# Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case 

Cyril Imbert, R Monneau

## - To cite this version:

Cyril Imbert, R Monneau. Quasi-convex Hamilton-Jacobi equations posed on junctions: the multidimensional case. 2016. hal-01073954v2

HAL Id: hal-01073954<br>https://hal.science/hal-01073954v2<br>Preprint submitted on 6 Jul 2016 (v2), last revised 25 Aug 2017 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case 

C. Imbert* and R. Monneau ${ }^{\dagger}$

July 6, 2016


#### Abstract

A multi-dimensional junction is the singular $(d+1)$-manifold obtained by gluying through their boundaries a finite number of copies of the half-space $\mathbb{R}_{+}^{d+1}$. We show that the general theory developed by the authors (2013) for the network setting can be adapted to this multidimensional case. In particular, we prove that general quasi-convex junction conditions reduce to flux-limited ones and that uniqueness holds true when flux limiters are quasi-convex and continuous. The proof of the comparison principle relies on the construction of a (multidimensional) vertex test function.


AMS Classification: 35F21, 49L25, 35B51.
Keywords: Quasi-convex Hamilton-Jacobi equations, multli-dimensional junctions, flux-limited solutions, flux limiters, comparison principle, multi-dimensional vertex test function, discontinuous Hamiltonians

## Contents

1 Introduction 1
2 Viscosity solutions on a multi-dimensional junction 4
3 The multi-dimensional vertex test function 11
4 Minimal/maximal Ishii solutions in the Euclidian setting 21
A Appendix 22

## 1 Introduction

This paper is concerned with extending the theory developed for Hamilton-Jacobi (HJ) equations posed on junctions in [9] to the multi-dimensional setting.

A multi-dimensional junction is made of $N$ copies of $\mathbb{R}_{+}^{d+1}$ glued through their boundaries.

$$
J=\bigcup_{i=1, \ldots, N} J_{i} \quad \text { with } \quad\left\{\begin{array}{l}
J_{i}=\left\{X=\left(x^{\prime}, x_{i}\right): x^{\prime} \in \mathbb{R}^{d}, x_{i} \geq 0\right\} \simeq \mathbb{R}_{+}^{d+1}  \tag{1.1}\\
J_{i} \cap J_{j}=\Gamma \simeq \mathbb{R}^{d} \times\{0\} \text { for } i \neq j
\end{array}\right.
$$

[^0]We emphasize that the common boundary of the half-spaces $J_{i}$ is denoted by $\Gamma$ and is called the junction interface. For points $X, Y \in J, d(X, Y)$ denotes $\left|x^{\prime}-y^{\prime}\right|+d(x, y)$ with

$$
d(x, y)= \begin{cases}x+y & \text { if } X \in J_{i}, Y \in J_{j}, i \neq j \\ |x-y| & \text { if } X, Y \in J_{i}\end{cases}
$$

For a smooth real-valued function $u$ defined on $J, \partial_{i} u(X)$ denotes the (spatial) derivative of $u$ with respect to $x_{i}$ at $X=\left(x^{\prime}, x_{i}\right) \in J_{i}$ and $D^{\prime} u(X)$ denotes the (spatial) gradient of $u$ with respect to $x^{\prime}$. The "gradient" of $u$ is defined as follows,

$$
D u(X):= \begin{cases}\left(D^{\prime} u(X), \partial_{i} u(X)\right) & \text { if } \quad X \in J_{i}^{*}:=J_{i} \backslash \Gamma,  \tag{1.2}\\ \left(D^{\prime} u\left(x^{\prime}, 0\right), \partial_{1} u\left(x^{\prime}, 0\right), \ldots, \partial_{N} u\left(x^{\prime}, 0\right)\right) & \text { if } \quad X=\left(x^{\prime}, 0\right) \in \Gamma .\end{cases}
$$

With such a notation in hand, we consider the following Hamilton-Jacobi equation posed on the multi-dimensional junction $J$

$$
\begin{cases}u_{t}+H_{i}(D u)=0 & t>0, X \in J_{i} \backslash \Gamma,  \tag{1.3}\\ u_{t}+F(D u)=0 & t>0, X \in \Gamma\end{cases}
$$

submitted to the initial condition

$$
\begin{equation*}
u(0, X)=u^{0}(X) \quad \text { for } \quad X \in J \tag{1.4}
\end{equation*}
$$

The second equation in (1.3) is referred to as the junction condition.
The Hamiltonians are supposed to satisfy the following conditions:

$$
\begin{cases}\text { (Continuity) } & H_{i} \in C\left(\mathbb{R}^{d+1}\right)  \tag{1.5}\\ \text { (Quasi-convexity) } & \forall \lambda,\left\{H_{i} \leq \lambda\right\} \text { is convex } \\ \text { (Coercivity) } & \lim _{|P| \rightarrow+\infty} H_{i}(P)=+\infty\end{cases}
$$

We next define the $A$-limited flux function $F_{A}$ associated with the multi-dimensional junction $J$. In order to do so, we first consider $\pi_{i}^{0}\left(p^{\prime}\right) \in \mathbb{R}$ minimal such that $p_{i} \mapsto H_{i}\left(p^{\prime}, p_{i}\right)$ reaches its minimum at $p_{i}=\pi_{i}^{0}\left(p^{\prime}\right)$ and $H_{i}^{-}$is defined by

$$
H_{i}^{-}\left(p^{\prime}, p_{i}\right)= \begin{cases}H_{i}\left(p^{\prime}, p_{i}\right) & \text { if } \quad p_{i} \leq \pi_{i}^{0}\left(p^{\prime}\right) \\ H_{i}\left(p^{\prime}, \pi_{i}^{0}\left(p^{\prime}\right)\right) & \text { if } \quad p>\pi_{i}^{0}\left(p^{\prime}\right)\end{cases}
$$

In a similar way, we define

$$
H_{i}^{+}\left(p^{\prime}, p_{i}\right)= \begin{cases}H_{i}\left(p^{\prime}, \pi_{i}^{0}\left(p^{\prime}\right)\right) & \text { if } \quad p_{i}<\pi_{i}^{0}\left(p^{\prime}\right) \\ H_{i}\left(p^{\prime}, p_{i}\right) & \text { if } \quad p \geq \pi_{i}^{0}\left(p^{\prime}\right)\end{cases}
$$

So-called flux-limiter functions $A: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are always assumed to be continuous and, in some important cases, to satisfy the following condition,

$$
\begin{equation*}
A: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { is continuous and quasi-convex. } \tag{1.6}
\end{equation*}
$$

The function $F_{A}$ is defined for $p=\left(p_{1}, \ldots, p_{N}\right)$ and $P=\left(p^{\prime}, p\right)$ as

$$
\begin{equation*}
F_{A}(P)=\max \left(A\left(p^{\prime}\right), \max _{i=1, \ldots, N} H_{i}^{-}\left(p^{\prime}, p_{i}\right)\right) \tag{1.7}
\end{equation*}
$$

We now consider the following important special case of (1.3),

$$
\begin{cases}u_{t}+H_{i}(D u)=0 & t>0, X \in J_{i} \backslash \Gamma,  \tag{1.8}\\ u_{t}+F_{A}(D u)=0 & t>0, X \in \Gamma\end{cases}
$$

We point out that $A$ could be replaced with $\max \left(A, A_{0}\right)$ where

$$
\begin{equation*}
A_{0}\left(p^{\prime}\right)=\max _{i=1, \ldots, N} A_{i}\left(p^{\prime}\right) \quad \text { with } \quad A_{i}\left(p^{\prime}\right)=\min _{p_{i} \in \mathbb{R}} H_{i}\left(p^{\prime}, p_{i}\right) \tag{1.9}
\end{equation*}
$$

We notice (see Lemma A. 1 in Appendix) that the functions $A_{i}, i=0, \ldots, N$ are quasi-convex, continuous and coercive.

