by S =
(

θ(1), . . . , θ(Nc)
)T

where θ(k) is the angular position of the kth cilium and Nc is the number of reference
elements. In the moving reference frame defined by (t,n), with t and n unit vectors
tangential and normal to the reference fiber, considering that the external forces are
applied in the middle of each element (and the lever arm is thus l/2), the moments at
play are listed below.

Rigidity:

Mrigidity(k) = −Krf1[θ(k)]. (3.8)

In this expression f1 is a non-linear function defined as: f1(θ) =
P [θ(k)] − P (θeq)

P ′(θeq)
, where

P = tan(aθ + b) with a and b constants, chosen to produce the behaviour illustrated in
figure 10: a = π/(θmax − θmin) and b = −a(θmax + θmin)/2. The role of Mrigidity is to
model the structural flexibility of the hairy layer with the rigidity parameter Kr (in [kg
m2 s−2]) of the reference elements, and to control the oscillation potential of each cilium
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Figure 11. Moment of interaction as a function of the angle of one reference cilium θ(k), when
the angle of the neighbouring cilium θ(k − 1) is equal to −60o, −30o, 0o and 30o (left) and the
angle of the neighbouring cilium θ(k+1) is equal to −30o, 0o, 30o and 60o (right). The reference
cilia interspace is taken to be equal to the length of each element.

based on the maximum deflection angles θmin and θmax, and the equilibrium angle θeq.
Note that the slope of the curve represented on the right frame of figure 10 is Kr, i.e.
df1
dθ

(θeq) = 1. This property will be useful in §4.

Interaction:

Minteraction(k) is only activated when the reference cilia become too close to one another;
this term models the interaction between two neighboring elements via a non-linear
function governed by the stiffness parameter Ks (in [kg m2 s−2]), which is the same for
all cilia:

Minteraction(k) = −Ksf2[θ(k)]. (3.9)

Here, another function f2 is introduced: f2[θ(k)] = tan

{

2l sin[θ(k)− θm]

h cos(θm)

}

with θm =

θ(k) + θ(k + 1)

2
, where h is the cilia interspace and l the length (figure 9). The reaction

is higher when two neighbouring cilia are close to one another (figure 11).

Losses:

Mlosses(k) = −Cl θ̇(k). (3.10)

This term is included in the model to take into account the structural losses of the
oscillating reference fibers. It is taken to be a linear function of speed, with the loss
parameter Cl (in [kg m2 s−1)] controlling the magnitude of the term. It is linked to the
energy dissipation by plastic deformation of each hair, and to friction occurring between
neighbouring elements.
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Inertia:

Minertia(k) = ml2aθ̈(k). (3.11)

This moment is related to the mass (in [kg]) of the reference elements (which is the sum
of the true masses of the cilia present in a reference control volume, cf. figure 9) and the
length la = l/2, assuming that the mass is placed in the middle of the rod.

External force:

Mext(k) = laFext(k). (3.12)

This moment refers to the moment of the external force exerted by the fluid on each
fiber, calculated by the integral of the volume force Fh over the control volume of each
reference fiber Vcontrol(k):

Fext(k) =

∫

Vcontrol(k)

||Fh
n||dV. (3.13)

Clearly, the tangential force Fh
t of the fluid onto the element exerts no moment.

We recall here that θ(k) is defined around the equilibrium angle of each cilium θeq(k).

3.3. Non-dimensional model and characteristic numbers

To assess the physical mechanisms involved in the coupling between the fluid and the
hairy layer, we define in this section non-dimensional numbers, characteristics of the
fluid part, the structure part, and also numbers built on the coupled behavior of fluid
and structures.

3.3.1. Hairy layer

The equilibrium of the system composed by all cilia is found by writing the balance
of all the moments above, for all k. We obtain the following governing equation, for all
cilia:

ml2aθ̈ +Krf1(θ) +Ksf2(θ) + Clθ̇ = laFext. (3.14)

Along the lines of Doaré et al. (2004), we define the following frequencies: ωr =

√

Kr

ml2a
,

ωs =

√

Ks

ml2a
and ωl =

Cl

ml2a
, which are, respectively, the characteristics frequencies based

on the rigidity, interaction and dissipation effects of the rods. We now render time di-

mensionless by introducing t∗c = tωr; the adimensional external force is µext =
Fext

mlaω2
r

and equation (3.14) in dimensionless form reads:

θ̈ + γθ̇ + f1(θ) + κf2(θ) = µext(t
∗

c), (3.15)

by introducing the parameters γ =
ωl

ωr

and κ =
ω2
s

ω2
r

. These parameters will be useful in

the following to assess the relative importance of each constitutive term of the structure
model.
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3.3.2. Fluid

Important dimensionless numbers for the fluid are the Reynolds number, the drag

coefficient Cd =
Fd

1
2ρ||U∞||2S , with Fd the modulus of the drag force and S the projected

frontal area, and the lift coefficient Cl =
Fl

1
2ρ||U∞||2S , Fl modulus of the lift force. The

Strouhal number is also introduced, St =
D

Tflow||U∞|| , with Tflow the characteristic

period of vortex shedding. In the graphs showing the evolution of Cd and Cl, we will
employ the non-dimensional time t∗f = t/Tflow, built on a characteristic time specific to
the fluid.

To analyze the different effects of the contributions listed in §3.2, we compute the
energy (per unit time) terms relative to each moment j by:

Pj =

∫ Nc

1

Mj(k)θ̇j(k)dk. (3.16)

The non-dimensional energy per unit time is then defined by P ∗

j =
Pj

1
2ρ||U∞||3S .

3.3.3. Fluid-structure interaction numbers

We introduce also non-dimensional parameters built on the characteristics of both fluid
and structural features, to assess the coupling between the two (De Langre 2006):

• the mass number of the whole layer Mlayer =
ρ

ρlayer
, where ρ is the density of the

fluid and ρlayer is the density of the whole hairy layer, i.e. hair plus fluid, given by

ρlayer =
m

Vcontrol

+ ρ(1− φ),

• the mass number of hair Mhair = φMlayer, characteristic of the density of hair only,
compared to the fluid density.

3.4. Numerical resolution

The governing equations for all reference cilia, eq. (3.15), are solved using two numerical
methods, explicit or implicit, depending on whether the inertial terms are included in
the analysis or not. In fact, whereas an explicit approach requires necessarily a non-zero
mass of the fibers to prevent divergence of the algorithm, an implicit method does not
suffer from this restriction.

The explicit scheme is a Runge-Kutta method in four steps. Between two iterations i
and i+1 of the global fluid-structure resolution algorithm, the dynamics of the structure
is computed explicitly at each temporal sub-iteration. Thus, the equilibrium of the cilia is
found after a sufficient number of sub-iterations in time. This method is quite stable but,
in the case of very small values of m, oscillations can appear and delay the achievement
of the final equilibrium. In this case, or when m = 0, an implicit resolution is preferred.

In the implicit approach, temporal sub-iterations are not needed and the equilibrium
solution, if it exists, is found directly by minimizing the response surface of dimension
Nc formed by the sum of all the moments. A non-linear conjugate gradient method is
used to find the minimum and the equilibrium is generally reached rapidly.
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4. Frequency analysis of the dynamics of reference cilia

We perform here a linear stability analysis of equation (3.15) by using the following
decomposition:

θ = θeq + θ′, (4.1)

i.e. the angles of cilia are the sum of a steady equilibrium angle θeq , and a small pertur-
bation θ′. We consider equation (3.15) without external forcing from the fluid:

θ̈ + γθ̇ + f1(θ) + κf2(θ) = 0, (4.2)

and focus on the natural frequency response of the system. By introducing the decom-
position (4.1), and neglecting non-linear terms issued from the products of perturbations
θ′, we obtain:

θ̈′ + γθ̇′ + θ′[
df1
dθ

(θeq)] = 0. (4.3)

We have here neglected the contribution of the parameter of interaction κf2(θeq + θ′),
assuming that the action of neighbouring cilia is negligible near equilibrium, as cilia do
not get in contact with each other (cf. the definition of interaction in §3.2). Note also
that the rigidity time scale dominates the dynamics (cf. §3.3.1).
Then, by definition of the moments of rigidity (cf. §3.2) we have:

θ̈′ + γθ̇′ + θ′ = 0. (4.4)

We assume that the perturbations θ′ behaves as θ′ ∼ eiω
∗

c t
∗

c , where the non-dimensional
frequency is ω∗

c = ωc/ωr, ωc being the characteristic frequency of the structure model.
We obtain the following equation for ω∗

c :

ω∗

c
2 − iγω∗

c − 1 = 0, (4.5)

yielding ω∗

c =
1

2
[iγ ±

√

−γ2 + 4)].