As far as general junction conditions are concerned, we assume that the junction function $F: \mathbb{R}^{d} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfies

$$
\begin{cases}(\text { Continuity }) & F \in C\left(\mathbb{R}^{d} \times \mathbb{R}^{N}\right)  \tag{1.10}\\ (\text { Monotonicity }) & \forall i, p_{i} \mapsto F\left(p^{\prime}, p_{1}, \ldots, p_{N}\right) \text { is non-increasing }\end{cases}
$$

and, in some important cases,

$$
\begin{equation*}
\text { (Quasi-convexity) } \quad \forall \lambda,\{F \leq \lambda\} \text { convex. } \tag{1.11}
\end{equation*}
$$

In particular, under assumption (1.5), if $A$ satisfies (1.6), then $F_{A}$ defined in (1.7), satisfies (1.10) and (1.11).

### 1.1 Main results

For simplicity, we state the next theorem under a simple continuity assumption for subsolutions, but a more general result is true (see Theorem 2.13).

Theorem 1.1 (General junction conditions reduce to $F_{A}$ ). Let the Hamiltonians satisfy (1.5) and let $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfy (1.10). There exists a unique coercive continuous function $A_{F}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, satisfying $A_{F} \geq A_{0}$ with $A_{0}$ defined in (1.9), such that the following holds. Every relaxed viscosity super-solution (resp. sub-solution, which is moreover assumed to be continuous) of (1.3) is a $A_{F}$-flux limited super-solution (resp. sub-solution) of (1.8). Moreover, if $F$ is quasi-convex, so is $A_{F}$.

Remark 1.2. Let $p_{i}^{0} \geq \pi_{i}^{0}\left(p^{\prime}\right)$ be minimal such that $H_{i}\left(p^{\prime}, p_{i}\right)=A_{0}$ and let $p^{0}$ denote $\left(p_{1}^{0}, \ldots, p_{N}^{0}\right)$. The function $A_{F}$ is defined as follows: for each $p^{\prime} \in \mathbb{R}^{d}$, if $F\left(p^{\prime}, p^{0}\right) \leq A_{0}\left(p^{\prime}\right)$, then $A_{F}\left(p^{\prime}\right)=A_{0}\left(p^{\prime}\right)$, else $A_{F}\left(p^{\prime}\right)$ is the only $\lambda \in \mathbb{R}$ such that $\lambda \geq A_{0}\left(p^{\prime}\right)=\max _{i} A_{i}\left(p^{\prime}\right)$ and there exists $p_{i}^{+} \geq p_{i}^{0}$ such that

$$
H_{i}\left(p^{\prime}, p_{i}^{+}\right)=F\left(p^{\prime}, p^{+}\right)=\lambda
$$

where $p^{+}=\left(p_{1}^{+}, \ldots, p_{N}^{+}\right)$. Notice that even if $\lambda$ is unique, $p^{+}$may be not unique.
Theorem 1.3 (Comparison principle on a multi-dimensional junction). Assume that the Hamiltonians satisfy (1.5), the function $A$ satisfies (1.6) with $A \geq A_{0}$ where $A_{0}$ is defined in (1.9), and that the initial datum $u_{0}$ is uniformly continuous. Then for all (relaxed) sub-solution $u$ and (relaxed) super-solution $v$ of (1.3)-(1.4) with $F=F_{A}$ defined in (1.7), satisfying for some $T>0$ and $C_{T}>0$ and $X_{0} \in J$,

$$
\begin{equation*}
u(t, X) \leq C_{T}\left(1+d\left(X_{0}, X\right)\right), \quad v(t, X) \geq-C_{T}\left(1+d\left(X_{0}, X\right)\right), \quad \text { for all } \quad(t, X) \in[0, T) \times J \tag{1.12}
\end{equation*}
$$

we have

$$
u \leq v \quad \text { in } \quad[0, T) \times J
$$

We would like to mention that we decided to deal with a relatively simple framework; for instance, Hamiltonians do not depend on time and space. Still, such generalizations can be obtained with extra work using the same vertex test function constructed in the present article.

### 1.2 Comparison with known results

In the special case $N=2$, our results are related to [2,3] where an optimal control problem in a two-domain setting is studied. The state of the system evolves according to two different dynamics on each side of an hypersurface. Moreover, the two dynamics at the interface corresponding to the maximal and minimal Ishii's discontinuous solutions of the associated Hamilton-Jacobi equation are identified. One of the two value functions is characterized in terms of partial differential equations. We showed in [9] that, in the one-dimensional setting, both value functions can be characterized by using the notion of flux-limited solutions introduced in [9]. The result of the present paper indicates that such a connexion holds in the general two-domain setting, even if this is out of the scope of the present paper. Moreover, we can deal with quasi-convex Hamiltonians instead of convex ones.

A two-domain Hamilton-Jacobi equation of the type of (1.8) appears naturally in the singular perturbation problem studied in [1].

We would like to mention that the results of $[2,3]$ were recently extended to the general case of stratified spaces in the very nice paper [4]. Such results also extend the ones from [5]. Some results for discontinuous solutions of Hamilton-Jacobi equations in stratified spaces can be found in [8]. In [6], the authors study eikonal equations in ramified spaces.

The reader is also referred to $[13,12]$ for optimal control problems in multi-domains. In particular, the authors impose some transmission conditions. As we already mentioned it in [9], Definition 2.6 is strongly related to these works. See also [11] for stationary Hamilton-Jacobi problems on multi-dimensional junctions, where comparison principles are established using an optimal control approach. We finally refer the reader to the numerous references given in [9] and the comments there.

Up to a certain extent, some of our results are related to the ones in [7], in particular, in the case of source terms located on hyperplanes.

Organization of the article. The paper is organized as follows. In Section 2, the notion of viscosity solution in the setting of multi-dimensional junction is introduced. The proof of Theorem 1.1 is done in Subsection 2.3. Section 3 is devoted to the construction of the vertex test function. The proof of Theorem 1.3 is sketched after the statement of Theorem 3.1 about the vertex test function. A detailed proof is given in appendix for the reader's convenience. In Section 4, we study the special case $N=2$ and identify the maximal and minimal Ishii solutions. The proof of a technical lemma is presented in an appendix.

Notation. For a function $f: D \rightarrow \mathbb{R}$, epi $f$ denotes its epigraph $\{(X, r) \in D \times \mathbb{R}: r \geq f(X)\}$ and hypo $f$ denotes its hypograph $\{(X, r) \in D \times \mathbb{R}: r \leq f(X)\}$. We will use the notation $P$ to denote different objects, depending on the context.

## 2 Viscosity solutions on a multi-dimensional junction

### 2.1 Definitions

### 2.1.1 Class of test functions

For $T>0$, set $J_{T}=(0, T) \times J$. The class of test functions on $J_{T}$ is chosen as follows,

$$
\begin{equation*}
C^{1}\left(J_{T}\right)=\left\{\varphi \in C\left(J_{T}\right), \varphi \text { restricted to }(0, T) \times J_{i} \text { is } C^{1} \text { for } i=1, \ldots, N\right\} . \tag{2.1}
\end{equation*}
$$

### 2.1.2 Classical viscosity solutions

In order to define classical viscosity solutions, we recall the definition of upper and lower semicontinuous envelopes $u^{*}$ and $u_{*}$ of a (locally bounded) function $u$ defined on $[0, T) \times J$ :

$$
u^{*}(t, X)=\limsup _{(s, Y) \rightarrow(t, X)} u(s, Y) \quad \text { and } \quad u_{*}(t, X)=\liminf _{(s, Y) \rightarrow(t, X)} u(s, Y)
$$

Definition 2.1 (Classical viscosity solutions). Assume the Hamiltonians satisfy (1.5) and the flux function $F$ satisfies (1.10). Let $u:[0, T) \times J \rightarrow \mathbb{R}$ be locally bounded.
i) We say that $u$ is a (classical viscosity) sub-solution (resp. super-solution) of (1.3) in $J_{T}$ if for all test function $\varphi \in C^{1}\left(J_{T}\right)$ such that

$$
u^{*} \leq \varphi \quad\left(\text { resp. } \quad u_{*} \geq \varphi\right) \quad \text { in a neighborhood of }\left(t_{0}, X_{0}\right) \in J_{T}
$$

with equality at $\left(t_{0}, X_{0}\right)$ for some $t_{0}>0$, we have

$$
\begin{array}{cc}
\varphi_{t}+H_{i}(D \varphi) & \leq 0 \\
\varphi_{t}+F(D \varphi) & \leq 0 \tag{2.2}
\end{array} \quad(\text { resp. } \geq 0) \quad \text { at }\left(t_{0}, X_{0}\right) \quad \text { if } X_{0} \in J_{i}^{*}=J_{i} \backslash \Gamma ~(\text { resp. } \geq 0) \quad \text { at }\left(t_{0}, X_{0}\right) \quad \text { if } X_{0} \in \Gamma . ~ \$
$$

ii) We say that $u$ is a (classical viscosity) sub-solution (resp. super-solution) of (1.3)-(1.4) on $[0, T) \times J$ if additionally

$$
u^{*}(0, X) \leq u_{0}(X) \quad\left(\text { resp. } \quad u_{*}(0, X) \geq u_{0}(X)\right) \quad \text { for all } \quad x \in J .
$$

iii) We say that $u$ is a (classical viscosity) solution if $u$ is both a sub-solution and a super-solution.

Definition 2.2 (Flux-limited solutions). Consider a continuous flux-limiter function $A: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Then $u$ is a $A$-flux limited sub-solution (resp. super-solution, solution) of (1.8) if it is a classical sub-solution (resp. super-solution, solution) of (1.3) with $F=F_{A}$.

### 2.1.3 Relaxed viscosity solutions

We next introduce relaxed viscosity solutions.
Definition 2.3 (Relaxed viscosity solutions). Assume the Hamiltonians satisfy (1.5) and the flux function $F$ satisfies (1.10). Let $u:[0, T) \times J \rightarrow \mathbb{R}$ be locally bounded.
i) We say that $u$ is a relaxed sub-solution (resp. relaxed super-solution) of (1.3) in $J_{T}$ if for all test function $\varphi \in C^{1}\left(J_{T}\right)$ such that

$$
u^{*} \leq \varphi \quad\left(\text { resp. } \quad u_{*} \geq \varphi\right) \quad \text { in a neighborhood of }\left(t_{0}, X_{0}\right) \in J_{T}
$$

with equality at $\left(t_{0}, X_{0}\right)$ for some $t_{0}>0$, we have

$$
\varphi_{t}+H_{i}(D \varphi) \leq 0 \quad(\text { resp. } \quad \geq 0) \quad \text { at }\left(t_{0}, X_{0}\right)
$$

if $X_{0} \in J_{i}^{*}$, and

$$
\left.\begin{array}{llll}
\text { either } & \varphi_{t}+F(D \varphi) \leq 0 & (\text { resp. } & \geq 0) \\
\text { or } & \varphi_{t}+H_{i}(D \varphi) \leq 0 & \text { (resp. } & \geq 0)
\end{array} \quad \text { for some } i\right) \quad \text { at }\left(t_{0}, X_{0}\right)
$$

if $X_{0} \in \Gamma$.
ii) We say that $u$ is a relaxed (viscosity) solution if $u$ is both a sub-solution and a super-solution.

### 2.1.4 The "weak continuity" condition for sub-solutions

If $F$ not only satisfies (1.10), but is also semi-coercive, that is to say if

$$
\begin{equation*}
F\left(p^{\prime}, p\right) \rightarrow+\infty \quad \text { as } \quad \max _{i}\left(\max \left(0,-p_{i}\right)\right) \rightarrow+\infty \quad \text { for each } \quad p^{\prime} \in \mathbb{R}^{d} \tag{2.3}
\end{equation*}
$$

then any $F$-relaxed sub-solution satisfies a "weak continuity" condition at the junction point. Precisely, the following result holds true.

Lemma 2.4 ("weak continuity" condition on the junction interface). Assume that the Hamiltonians satisfy (1.5) and that $F$ satisfies (1.10) and (2.3). Then any relaxed sub-solution $u$ of (1.3) satisfies the following "weak continuity" property

$$
\begin{equation*}
u^{*}(t, X)=\limsup _{(s, Y) \rightarrow(t, X), Y \in J_{i}^{*}} u(s, Y) \quad \text { for all } \quad i=1, \ldots, N, \quad \text { for all } \quad(t, X) \in(0, T) \times \Gamma \tag{2.4}
\end{equation*}
$$

where we recall that $J_{i}^{*}=J_{i} \backslash \Gamma$.
The proof of this result is a straightforward adaptation of the one of Lemma 2.3 in [9] in the case $d=0$; so we skip the details of the proof.

As in [9], we will see that the "weak continuity" property is an important condition to avoid pathological relaxed sub-solutions (that do exist) when $F$ is not semi-coercive. Moreover it turns ou that the notion of "weak continuity" is stable, as shown in the following result.

Proposition 2.5 (Stability of the weak continuity property). Consider a family of Hamiltonians $H_{i}^{\varepsilon}$ satisfying (1.5). We also assume that the coercivity of the Hamiltonians is uniform in $\varepsilon$. Let $u^{\varepsilon}$ be a family of subsolutions of

$$
u_{t}+H_{i}^{\varepsilon}(D u)=0 \quad \text { in } \quad(0, T) \times J_{i}^{*}
$$

for all $i=1, \ldots, N$, and that $u^{\varepsilon}$ satisfies the "weak continuity" property (2.4). If $\bar{u}=\lim \sup ^{*} u^{\varepsilon}$ is everywhere finite, then $\bar{u}$ still satisfies the "weak continuity" property (2.4).

The proof of this result is also a straightforward adaptation of the one of Proposition 2.6 in [9] in the case $d=0$; so again we skip the details of the proof.

### 2.1.5 A reduced set of test functions

Let $\pi_{i}^{ \pm}: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows for $\lambda \geq A_{i}\left(p^{\prime}\right)=\min H_{i}\left(p^{\prime}, \cdot\right)$

$$
\begin{aligned}
& \pi_{i}^{+}\left(p^{\prime}, \lambda\right)=\inf \left\{p_{i}: H_{i}\left(p^{\prime}, p_{i}\right)=H_{i}^{+}\left(p^{\prime}, p_{i}\right)=\lambda\right\} \\
& \pi_{i}^{-}\left(p^{\prime}, \lambda\right)=\sup \left\{p_{i}: H_{i}\left(p^{\prime}, p_{i}\right)=H_{i}^{-}\left(p^{\prime}, p_{i}\right)=\lambda\right\}
\end{aligned}
$$

Definition 2.6 (Reduced viscosity solutions - the flux-limited case). Assume the Hamiltonians satisfy (1.5) and consider a continuous flux-limiter function $A: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that for all $p^{\prime} \in \mathbb{R}^{d}$, $A\left(p^{\prime}\right) \geq A_{0}\left(p^{\prime}\right)$. Given $u:[0, T) \times J \rightarrow \mathbb{R}$ locally bounded, the function $u$ is a reduced sub-solution (resp. reduced super-solution) of (1.3) with $F=F_{A}$ in $J_{T}$ if and only if $u$ is a sub-solution (resp. super-solution) outside $\Gamma$ and for all test function $\varphi \in C^{1}\left(J_{T}\right)$ touching $u$ from above at $\left(t_{0}, X_{0}\right) \in(0,+\infty) \times \Gamma$, of the following form

$$
\varphi\left(t, x^{\prime}, x\right)=\phi\left(t, x^{\prime}\right)+\phi_{0}(x)
$$

with

$$
\left\{\begin{array} { l } 
{ \phi \in C ^ { 1 } ( ( 0 , + \infty ) \times \mathbb { R } ^ { d } ) } \\
{ D ^ { \prime } \phi ( t _ { 0 } , x _ { 0 } ^ { \prime } ) = p _ { 0 } ^ { \prime } }
\end{array} \quad \left\{\begin{array}{l}
\phi_{0} \in C^{1}(\mathbb{R}) \\
\partial_{i} \phi_{0}(0)=\pi_{i}^{+}\left(p_{0}^{\prime}, A\left(p_{0}^{\prime}\right)\right)
\end{array}\right.\right.
$$

we have

$$
\varphi_{t}+F_{A}(D \varphi) \leq 0 \quad(\text { resp. } \quad \geq 0)
$$

Proposition 2.7 (Equivalence of Definitions 2.2 and 2.6 under "weak continuity"). Every reduced super-solution (resp. subsolution) $u$ in the sense of Definition 2.2 is also, for Definition 2.6, a fluxlimited super-solution (resp. a flux-limited subsolution if u satisfies moreover the "weak-continuity" property (2.4)).