By using a value of γ = 0.05 small compared to other terms, as it is done in §6.3, we
then have ω∗

c = ±0.999+ 0.025i. The frequency of the resonant mode of the structure is
ωc ≃ ωr, and the growth rate is negative, indicating that the system is asymptotically
stable.
Strong of this result, we solve numerically equations (4.2) under the assumption that

all cilia are subject to the same impulse forcing, using the parameters used in §6.3:
Kr = 6.75× 10−8 [kg m2 s−2], Ks = 1.35× 10−8 [kg m2 s−2], Cl = 8.21× 10−9 [kg m2

s−1], with 14 reference elements of mass m = 1 [g].
The evolution of all cilia angles is represented in the left frame of figure 12, as a

function of the characteristic time t∗c . We anticipate that with these settings, there are
about four periods of oscillations of the structure for one period of vortex shedding of the
fluid in uncontrolled conditions. The right frame of figure 12 shows the Fourier spectrum
as a function of the non-dimensional frequency ω∗

c . We obtain a clear peak at ω∗

c = 1,
indicating that the dynamics of cilia is driven by ωr, i.e. rigidity effects, as obtained
theoretically. The decrease in time e−Im(ω∗

c )t
∗

c of cilia angles is also recovered. Here, the
interaction effects between neighbouring cilia is clearly negligible, as all cilia have the
same evolution and oscillate in parallel to each other.
Figure 13 shows the response of the model in the case of an impulse forcing only

on the middle reference cilium (number 7). In this configuration, the contribution of
the interaction parameter becomes significant, as cilia are getting closer to one another
many times during the oscillations. Moreover, the oscillations in time of cilia angles (left
colums) are not the same and each cilium displays a slightly different frequency content
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Figure 12. Response of the model of reference cilia without the fluid to an impulse forcing
identical on all cilia. Left: Time evolution of all reference cilia angles in degrees, as a function

of the non-dimensional time t∗c ; the dashed line represents e−Im(ω∗

c )t∗c with arbitrary initial
amplitude. Right: Fourier transform of the signal (for t∗c > 16) as a function of ω∗

c (the values
used for rigidity, interaction and loss parameters are those of §6.3).

(right column). The peak is modified compared to the previous case and for all cilia, the
interaction parameter tends to add other harmonics to the dynamics, while the lowest
frequency of the model remains dictated by rigidity.

5. Summary of the two-way coupling

The numerical simulation of this coupled problem corresponding to the unsteady flow
past a compliant porous structure requires the simultaneous solution of structural and
fluid dynamics equations. To do so, we use a partitioned procedure, staggered in time
because the two parts are integrated in succession (figure 14). The coupling is efficiently
performed by PALM, a software tool developed for data assimilation and meteorological
applications by CERFACS (Buis et al. 2005).

Si =
(

θ1, . . . , θNc

)T

i
refers to the set of state variables relative to the structure part,

and Fi denotes the volume force exchanged by the different blocks. At a given iteration i
of the global fluid-structure procedure, the external force Fi drives the movement of the
reference cilia. The equilibrium of the system is then computed by the structure solver
(with the explicit or the implicit technique). Starting from the new position of each
element, the packing density φ inside the hairy layer is estimated, and the reaction on
the fluid by the layer is computed using the homogenized approach (cf. §3.1). This force
is then interpolated on the fluid mesh to update the new configuration of the structure at
iteration i+1. Then, the fluid solver computes the configuration of the flow at i+1. It is
clear that this procedure is highly dependent on the choice of the time step of integration,
since the time scale of the different constituents of the problem is not unique.

6. Application to the open-loop control of the cylinder wake

6.1. No control

We first consider the configuration of the circular cylinder at Re = 200 without control
elements (figure 15a). The time-averaged drag coefficient (Cd = 1.368) and the Strouhal
number (St = 0.20) are in good agreement with those obtained by He et al. (2000)
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Figure 13. Response of the model of reference cilia without the fluid to an impulse forcing
applied on cilium 7 only. Left: Time evolution of cilia number 1, 4, 7 and 14 in degrees, as a
function of the non-dimensional time t∗c ; right: Associated Fourier transforms of the signals as
functions of ω∗

c .
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Figure 14. Two-way coupling algorithm. The successive steps are denoted P1 to P5; the cycle
then starts over.

(Cd = 1.356 and St = 0.198) and Bergmann et al. (2005) (Cd = 1.390 and St = 0.199).
The time evolution of drag and lift coefficients is illustrated in figure 22 in dashed lines.
The choice of this flow configuration at Re = 200 is motivated by the desire to consider

a flow regime dominated by a strong unsteady separated wake. Moreover, this critical
Reynolds number is close to that for the onset of secondary instabilities leading to tur-
bulence (Williamson 1996). Although three-dimensional effects start to appear before
Re = 200, the purpose of our exercise is to develop, test and assess the feasibility of
the proposed passive control approach, rather than develop in-depth understanding of
the controlled flow physics at low Reynolds number. Furthermore, at Re = 200, three-
dimensional effects are still small enough so that excellent agreement is generally obtained
by comparing Strouhal number and mean drag coefficient against three-dimensional re-
sults (Williamson 1996).