Proof. It is clear that flux-limited sub-solutions (resp. super-solutions) are reduced sub-solutions (resp. reduced super-solutions). To prove that the converse holds true, we proceed as in [9] by considering critical slopes in $x$. Precisely, it is enough to prove the following lemmas.
Lemma 2.8 (Critical slopes for super-solutions). Let $u$ be a super-solution of (1.8) away from $\Gamma$ and let $\varphi$ touch $u_{*}$ from below at $P_{0}=\left(t_{0}, X_{0}\right)$ with $X_{0} \in \Gamma$. Then the "critical slopes" defined as follows

$$
\bar{p}_{i}=\sup \left\{\bar{p} \in \mathbb{R}_{+}: \exists r>0, \varphi(t, X)+\bar{p} x \leq u_{*}(t, X) \text { for }(t, X) \in B_{r}\left(P_{0}\right) \cap\left((0,+\infty) \times J_{i}\right)\right\}
$$

satisfy for all $i=1, \ldots, N$,

$$
\varphi_{t}\left(P_{0}\right)+H_{i}\left(D^{\prime} \varphi\left(P_{0}\right), \partial_{i} \varphi\left(P_{0}\right)+\bar{p}_{i}\right) \geq 0
$$

with the convention for $\bar{p}_{i}=+\infty$, that $H_{i}\left(p^{\prime},+\infty\right)=+\infty$.
Lemma 2.9 (Critical slopes for sub-solutions). Let $u$ be a sub-solution of (1.8) away from $\Gamma$ and let $\varphi$ touch $u^{*}$ from above at $P_{0}=\left(t_{0}, X_{0}\right)$ with $X_{0} \in \Gamma$. Then the "critical slopes" defined as follows

$$
\bar{p}_{i}=\inf \left\{\bar{p} \in \mathbb{R}_{-}: \exists r>0, \varphi(t, X)+\bar{p} x \geq u^{*}(t, X) \text { for }(t, X) \in B_{r}\left(P_{0}\right) \cap\left((0,+\infty) \times J_{i}\right)\right\}
$$

satisfy for all $i=1, \ldots, N$,

$$
\varphi_{t}\left(P_{0}\right)+H_{i}\left(D^{\prime} \varphi\left(P_{0}\right), \partial_{i} \varphi\left(P_{0}\right)+\bar{p}_{i}\right) \leq 0 \quad \text { if } \quad \bar{p}_{i}>-\infty .
$$

Moreover, we have

$$
\bar{p}_{i}>-\infty \quad \text { for each } \quad i=1, \ldots, N
$$

if u satisfies the "weak continuity" property (2.4).
Remark 2.10. Even if Lemma 2.9 is not stated this way, a close look at its proof shows that it is sufficient to have the "weak continuity" property pointwise at $\left(t_{0}, X_{0}\right)$ and on a single branch $J_{i}^{*}$ to prove that $\bar{p}_{i}>-\infty$ for the same index $i$.

The proofs of these lemmas are straightforward adaptations of the corresponding ones in [9] so we skip them. The remaining of the proof is also analogous but we give some details in the sub-solution case for the reader's convenience.

Let $\varphi$ touch $u^{*}$ from above at $P_{0}=\left(t_{0}, X_{0}\right)$ with $X_{0}=\left(x_{0}^{\prime}, 0\right) \in \Gamma$ and let $\lambda$ denote $-\varphi_{t}\left(P_{0}\right)$ and $P=\left(p^{\prime}, p_{1}, \ldots, p_{N}\right)$ denote $D \varphi\left(P_{0}\right)$. We want to prove

$$
\begin{equation*}
F_{A}(P) \leq \lambda \tag{2.5}
\end{equation*}
$$

We know from Lemma 2.9 that for all $i=1, \ldots, N$,

$$
\begin{equation*}
H_{i}\left(p^{\prime}, p_{i}+\bar{p}_{i}\right) \leq \lambda \tag{2.6}
\end{equation*}
$$

for some $\bar{p}_{i} \leq 0$. In particular,

$$
A_{0}\left(p^{\prime}\right) \leq \lambda
$$

We write next

$$
\begin{aligned}
F_{A}(P) & =\max _{i}\left(A\left(p^{\prime}\right), H_{i}^{-}\left(p^{\prime}, p_{i}\right)\right) \\
& \leq \max _{i}\left(A\left(p^{\prime}\right), H_{i}^{-}\left(p^{\prime}, p_{i}+\bar{p}_{i}\right)\right) \\
& \leq \max _{i}\left(A\left(p^{\prime}\right), H_{i}\left(p^{\prime}, p_{i}+\bar{p}_{i}\right)\right) \\
& \leq \max \left(A\left(p^{\prime}\right), \lambda\right)
\end{aligned}
$$

If (A.3) does not hold true, then

$$
A_{0}\left(p^{\prime}\right) \leq \lambda<A\left(p^{\prime}\right)
$$

Moreover, we have from (2.6) that

$$
p_{i}+\bar{p}_{i}<\pi_{i}^{+}\left(p^{\prime}, A\left(p^{\prime}\right)\right)
$$

Hence, we can consider the following test function

$$
\phi\left(t, x^{\prime}, x\right)=\varphi\left(t, x^{\prime}, 0\right)+\phi_{0}(x)
$$

with $\partial_{i} \phi_{0}(0)=\pi_{i}^{+}\left(p^{\prime}, A\left(p^{\prime}\right)\right)$ for each $i=1, \ldots, N$. From the definition of reduced sub-solutions, we thus get

$$
A\left(p^{\prime}\right)=F_{A}\left(D \phi\left(P_{0}\right)\right) \leq \lambda
$$

which is the desired contradiction.

### 2.2 Stability

In the following proposition, we assert that, for the special junction functions $F_{A}$, relaxed solutions are in fact always classical solutions, that is to say in the sense of Definition 2.1.

Proposition 2.11 ( $F_{A}$ junction conditions are always satisfied in the classical sense). Assume the Hamiltonians satisfy (1.5) and consider a continuous flux-limiter function $A$. If $F=F_{A}$, then relaxed viscosity solutions in the sense of Definition 2.3 coincide with viscosity solutions in the sense of Definition 2.1.
Remark 2.12. Because relaxed solutions are always stable (see [9]), we also deduce from Proposition 2.11 that for the special case $F=F_{A}$, classical solutions are also stable.

Proof. We treat successively the super-solution case and the sub-solution case.

Case 1: the super-solution case. Let $u$ be a relaxed super-solution and let us assume by contradiction that there exists a test function $\varphi$ touching $u_{*}$ from below at $P_{0}=\left(t_{0}, X_{0}\right)$ for some $t_{0} \in(0, T)$ and $X_{0} \in \Gamma$, such that

$$
\begin{equation*}
\varphi_{t}+F_{A}(D \varphi)<0 \quad \text { at } \quad P_{0} \tag{2.7}
\end{equation*}
$$

Consider next the test function $\tilde{\varphi}$ satisfying $\tilde{\varphi} \leq \varphi$ in a neighborhood of $P_{0}$, with equality at $P_{0}$ such that

$$
\begin{aligned}
\tilde{\varphi}_{t}\left(P_{0}\right) & =\varphi_{t}\left(P_{0}\right) \\
D^{\prime} \tilde{\varphi}\left(P_{0}\right) & =D^{\prime} \varphi\left(P_{0}\right) \quad \text { and } \quad \partial_{i} \tilde{\varphi}\left(P_{0}\right)=\min \left(\pi_{i}^{0}\left(D^{\prime} \varphi\left(P_{0}\right)\right), \partial_{i} \varphi\left(P_{0}\right)\right) \quad \text { for } \quad i=1, \ldots, N .
\end{aligned}
$$

Using the fact that $F_{A}(D \varphi)=F_{A}(D \tilde{\varphi}) \geq H_{i}^{-}\left(D^{\prime} \tilde{\varphi}, \partial_{i} \tilde{\varphi}\right)=H_{i}\left(D^{\prime} \tilde{\varphi}, \partial_{i} \tilde{\varphi}\right)$ at $P_{0}$ for all $i$, we deduce a contradiction with (2.7) using the viscosity inequality satisfied by $\tilde{\varphi}$ for some $i \in\{1, \ldots, N\}$.