6.2. Static test cases

We explore the influence of the initial orientation of the hairy layer, in a static configura-
tion, i.e. the reference control elements are fixed in their initial position, but the action
of the coating on the flow is present (one-way coupling). The initial reference position
of the fibers has a strong influence on the dynamics of the whole system in the case of
two-way coupling, because of the definition of the equilibrium angles. This is why the
position of equilibrium of the elements are studied a priori: reference cilia normal to the
wall (figure 15b) or parallel to the freestream velocity (figure 15c), compared to a smooth
wall (figure 15a). The circumferential extent of the hairy layer is 40% of the perimeter of
the cylinder and the coating is placed symmetrically around the rear stagnation point.
The cylinder has diameter D = 0.2 [m] and the length of reference cilia is D/5.
Note that only reference fibers are represented in the figure, but in between each pair

of elements the layer must be seen as a continuum of more or less densily packed cilia.
The packing density of the layer is fixed to 0.006, by considering cilia diameter of 0.5
[mm] and 3 cilia per cm2. To give an idea of the packing density obtained with these
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Figure 15. Static configurations. (a) Smooth wall. Cilia oriented (b) normal to the wall and
(c) parallel to the freestream speed.
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Figure 16. Visualisation of the density of hair (random organisation) on the unwrapped surface
of a cylinder, for a packing density φ = 0.006, in a section of a hairy coating of length 0.25 [m]
(i.e. 40% of the perimeter of a cylinder of diameter 0.2 [m]) and span 0.1 [m]. 750 cilia of
diameter 0.5 [mm] are represented by black circles in this control volume of 250 [cm2].

values on a realistic hairy layer, figure 16 shows the clustering of cilia on a cylinder of
diameter 0.2 [m], 0.1 [m] of span, the circumferential length of the layer being 0.25 [m].
Even for this low packing density, we can intuitively expect a relatively high resistance
offered by the layer slowing down locally the oncoming flow.
Figure 17 shows the drag and lift coefficients obtained for the three configurations

of figure 15, functions of the non-dimensional time t∗f defined in §3.3.2. We obtain a
drastic drag increase (130%) with an orientation normal to the wall (case (b) of figure
15), compared to the smooth wall case. This is due to the parasitic drag created by the
reference elements placed at the extremities of the layer, generating a strong resistance to
the oncoming flow. Conversely an orientation of the hairy layer parallel to the flow shows
the opposite trend, with a drag reduction of 4.7% and oscillations of the lift coefficient of
moderate amplitude. This orientation tends to render the cylinder similar to an airfoil,
possibly guiding the flow in the proximity of the trailing edge. In the following, we will
study the dynamics of the hairy layer around this equilibrium state.

6.3. Results of the two-way coupling

Once the Reynolds number and the equilibrium orientation of the layer are fixed, the
space of control parameters is rather large:
• five parameters of the dynamical model which specify the structural properties of
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Figure 17. Aerodynamic coefficients corresponding to the static layers of figure 15. Left: Drag
coefficient. Right: Lift coefficient. Dashed lines correspond to the configuration a) with smooth
walls; thin solid lines correspond to the configuration b) with an orientation normal to the wall;
bold lines correspond to the configuration c) with an orientation parallel to the flow.

the coating in terms of rigidity (Kr) stiffness (Ks), losses (Cl), number and mass of
reference pillars (m),
• one parameter for the homogenized model controlling the density of hair (set by the

diameter dh of the fiber and the number of hair per cm2),
• two more parameters describing the location of the control zone in the physical space:

the position of the hairy layer on the wall cylinder and its thickness, i.e. the length of
the fibers.

After an exploratory study at Re = 200, and according to the modal response analysis
of §4, we have found a set of five efficient parameters for the model of the layer: Kr =
6.75 × 10−8 [kg m2 s−2], Ks = 1.35 × 10−8 [kg m2 s−2], Cl = 8.21 × 10−9 [kg m2 s−1],
with 14 reference cilia of mass m = 1 [g] on a cylinder of diameter D = 0.2 [m]. The
packing density of the layer is fixed at 0.006 when the hair layer is at rest, corresponding
to real cilia diameter of 0.5 [mm] and a packing of 3 cilia per cm2 (cf. figure 16). Finally,
the control zone is located over the downstream part of the cylinder (αc = 72o on figure
18). The thickness of the layer is set to l/D = 0.2, which is a typical value of feathers
length for a wide range of birds. The initial position and orientation of the hairy layer at
the instant of the activation of control is set as in figure 15c (reference angle of θeq = 0o),
with the fibers initially parallel to the freestream velocity. Note that the configuration
with the feathers initially flush to the surface has also been tested. However it has caused
numerical problems because of the very fine near-wall grids required to correctly capture
the coupling between fluid and structures. Also, for many of the cases tested, the reference
elements remained stuck to the wall, with no interesting results in terms of drag reduction.
Thus, we focus on the effect produced on a separated flow region by a set of feathers
which are already popped up from the surface.