Case 2: the sub-solution case. Let now $u$ be a relaxed sub-solution and let us assume by contradiction that there exists a test function $\varphi$ touching $u^{*}$ from above at $P_{0}=\left(t_{0}, X_{0}\right)$ for some $t_{0} \in(0, T)$ and $X_{0} \in \Gamma$, such that

$$
\begin{equation*}
\varphi_{t}+F_{A}(D \varphi)>0 \quad \text { at } \quad P_{0} \tag{2.8}
\end{equation*}
$$

Let us define

$$
I=\left\{i \in\{1, \ldots, N\}, \quad H_{i}^{-}\left(D^{\prime} \varphi, \partial_{i} \varphi\right)<F_{A}(D \varphi) \quad \text { at } \quad P_{0}\right\}
$$

and for $i \in I$, let $q_{i} \geq \pi_{i}^{0}\left(D^{\prime} \varphi\left(P_{0}\right)\right)$ be such that

$$
H_{i}\left(D^{\prime} \varphi\left(P_{0}\right), q_{i}\right)=F_{A}\left(D \varphi\left(P_{0}\right)\right)
$$

where we have used the fact that $H_{i}\left(D^{\prime} \varphi\left(P_{0}\right),+\infty\right)=+\infty$. Then we can construct a test function $\tilde{\varphi}$ satisfying $\tilde{\varphi} \geq \varphi$ in a neighborhood of $P_{0}$, with equality at $P_{0}$, such that

$$
\begin{aligned}
\tilde{\varphi}_{t}\left(P_{0}\right) & =\varphi_{t}\left(P_{0}\right) \\
D^{\prime} \tilde{\varphi}\left(P_{0}\right) & =D^{\prime} \varphi\left(P_{0}\right)
\end{aligned} \quad \text { and } \quad \partial_{i} \tilde{\varphi}\left(P_{0}\right)= \begin{cases}\max \left(q_{i}, \partial_{i} \varphi\left(P_{0}\right)\right) & \text { if } \quad i \in I \\
\partial_{i} \varphi\left(P_{0}\right) & \text { if } \quad i \notin I\end{cases}
$$

Using the fact that $F_{A}(D \varphi)=F_{A}(D \tilde{\varphi}) \leq H_{i}\left(D^{\prime} \tilde{\varphi}, \partial_{i} \tilde{\varphi}\right)$ at $P_{0}$ for all $i$, we deduce a contradiction with (2.8) using the viscosity inequality for $\tilde{\varphi}$ for some $i \in\{1, \ldots, N\}$.

### 2.3 General junction conditions reduce to flux-limited ones

We have the following result which implies immediately Theorem 1.1.
Theorem 2.13 (General junction conditions reduce to flux-limited ones). Let the Hamiltonians satisfy (1.5) and let $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfy (1.10). There exists a unique coercive continuous function $A_{F}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, satisfying $A_{F} \geq A_{0}$ with $A_{0}$ defined in (1.9), such that the following holds.
i) Every relaxed viscosity super-solution (resp. sub-solution satisfying moreover the "weak continuity" property (2.4)) of (1.3) is a $A_{F}$-flux limited super-solution (resp. sub-solution) of (1.8).
ii) Conversely, every $A_{F}$-flux limited super-solution (resp. sub-solution) of (1.8), is a F-relaxed viscosity super-solution (resp. sub-solution) of (1.3).
iii) If $F$ is quasi-convex, so is $A_{F}$.

Proof. With the notation of Remark 1.2 in hand, we first recall that if $F\left(p^{\prime}, p^{0}\right) \geq A_{0}\left(p^{\prime}\right)$, then there exists only one $\lambda \geq A_{0}\left(p^{\prime}\right)$ such that there exists $p^{+}=\left(p_{1}^{+}, \ldots, p_{N}^{+}\right)$with $p_{i}^{+} \geq p_{i}^{0}$ such that

$$
H_{i}\left(p^{\prime}, p_{i}^{+}\right)=F\left(p^{\prime}, p^{+}\right)=\lambda .
$$

The coercivity of $A_{F}$ is a direct consequence of the fact that $A_{F} \geq A_{0}$. We thus prove next that $A_{F}$ is continuous. Consider a sequence $\left(p_{n}^{\prime}\right)_{n}$ converging towards $p^{\prime}$. Then we have two cases.

Case 1. There exists $p_{n}^{+}=\left(p_{1, n}^{+}, \ldots, p_{N, n}^{+}\right)$with $p_{i, n}^{+} \geq p_{i}^{0}=p_{i}^{0}\left(p_{n}^{\prime}\right)$ such that

$$
\begin{equation*}
H_{i}\left(p_{n}^{\prime}, p_{i, n}^{+}\right)=F\left(p_{n}^{\prime}, p_{n}^{+}\right)=A_{n}=A_{F}\left(p_{n}^{\prime}\right) \geq A_{0}\left(p_{n}^{\prime}\right) \quad \text { if } \quad F\left(p_{n}^{\prime}, p^{0}\left(p_{n}^{\prime}\right)\right) \geq A_{0}\left(p_{n}^{\prime}\right) . \tag{2.9}
\end{equation*}
$$

We can pass to the limit in (2.9) and get

$$
H_{i}\left(p^{\prime}, p_{i}^{+}\right)=F\left(p^{\prime}, p^{+}\right)=A \geq A_{0}\left(p^{\prime}\right)
$$

with $p_{i}^{+} \geq p_{i}^{0}\left(p^{\prime}\right)$ and then $A=A_{F}\left(p^{\prime}\right)$.
Case 2.

$$
A_{n}=A_{0}\left(p_{n}^{\prime}\right)=A_{F}\left(p_{n}^{\prime}\right) \quad \text { if } \quad F\left(p_{n}^{\prime}, p^{0}\left(p_{n}^{\prime}\right)\right) \leq A_{0}\left(p_{n}^{\prime}\right) .
$$

We first claim that $\left(p_{i, n}^{+}\right)_{n}$ is bounded. Indeed, if not, then $A_{n} \rightarrow+\infty$ and, for $n$ large enough,

$$
F\left(p_{n}^{\prime}, p^{0}\left(p_{n}^{\prime}\right)\right) \geq A_{n}
$$

which is impossible. The claim also implies that $\left(A_{n}\right)_{n}$ is also bounded. Consider now to converging subsequences, still denoted by $\left(p_{n}^{+}\right)_{n}$ and $\left(A_{n}\right)_{n}$, and let $p^{+}$and $A$ be their limits. We get

$$
A=A_{0}\left(p^{\prime}\right)
$$

If $F\left(p^{\prime}, p^{0}\left(p^{\prime}\right)\right) \leq A_{0}\left(p^{\prime}\right)$, then $A_{F}\left(p^{\prime}\right)=A_{0}\left(p^{\prime}\right)=A$.
If $F\left(p^{\prime}, p^{0}\left(p^{\prime}\right)\right)>A_{0}\left(p^{\prime}\right)$, then we have to enter in more details in the results of the limit process. We get

$$
F\left(p^{\prime}, \bar{p}^{0}\right) \leq A_{0}\left(p^{\prime}\right) \quad \text { and } \quad A=A_{0}\left(p^{\prime}\right)=H_{i}\left(p^{\prime}, \bar{p}_{i}^{0}\right) \quad \text { where } \quad \bar{p}_{i}^{0} \geq \pi_{i}^{0}\left(p^{\prime}\right)
$$

with

$$
\bar{p}^{0}=\lim p^{0}\left(p_{n}^{\prime}\right) \quad \text { for a subsequence }
$$

which implies $\bar{p}_{i}^{0} \geq p_{i}^{0}\left(p^{\prime}\right)$. Then we can choose some $p_{i}^{+} \in\left[p_{i}^{0}\left(p^{\prime}\right), \bar{p}_{i}^{0}\right]$ such that

$$
H_{i}\left(p^{\prime}, p_{i}^{+}\right)=F\left(p^{\prime}, p^{+}\right)=A_{0}\left(p^{\prime}\right)=A
$$

which shows again that $A_{F}\left(p^{\prime}\right)=A$. This ends the proof that $A_{F}$ is contiuous.
Proof of i)
We only do the proof for sub-solutions since the proof for super-solutions follows along the same lines. Let $\varphi$ be a test function touching $u^{*}$ from above at $P_{0}=\left(t_{0}, X_{0}\right)$. We only need to consider the case where $X_{0} \in \Gamma$. From Proposition 2.7, we can also assume that

$$
\varphi(t, X)=\phi\left(t, x^{\prime}\right)+\phi_{0}(x)
$$

with

$$
D^{\prime} \phi\left(t_{0}, x_{0}^{\prime}\right)=p_{0}^{\prime} \quad \text { and } \quad \partial_{i} \phi_{0}(0)=\pi_{i}^{+}\left(p_{0}^{\prime}, A_{F}\left(p_{0}^{\prime}\right)\right) .
$$

We have

$$
\varphi_{t}\left(P_{0}\right)+\min \left(F\left(D \varphi\left(P_{0}\right)\right), \min _{i} H_{i}\left(D^{\prime} \varphi\left(P_{0}\right), \partial_{i} \varphi\left(P_{0}\right)\right) \leq 0\right.
$$

which yields

$$
\varphi_{t}\left(P_{0}\right)+\max \left(F\left(p_{0}^{\prime}, \pi^{+}\left(p_{0}^{\prime}, A_{F}\left(p_{0}^{\prime}\right)\right)\right), A_{F}\left(p_{0}^{\prime}\right)\right) \leq 0 .
$$

In view of the definition of $A_{F}$, we get

$$
\varphi_{t}\left(P_{0}\right)+A_{F}\left(p_{0}^{\prime}\right) \leq 0 .
$$

Now compute

$$
F_{A_{F}}\left(D \varphi\left(P_{0}\right)\right)=\max \left(A_{F}\left(p_{0}^{\prime}\right), \max _{i} H_{i}^{-}\left(p_{0}^{\prime}, \pi_{i}^{+}\left(p_{0}^{\prime}, A_{F}\left(p_{0}^{\prime}\right)\right)\right)=A_{F}\left(p_{0}^{\prime}\right) .\right.
$$

This ends the proof of i).
Proof of ii)
We only do the proof for super-solutions since the proof for sub-solutions follows along the same lines. Let $\varphi$ be a test function touching $u_{*}$ from below at $P_{0}=\left(t_{0}, X_{0}\right)$. We want to show that it is a $F$-relaxed viscosity supersolution, i.e.

$$
\begin{equation*}
\max \left(F\left(D \varphi\left(P_{0}\right)\right), \max _{i} H_{i}\left(D^{\prime} \varphi\left(P_{0}\right), \partial_{i} \varphi\left(P_{0}\right)\right) \geq \lambda:=-\varphi_{t}\left(P_{0}\right)\right. \tag{2.10}
\end{equation*}
$$

We set

$$
D \varphi\left(P_{0}\right)=\left(p_{0}^{\prime}, p\right) \quad \text { with } \quad p=\left(p_{1}, \ldots, p_{N}\right)
$$

We know that $u$ is a $F_{A}$-reduced viscosity solution with $A=A_{F}$, i.e.

$$
\begin{equation*}
\max \left(A_{F}\left(p_{0}^{\prime}\right), \max _{i} H_{i}^{-}\left(p_{0}^{\prime}, p_{i}\right)\right)=F_{A_{F}}\left(D \varphi\left(P_{0}\right)\right) \geq \lambda \tag{2.11}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
F\left(p_{0}^{\prime}, \pi^{+}\left(p_{0}^{\prime}, A_{F}\left(p_{0}^{\prime}\right)\right)\right)=A_{F}\left(p_{0}^{\prime}\right)>A_{0}\left(p_{0}^{\prime}\right) \tag{2.12}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{F}\left(p_{0}^{\prime}\right)=A_{0}\left(p_{0}^{\prime}\right) \tag{2.13}
\end{equation*}
$$

We now distinguish two cases.
Case 1. Assume first that there exists an index $i_{0}$ such that

$$
H_{i_{0}}\left(p_{0}^{\prime}, p_{i_{0}}\right) \geq \max \left(A_{F}\left(p_{0}^{\prime}\right), \max _{i} H_{i}\left(p_{0}^{\prime}, p_{i}\right)\right) .
$$

Then (2.11) implies the result (2.10).

Case 2. Assume that for all $i$, we have $H_{i}\left(p_{0}^{\prime}, p_{i}\right)<A_{F}\left(p_{0}^{\prime}\right)$. Then $p_{i}<\pi_{i}^{+}\left(p_{0}^{\prime}, A_{F}\left(p_{0}^{\prime}\right)\right)$ and $F\left(p_{0}^{\prime}, p_{i}\right) \geq F\left(p_{0}^{\prime}, \pi^{+}\left(p_{0}^{\prime}, A_{F}\left(p_{0}^{\prime}\right)\right)=A_{F}\left(p_{0}^{\prime}\right) \geq \lambda\right.$ in case of (2.12).
In the case of (2.13), we have $A_{F}\left(p_{0}^{\prime}\right)=A_{0}\left(p_{0}^{\prime}\right)$ and the inequality for all $i$

$$
H_{i}\left(p_{0}^{\prime}, p_{i}\right)<A_{F}\left(p_{0}^{\prime}\right)=A_{0}\left(p_{0}^{\prime}\right)=\max _{j}\left(\min _{q_{j}} H_{j}\left(p_{0}^{\prime}, q_{j}\right)\right)
$$

leads to a contradiction. The proof of ii) is now complete.
Proof of iii)
It follows from Proposition 2.14 below. The proof is now complete.
We now turn to the following useful proposition.
Proposition 2.14 (Quasi-convex Hamiltonians and flux functions generate quasi-convex flux limiters). If the Hamiltonians $H_{i}$ satisfy (1.5) and the flux function $F$ satisfies (1.10)-(1.11), then $A_{F}$ is continuous, quasi-convex and coercive.

The proof of this proposition is postponed and can be found in Appendix.

### 2.4 Existence

Theorem 2.15 (Existence). Let $T>0$. Assume that Hamiltonians satisfy (1.5), that the junction function $F$ satisfies (1.10) and that the initial datum $u^{0}$ is uniformly continuous. Then there exists a relaxed viscosity solution $u$ of (1.3)-(1.4) in $[0, T) \times J$ and a constant $C_{T}>0$ such that

$$
\left|u(t, X)-u^{0}(X)\right| \leq C_{T} \quad \text { for all } \quad(t, X) \in[0, T) \times J
$$

Moreover $u$ is continuous.
Sketch of the proof of Theorem 2.15. Using Perron's method as in [9], we easily get existence of relaxed viscosity solutions for general junction functions $F$ satisfying (1.10). We only make comments about the continuity of the solution $u$. We first construct $u$ (by Perron's method) as a $F_{A}$-relaxed solution with $A=A_{F}$ given by Theorem 1.1 and Remark 1.2. For this problem we can apply the compariton principle (Theorem 1.3) which implies both the uniqueness and the continuity of $u$. Using Theorem 2.13 ii), we conclude that $u$ is also an $F$-relaxed viscosity solution.

## 3 The multi-dimensional vertex test function

This section is devoted to the construction of the vertex test function to be used in the proof of the comparison principle.