Table 1 presents the relevant non-dimensional numbers corresponding to this case.
The value of the parameter γ is small compared to the other terms of equation (3.15),
indicating that the characteristic time of the waves related to the structural dissipation
ω−1
l is much larger than ω−1

r . The value of the ratio κ/γ2 = ω2
s/ω

2
l is here equal to

80. Thus ω−1
l is also larger than ω−1

s , characteristic time of the oscillations due to the
interaction between reference cilia. The force of the fluid can dominate the other terms
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Figure 18. Position of the control zone on the wall cylinder and reference cilia numbers. The
angular parameter αc determines the extent of the layer with respect to the rear stagnation
point.

Re γ

[

losses

rigidity

]

κ

[

interaction

rigidity

]

µmax
ext

[

fluid forcing

rigidity

]

200 0.05 0.2 9.36

Table 1. Non-dimensional numbers for the fluid and the reference cilia; µmax
ext is the maximum

amplitude of the non-dimensional force exerted by the fluid onto the structures, in the fully
developed regime.

of equation (3.15), as indicated by the maximum value of µmax
ext in Table 1, as large as

nine times the rigidity restoring force.
As indicated in §4, the waves propagating in the hairy layer are mainly controlled by the

fluid force and the rigidity parameter, with smaller contributions due to the interaction
between reference cilia and losses. This will be discussed further down in the context of
figure 19.
The mass number of the whole layer, fluid and structures, is equal to Mlayer = 0.49,

indicating that the layer has comparable inertia to the fluid. In fact, since ρlayer ≃ 2ρ,
the layer would sink when immersed in the fluid, like typical birds’ feathers. The low
value of the mass number of hair alone, Mhair = 0.003, suggests that the mass of fluid
displaced by the control elements is very small. By taking ρ = 1.2 [kg m−3], it is obtained

ρhair =
ρ

Mhair

= 400 [kg m−3], which is of the same order of magnitude as the keratin

fiber of birds’ feathers (Barone & Schmidt (2006) report a volume of 890 [kg m−3]).
Starting the simulation with the hairy coating from a steady symmetric regime (no

von Kármán shedding) would yield a transient regime to an unknown developed state
without direct link to the oscillating state described in the literature. Here, the hairy
layer is activated starting from a fully established unsteady regime (i.e. the configuration
without coating), and the dynamics of the fluid and structure part is monitored together
with the drag and lift coefficients Cd and Cl.
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Figure 19. Power terms relative to the structural control parameters. Left: Minor contribu-
tions: structural losses (dashed line) and interaction parameter (continuous line) Right: Major
contributions : rigidity parameter (dashed line) and external forcing (plain line). dEcs/dt is also
plotted in bold lines. It is strictly equal to the sum of all terms and its time average vanishes.

With these settings the different terms in the energy balance are represented in fig-

ure 19; the balance is satisfied for both implicit and explicit methods (
∑

j

Pj =
dEcs

dt
)

presented in §3.4. The structural losses of the hairy layer and the interaction parame-
ter (figure 19 left frame) have a contribution which is about two orders of magnitude
smaller than the contributions of the other terms. The opposition to the external forcing
is mainly done by the fibers’ rigidity term (figure 19 right frame). These time evolutions
are related to the oscillating motion of reference cilia as represented in figure 20. Only
the evolution of the first seven cilia of the top of the layer are shown, since the seven
others evolve symmetrically with respect to the horizontal axis. The time origin of the
graphs corresponds to the instant when the control is activated. After an initial tran-
sient, all cilia reach an established regime beating with a period Tcilia = 1.03 Tflow. The
cilium placed at the extremity of the layer hardly moves and the amplitudes of the angles
increase when the reference cilia approach the horizontal axis of symmetry. The biggest
amplitudes, around 50 degrees, are observed for the cilia closest to the axis during the
transient regime when the two-way coupling is turned on and the layer adapts to the
flow.
Figure 21 shows a snapshot of the contours of vorticity together with the position of

reference cilia. According to the time evolutions of the angles, the hairy layer tends to
orient itself as a function of the position of the near-wall recirculating zone and the sign
of the near-wall vorticity, alternatively positive and negative over one period of shedding.
Movie 1, available with the online version of the paper, provides a better appreciation of
this behaviour.
The drag and lift coefficients corresponding to this case are displayed in figure 22.

When the control is activated, the drag coefficient is reduced by 11.5% at the end of the
simulation, when the controlled flow reaches a fully developed regime, and the amplitude
of the fluctuations is reduced by half. Moreover there is a reduction of 33% on the ampli-
tude of oscillations of the lift coefficient. The wake is stabilized by this passive actuation
on the flow, as shown by the effect on the mean and fluctuating global coefficients.
From figure 22 (right frame), we estimate the Strouhal number St = 0.200 associated

to the vortex shedding. With the presence of the hairy layer, St is reduced to the value
of 0.193, and both structure and fluid are beating at this frequency. Thus, the shedding
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Figure 20. Time evolution of the angles α (in degrees) with respect to the horizontal axis of
the seven reference cilia shown in figure 18.