We will use below the following shorthand notation

$$
H\left(X, p^{\prime}, p\right)= \begin{cases}H_{i}\left(p^{\prime}, p\right) & \text { for } \quad p=p_{i}  \tag{3.1}\\ F_{A}\left(p^{\prime}, p\right) & \text { for } \quad p=\left(p_{1}, \ldots, p_{N}\right) \\ \text { if } \quad X \in J_{i} \backslash \Gamma \\ \end{cases}
$$

We also introduce a modulus of continuity $\omega_{R}$ (with obviously $\omega_{R}(0)=0$ ), such that

$$
\begin{equation*}
|H(X, P)-H(X, \hat{P})| \leq \omega_{R}(|P-\hat{P}|) \quad \text { for all } \quad|P|,|\hat{P}| \leq R \tag{3.2}
\end{equation*}
$$

In particular, keeping in mind the definition of $D u$ (see (1.2)), Problem (1.8) on the junction can be rewritten as follows

$$
u_{t}+H(X, D u)=0 \quad \text { for all } \quad(t, X) \in(0,+\infty) \times J
$$

In the spirit of the definition of test function in (2.1), we set

$$
C^{1}(J)=\left\{\phi \in C(J), \quad \phi \text { restricted to } J_{i} \text { is } C^{1} \text { for } i=1, \ldots, N\right\}
$$

Then our key result is the following one.

Theorem 3.1 (The vertex test function). Let $A$ satisfying (1.6) with $A \geq A_{0}$ and let $\gamma \in(0,1]$. Assume the Hamiltonians satisfy (1.5). Then there exists a function $G: J^{2} \rightarrow \mathbb{R}$ enjoying the following properties.
i) (Regularity)

$$
G \in C\left(J^{2}\right) \quad \text { and } \quad\left\{\begin{array}{lll}
G(X, \cdot) \in C^{1}(J) & \text { for all } & X \in J \\
G(\cdot, Y) \in C^{1}(J) & \text { for all } & Y \in J
\end{array}\right.
$$

ii) (Bound from below) $G \geq 0=G(0,0)$.
iii) (Compatibility condition on the diagonal) For all $X \in J$,

$$
\begin{equation*}
0 \leq G(X, X)-G(0,0) \leq \gamma \tag{3.3}
\end{equation*}
$$

iv) (Compatibility condition on the gradients) For all $X, Y \in J$ and $K>0$ with $d(X, Y) \leq K$,

$$
\begin{equation*}
H\left(Y,-D_{Y} G(X, Y)\right)-H\left(X, D_{X} G(X, Y)\right) \leq \omega_{C_{K}}\left(\gamma C_{K}\right) \tag{3.4}
\end{equation*}
$$

with $C_{K}$ given in (3.6) where notation introduced in (1.2), (3.1) and (3.2) are used.
v) (Superlinearity) There exists $g:[0,+\infty) \rightarrow \mathbb{R}$ nondecreasing and s.t. for $(X, Y) \in J^{2}$

$$
\begin{equation*}
g(d(X, Y)) \leq G(X, Y) \quad \text { and } \quad \lim _{a \rightarrow+\infty} \frac{g(a)}{a}=+\infty \tag{3.5}
\end{equation*}
$$

vi) (Gradient bounds) For all $K>0$, there exists $C_{K}>0$ such that for all $(X, Y) \in J^{2}$,

$$
\begin{equation*}
d(X, Y) \leq K \quad \Longrightarrow \quad\left|G_{X}(X, Y)\right|+\left|G_{Y}(X, Y)\right| \leq C_{K} \tag{3.6}
\end{equation*}
$$

We now assert that Theorem 1.3 is a direct consequence of Theorem 3.1. We just sketch it here and we give details in appendix.

Sketch of the proof of Theorem 1.3. Use Theorem 3.1 and proceed as in [9] (indeed the modification of estimate (3.4) with respect to the corresponding one in [9], does not affect the arguments of the proof).

### 3.1 The case of smooth convex Hamiltonians

Assume that the Hamiltonians $H_{i}$ satisfy the following assumptions for $i=1, \ldots, N$,

$$
\left\{\begin{array}{l}
H_{i} \in C^{2}\left(\mathbb{R}^{d+1}\right) \text { with } D^{2} H_{i}>0 \quad \text { in } \quad \mathbb{R}^{d+1}  \tag{3.7}\\
\lim _{|P| \rightarrow+\infty} \frac{H_{i}(P)}{|P|}=+\infty
\end{array}\right.
$$

and the flux limiter

$$
\begin{equation*}
A_{0} \leq A \in C^{2}\left(\mathbb{R}^{d}\right) \quad \text { and } D^{2} A>0 \quad \text { in } \quad \mathbb{R}^{d+1} \tag{3.8}
\end{equation*}
$$

It is useful to associate with each $H_{i}$ satisfying (3.7) its partial inverse functions $\pi_{i}^{ \pm}$:

$$
\begin{equation*}
\text { for } \lambda \geq A_{i}\left(p^{\prime}\right), \quad H_{i}\left(p^{\prime}, \pi_{i}^{ \pm}\left(p^{\prime}, \lambda\right)\right)=\lambda \quad \text { such that } \quad \pi_{i}^{-}\left(p^{\prime}, \lambda\right) \leq \pi_{i}^{0}\left(p^{\prime}\right) \leq \pi_{i}^{+}\left(p^{\prime}, \lambda\right) \tag{3.9}
\end{equation*}
$$

where we recall that $A_{i}\left(p^{\prime}\right)=\min _{p_{i}} H_{i}\left(p^{\prime}, p_{i}\right)$. is convex in $p^{\prime}$ (see Lemma A.1).
Lemma 3.2 (Properties of $\left.\pi_{i}^{ \pm}\right)$. Assume (3.7). Then $\pi_{i}^{ \pm}\left(p^{\prime}, \cdot\right) \in C^{2}\left(A_{i}\left(p^{\prime}\right),+\infty\right)$ and $\pi_{i}^{ \pm} \in$ $C\left(\operatorname{epi} A_{i}\right)$. Moreover, $\pi_{i}^{ \pm}$is concave w.r.t. $\left(p^{\prime}, \lambda\right)$ in epi $A_{i}$ and $\pm \pi_{i}^{ \pm}$is non-decreasing w.r.t. $\lambda$.

Proof. The regularity of $\pi^{ \pm}$can be derived thanks to the inverse function theorem. As far as the concavity of $\pi_{i}^{+}$is concerned, we can drop the subscript $i$ and we do so for clarity. let $\left(p^{\prime}, \lambda\right),\left(q^{\prime}, \mu\right) \in \operatorname{epi} A$ and $t \in(0,1)$. Then

$$
\begin{aligned}
t \lambda+(1-t) \mu & =t H\left(p^{\prime}, \pi^{+}\left(p^{\prime}, \lambda\right)\right)+(1-t) H\left(q^{\prime}, \pi^{+}\left(q^{\prime}, \mu\right)\right) \\
& \geq H\left(t p^{\prime}+(1-t) q^{\prime}, t \pi^{+}\left(p^{\prime}, \lambda\right)+(1-t) \pi^{+}\left(q^{\prime}, \mu\right)\right)
\end{aligned}
$$

Hence

$$
\pi^{+}\left(t p^{\prime}+(1-t) q^{\prime}, t \lambda+(1-t) \mu\right) \geq t \pi^{+}\left(p^{\prime}, \lambda\right)+(1-t) \pi^{+}\left(q^{\prime}, \mu\right)
$$

which is the desired result. The monotonicity of $\pi^{+}$is easy to derive from the convexity of $H$. The proof of the lemma is now complete.