→
sol

Figure 21. Instantaneous contours of vorticity in the presence of beating cilia (continuous
lines: positive, dashed lines: negative). The time evolution of the vorticity field together with
the fluctuating lift and drag is shown in movie 1, available with the online version of the paper.

frequency deviates from its natural frequency as it is generally found when an oscillating
fluid instability is coupled to a vibrating structure (De Langre 2006; Py et al. 2006). The
frequency common to the fluid and the hairy layer is not however that of the resonant
mode of the structure, which is about 4 times larger (cf. §4). Hence, the structures lock
onto a frequency very close to the natural frequency of oscillations of the fluid system.
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Figure 22. Aerodynamical coefficients without control (dashed lines) and when control is on
(bold). Left: Drag coefficient. Right: Lift coefficient. The instants relative to the snapshots of
figure 25 and 26 are represented in white circles (equally spaced in time).

6.4. Physical analysis of the control

The influence of the control on the mean flow is displayed on figures 23 and 24. To extract
the action of the control on the mean velocity field we focus on the mean quantity
< Uc > − < U >

||U∞|| , defined by the non-dimensional difference between the local time-

averaged velocity, with and without control. A few observations apply:
• near the wall (x 6 D/2 where x is measured from the rear stagnation point on the

cylinder’s wall), the vortices attached to the cylinder have a lower circulation when the
hairy layer is present: indeed, the difference between the velocity fields with and without
control shows an action opposed to the flow inside the separation bubble;
• further downstream (D/2 6 x 6 2D), the field on the figure indicates a deceleration

of the flow: there are large amplitude disparities from right to left at the center of the
figure, and consequently, a modification of the vortex shedding process;
• as a consequence of the two previous observations, there is a connection between

the near-wall region and the far-field zone, to satisfy the divergence-free condition. The
topological boundary between the two regions takes the form of a saddle point located
about D/2 downstream of the wall.
The effect of the control on the mean pressure field is shown in figure 24, with contours

of the non-dimensional quantity
< P c > − < P >

ρ||U∞||2 . As a consequence of the modifications

to the velocity fields, the differences between the controlled and uncontrolled cases are
mainly concentrated on a high-pressure zone, whose maximum coincides with the saddle
point.
The pressure field is modified by the control and pressure is larger downstream of the

cylinder, while the “dead water” region is enlarged. A similar control effect has been
observed by Pastoor et al. (2008), described as a delay of the appearance of asymmetries
in the flow, thus suppressing the effects of the wake instability. This is directly related
to the decrease of the drag coefficient observed.
Note that a comparison of the modes issued from a proper orthogonal decomposition

of the fluctuating velocity and pressure fields, with control and without control, shows
small phase shifts between the two cases, linked to the modification of the Strouhal
number. The POD modes are not shown for the sake of brevity. The modes’ energy
for the controlled case is slightly lower than in the case without control but the spatial
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Figure 24. Contours of the non-dimensional scalar field
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ρ||U∞||2
. The zero isocontours

are shown in black dashed lines; white plus and minus signs refer to positive and negative zones.

organisation of the modes is very similar for the two cases, indicating that the effect
of the hairy layer is primarily on the mean flow. Figure 25 presents snapshots of the
near-wall flow (contours of vertical velocity), together with the instantaneous position of
the reference cilia, at 6 time instants within the initial transient state (cf. figure 22).
From time t1 to t6 the angles of the cilia during this transient go from their minimum to

their maximum values (from −40o to 55o for the cilia placed near the axis of symmetry).
At particular time instants (t2 and t5 for instance), oriented bundles of reference cilia
can be seen in the lower region for snapshot t2 and in the upper region for snapshot t5. In
these configurations when the reference cilia are getting closer to one another, the density
of cilia increases (cf. the homogenized model). The magnitude of the force is a function
of the density of cilia, and there is the tendency for stronger forcing when two reference
cilia are close to one another. In other words, when the reverse flow at the back of the
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Reference
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Figure 25. Motion of the reference cilia at the six time instants t1 to t6 shown in figure 22,
arranged as in a comic strip (from left to right, and top to bottom). Snapshots of vertical
velocity contours are displayed in the background (plain lines: positive, dashed lines: negative).
The movement of the reference fibers is shown with the evolution of the vertical velocity in time
in movie 2, available with the online version of the paper.
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Figure 26. Force exerted by the hairy layer on the fluid at the six time instants t7 to t12 shown
in figure 22, arranged as in a comic strip (from left to right, and top to bottom). Snapshots of
vertical velocity contours (plain lines: positive, dashed lines: negative). The evolution in time of
the force field is shown with the evolution of the vertical velocity in time in movie 2, available
with the online version of the paper.
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Figure 27. Effect of the resonant mode of the structure model on the drag, by varying the
rigidity parameter from Kr = 3.7 × 10−9 [kg m2 s−2] (Tflow/Tcilia = 1) to Kr = 3.6 × 10−7

(Tflow/Tcilia = 10). The drag coefficient is plotted as a function of R = ωc
Tflow

2π
; vertical bars

indicate the amplitude of the temporal fluctuations of the drag coefficient.

cylinder is compressing the coating, the control force naturally increases to counteract
this effect. This appears to be linked to the wings of birds, whose feathers pop-up during
landing. Together with the movement of reference cilia, the control force (exerced by
the hairy layer on the fluid) is shown at six other time instants corresponding to a fully
established controlled regime (cf. figure 22). As time progresses, the force tends to have
an orientation opposed to the velocity field induced by the presence of the vortices about
to be shed: when the flow is going from top to bottom (t8) the force is opposed (cf. figure
26). The same counteracting behaviour occurs at snapshot t11, when the flow goes from
bottom to top (movie 2 provides a better appreciation of this effect). This is related to
a lock-in mechanism mentioned in §6.3. Indeed, the recirculating zone is forced to lock
onto a frequency slightly different from the natural one, and the instability is mitigated.
Thus, the hairy layer acts like a self-adapting actuator, passive (as no input energy is

required) and leading to substantial improvements in the lift and drag forces.

6.5. Parametric study

We explore in this section a part of the space of control parameters described in §6.3,
by considering variations around the values tested so far. The influence of the packing
density is analysed first and we investigate afterwards the effect of the spatial properties
of the hairy coating. We first test the influence of the resonant frequency of the structure
model by varying the rigidity parameter. The loss parameter Cl is fixed at the low value
of 8.21 × 10−9 [kg m2 s−1], in order to minimize this effect compared to the others.
Indeed, a very dissipative layer would slow the flow too much by converting the flow
kinetic energy into structural losses, an effect which does not appear to characterize an
effective hairy coating. The interaction parameter is fixed at the value of 1.35× 10−8 [kg
m2 s−2], so that the frequency response due to this parameter is that described in §4.
The number, mass and length of reference cilia are the same as in §6.3, i.e. 14 reference
cilia of mass m = 1 [g] and length l = 0.04 [m], to consider a density of the layer close to
that of real hairy coatings.

6.5.1. Resonant mode of the hairy layer

The rigidity parameter is varied to modulate the compliance of the layer, thus modi-
fying the frequency of the waves propagating within the set of reference cilia. Figure 27
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Figure 28. Effect of the inner density of the hairy layer φ on the drag. The two horizontal lines
indicate the values of the time-averaged drag coefficient for the uncontrolled case (top dashed
line) and for the case of the static configuration displayed in figure 15c (long dashed line).

shows the influence on the mean drag of the resonant mode of the reference cilia model.
It is found that the best performances in terms of mean drag coefficient are obtained for

a value of R = ωc

Tflow

2π
= 3; also, the amplitude of the temporal oscillations of the drag

coefficient (vertical bars in the figure) are minimized around R = 3. For lower values of
R, large fluctuations in Cd are indicated by the bars, as the structure model is close to its
natural resonant frequency. In this case, the variations of reference cilia angles become
large and the resulting force on the fluid induces strong fluctuations, which make the
flow more unstable. Note that the value of Kr = 6.75× 10−8 [kg m2 s−2] chosen in §6.3
corresponds to R = 4.38.

6.5.2. Packing density of the hairy layer

Figure 28 shows the evolution of the drag as the packing density φ is varied. In practice,
we keep the same diameter of cilia (0.5 [mm]) and change the number per cm2 from 1.5
to 50 (see figure 16 for reference). It is found that after the value of φ = 0.006, the drag
is increased as the hairy layer tends to behave like a static porous layer ((Cd = 1.3 for
the configuration c) of §6.2). To obtain significant gains in performances, the packing
density needs to be kept low enough, so that a hydroelastic-like surface wave develops
on the coating. An optimal value is found in this configuration at about φ = 0.006.

6.5.3. Position of the hairy layer

The influence of the position of the hairy layer is investigated through the variation of
the parameter αc, characterizing the extremities of the control zone (figure 18). The left
frame of figure 29 shows the drag coefficient obtained when αc varies from 0o (no control)
to 90o (the whole downstream portion of the cylinder is covered with the coating). It
is found that for αc greater than 36o, the results change very little. However, the drag
increases for values of αc between 0o and 36o, indicating that the control zone has to be
at least larger or equal to the recirculating zones shown in figure 26.

6.5.4. Thickness of the coating

The influence of the thickness of the hairy layer is illustrated on the right frame of
figure 29. The parameter l/D is varied from 0 (no control) to 0.5. Beyond this value the
layer is thicker than the cylinder radius, which is the characteristic dimension of flow
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Figure 29. Effect of the position of the control zone on the drag. Left: drag coefficient as a
function of the angular position αc of the control zone. Right: drag coefficient as a function of
the hairy layer thickness l/D.

features near the wall, and a model based upon rigid reference cilia with a single degree
of freedom does not appear to be suitable.
A local minimum is found for l/D = 0.3 which corresponds to a drag reduction of 15%

associated to a drastic reduction of the lift fluctuations of 44%. The drag increases with
l/D, until l/D reaches the value of 0.5, which is the length of the recirculation bubble at
this Reynolds number. The points beyond l/D = 0.5 are shown simply to give an idea of
the possibilities of flow manipulation provided by the use of longer and rigid elements.
Even if the model is not designed for this case, drag appears to be even further reduced
after l/D = 0.5; however this is a probably shape-adaptation effect, and it would be more
realistic to allow for each individual element to bend, to mimick the behaviour of real
flexible cilia.

7. Conclusions and perspectives

We have studied the passive control of flow separation using a fuzzy coating. To test and
analyse this concept of flow manipulation, a numerical methodology has been developed
and used to solve a fluid-structure interaction problem. A partitioned approach has been
set up to solve non-linear coupled equations for the fluid and solid parts, based on a
coupler previously used in Dauptain et al. (2008). Besides the numerical aspects, an
original model for a hairy layer has been proposed and tested. Directly inspired from the
natural properties of birds feathers, i.e. porosity, anisotropy and compliance, it is easily
extendable to other configurations.
It is found numerically that such a coating is capable of increasing global aerodynam-

ics performances of an immersed body, by adapting to the separated flow. The effects
of the control are of order one, and appear on the mean pressure and velocity fields.
The topology of the flow is changed in the vicinity of the wall but also further down-
stream, thus modifying the vortex shedding process, and positively affecting the pressure
distribution, to reduce lift fluctuations and drag. An effect of the control is to mitigate
the flow instability by an elongation of the reciculation bubble, a phenomenon termed
“direct opposition control” in Pastoor et al. (2008). The analysis of the forces produced
by the hairy layer on the fluid shows that the coating naturally adapts to counteract the
near-wall separated flow: a lock-in effect appears in which the coating synchronizes onto
a frequency which is close to the natural frequency of the fluid system.
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A set of efficient control parameters is found, by linking physical mechanisms to the
characteristic dimensions of the system. The thickness of the hairy layer has to match
the size of the recirculation bubble close to the wall. Its packing density must reach a
minimum value of 0.006 to obtain the largest drag reduction. With this combination
of parameters, the drag reduction obtained is about 15% and the fluctuations in lift
coefficient are reduced by 44%.
The central argument in favour of this type of control is that it does not require any

input of energy, and this makes it very attractive for industrial applications, compared
to active control devices which are often very demanding in terms of power requirements,
and thus expensive to implement on realistic conditions. The use of this type of passive
actuators to control flow separation appears to be promising, particularly for applications
which do not require strong constraints on the lift force (road or underwater vehicles,
MAVs, etc.).
Additional work on different configurations is needed to study the robustness of this

passive control technique. In particular, it is of great importance to assess the behavior
of the coating under turbulent conditions. Concerning realistic applications, the presence
of the environment is also very important: weather conditions (rain, cold, etc.) or the
alteration of the coating characteristics over time are typical issues to take into account
to ensure a robust control procedure.
Three aspects are primarily concerned for the perspectives. The first one concerns the

application of this numerical tool to a more complex configuration at higher Reynolds
number on an airfoil, to approach real applications or birds’ flight conditions.
The second perspective is to add a third spatial component to the model of the hairy

layer, and to the fluid domain. We can reasonably think that the general conclusions
would not be qualitatively affected by doing so. Indeed, as far as the structure model is
concerned, adding a degree of freedom does not add any conceptual difficulty and should
not alter dramatically the physics of the control, at least for flows - such as the present
one - which present one dominating stream direction.
Finally, to get closer to realistic layers, and to explore the possibilities allowed by the

employment of long fibers, it is interesting to let the reference elements bend, by adding
several layers of rigid elements linked to each other through articulated connections, along
the lines of Lindström & Uesaka (2007). We expect the bending to change the results,
but probably not the general conclusions in terms of the effect of the passive control.
Indeed, the ability to adapt to the flow will be increased, and we could anticipate even
better results in terms of performance enhancement.
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