We next define the function $G^{0}$ for $X \in J_{i}, Y \in J_{j}, i, j=1, \ldots, N$, as follows,

$$
\begin{equation*}
G^{0}(X, Y)=\sup _{(P, \lambda) \in \mathcal{G}_{A}^{i j}}\left(p^{\prime} \cdot\left(x^{\prime}-y^{\prime}\right)+p_{i} x-p_{j} y-\lambda\right) \tag{3.10}
\end{equation*}
$$

where

$$
\mathcal{G}_{A}^{i j}= \begin{cases}\left\{(P, \lambda) \in \mathbb{R}^{d+3} \times \mathbb{R}: P=\left(p^{\prime}, p_{i}, p_{j}\right), \lambda=H_{i}\left(p^{\prime}, p_{i}\right)=H_{j}\left(p^{\prime}, p_{j}\right) \geq A\left(p^{\prime}\right)\right\} & \text { if } i \neq j  \tag{3.11}\\ \left\{(P, \lambda) \in \mathbb{R}^{d+2} \times \mathbb{R}: P=\left(p^{\prime}, p_{i}\right), \lambda=H_{i}\left(p^{\prime}, p_{i}\right) \geq A\left(p^{\prime}\right)\right\} & \text { if } i=j\end{cases}
$$

with $A \geq A_{0}$.
Proposition 3.3 (The vertex test function - the smooth convex case). Let $A \geq A_{0}$ with $A_{0}$ given by (1.9) and assume that the Hamiltonians satisfy (3.7) and the limiter $A$ satisfies (3.8). Then $G^{0}$ satisfies
i) (Regularity)

$$
G^{0} \in C\left(J^{2}\right) \quad \text { and } \quad\left\{\begin{array}{l}
G^{0} \in C^{1}(\{(X, Y) \in J \times J, \quad x \neq y\}) \\
G^{0}(0, \cdot) \in C^{1}(J) \quad \text { and } \quad G^{0}(\cdot, 0) \in C^{1}(J)
\end{array}\right.
$$

ii) (Bound from below) $G^{0} \geq G^{0}(0,0)$;
iii) (Compatibility conditions) (3.3) holds with $\gamma=0$; and (3.4) holds with $\gamma=0$ for $X=\left(x^{\prime}, x\right)$, $Y=\left(y^{\prime}, y\right)$ with $x \neq y$ or $x=y=0$;
iv) (Superlinearity) (3.5) holds for some $g=g^{0}$;
v) (Gradient bounds) (3.6) holds only for $(X, Y) \in J^{2}$ such that $x \neq y$ or $(x, y)=(0,0)$;

The proof of this proposition is postponed until Subsection 3.4. With such a result in hand, we can now prove Theorem 3.1 in the case of smooth convex Hamiltonians.

Lemma 3.4 (The case of smooth convex Hamiltonians). Assume that the Hamiltonians satisfy (3.7) and the limiter $A$ satisfies (3.8) with $A \geq A_{0}$. Then the conclusion of Theorem 3.1 holds true.

Proof. Recall that

$$
G_{i i}^{0}(X, Y)=\mathfrak{G}_{i i}(Z) \quad \text { with } \quad Z=X-Y
$$

Up to substract $G^{0}(0,0)$ to $G^{0}$, we can assume that $G^{0}(0,0)=0$. It is enough (and it is our goal) to regularize $G_{i i}^{0}$ in a neighborhood of $\left\{x_{i}=y_{i}\right\} \backslash\left\{x_{i}=y_{i}=0\right\}$. Let $\varepsilon_{0} \in(0,1]$ small to fix later, and consider a smooth nondecreasing function $\zeta: \mathbb{R} \rightarrow[0,1]$ satisfying $\zeta=0$ on $(-\infty, 0], \zeta>0$ on $(0,+\infty)$, and $\zeta=1$ on $[B,+\infty)$, with $B \geq 1$ large. We also consider a smooth nonincreasing
function $\xi:[0,+\infty) \rightarrow(0,+\infty)$ with $\xi(+\infty)=0$, which satisfies in particular for $Z=\left(z^{\prime}, z_{i}\right)$ and a real $\bar{z}_{i}$

$$
\left|\mathfrak{G}_{i i}\left(z^{\prime}, z_{i}\right)-\mathfrak{G}_{i i}\left(z^{\prime}, \bar{z}_{i}\right)\right| \leq \frac{\left|z_{i}-\bar{z}_{i}\right|}{\xi\left(\left|z^{\prime}\right|\right)} \quad \text { if } \quad\left|z_{i}\right|,\left|\bar{z}_{i}\right| \leq 2 \xi\left(\left|z^{\prime}\right|\right)
$$

We will regularize $G_{i i}^{0}$ in a neighborhood of the diagonal of half thickness $\varepsilon_{0} \theta$ with

$$
\theta\left(z^{\prime}, x_{i}+y_{i}\right):=\xi\left(\left|z^{\prime}\right|\right) \zeta\left(x_{i}+y_{i}\right)
$$

To this end, we consider a smooth cut-off function $\Psi: \mathbb{R} \rightarrow[0,1]$ such that supp $\Psi \subset[-1,1]$ with $\Psi=1$ on $[-1 / 2,1 / 2]$. We will also use a one-dimensional non-negative mollifier

$$
\rho_{\eta}\left(z_{i}\right)=\frac{1}{\eta} \rho\left(\frac{z_{i}}{\eta}\right)
$$

with supp $\rho \subset[-1,1]$ to regularize by convolution the function $\mathfrak{G}_{i i}(Z)$ in the direction of $z_{i}$ only, because $\mathfrak{G}_{i i}(Z)$ is already $C^{1}$ in the other directions $z^{\prime}$. Finally we define with $Z=\left(z^{\prime}, z_{i}\right)$ and $z^{\prime}=x^{\prime}-y^{\prime}, z_{i}=x_{i}-y_{i}$, the function
$G_{i i}(X, Y)=\left(1-\Psi\left(\frac{z_{i}}{\varepsilon_{0} \theta\left(z^{\prime}, x_{i}+y_{i}\right)}\right)\right) \mathfrak{G}_{i i}\left(z^{\prime}, z_{i}\right)+\Psi\left(\frac{z_{i}}{\varepsilon_{0} \theta\left(z^{\prime}, x_{i}+y_{i}\right)}\right) \int_{a \in \mathbb{R}} \rho_{\varepsilon_{0} \theta\left(z^{\prime}, x_{i}+y_{i}\right)}(a) \mathfrak{G}_{i i}\left(z^{\prime}, z_{i}-a\right)$.
This regularization procedure preserves the desired properties like estimates (3.5) (with a possible different function $g$ but independent on any $\left.\varepsilon_{0} \in(0,1]\right)$ and (3.6) with a possible different constant $C_{K}$. Moreover, for $\varepsilon_{0}>0$ small enough, this regularization procedure introduces a small error $\gamma$ in (3.3) and another small error $\gamma$ in (3.4). This ends the proof of the lemma.

### 3.2 The vertex test function in $J_{i} \times J_{j}$ with $i \neq j$

In order to prove Proposition 3.3, we first need to study $G^{0}$ for $X \in J_{i}$ and $Y \in J_{j}$ with $i \neq j$. Then, one can write

$$
G_{i j}^{0}(X, Y)=\mathfrak{G}_{i j}\left(x^{\prime}-y^{\prime}, x_{i},-y_{j}\right)
$$

with

$$
\mathfrak{G}_{i j}(Z)=\sup _{(P, \lambda) \in \mathcal{G}_{A}^{i j}}(P \cdot Z-\lambda)
$$

where $\mathcal{G}_{A}^{i j}$ is defined in (3.11). Remark that for $X \in J_{i}$ and $Y \in J_{j}$, we have $Z=X-Y \in \mathcal{Q}$ where

$$
\mathcal{Q}=\mathbb{R}^{d} \times[0,+\infty[\times]-\infty ; 0]
$$

We also consider the simplex

$$
\mathcal{T}=\left\{\left(\alpha_{i}, \alpha_{j}, \alpha_{0}\right) \in[0,1]^{3}: \alpha_{i}+\alpha_{j}+\alpha_{0}=1\right\}
$$

Lemma 3.5 (Necessary conditions for the maximiser : $i j$-version). Given $Z \in \mathcal{Q}$, the supremum defining $\mathfrak{G}_{i j}(Z)$ is reached for some $(P, \lambda) \in \mathcal{G}_{A}^{i j}$ and there exists $\left(\alpha_{i}, \alpha_{j}, \alpha_{0}\right) \in \mathcal{T}$ such that

$$
Z=D(\alpha \cdot H)(P)
$$

with $H=\left(H_{i}, H_{j}, A\right)$.
Proof. $\mathfrak{G}_{i j}(Z)$ is defined by maximizing a linear function under a equality constraint and an inequality constraint. Constraints are qualified if

$$
D\left(H_{i}-H_{j}\right) \text { is not colinear with } D\left(H_{i}-A\right)
$$

When constraints are qualified, Karush-Kuhn-Tucker theorem asserts (computing $D_{P}(P \cdot Z-$ $\lambda))$ that there exists $\alpha_{j} \in \mathbb{R}$ and $\alpha_{0} \geq 0$ such that

$$
Z=\nabla_{P} H_{i}+\alpha_{j}\left(\nabla_{P} H_{j}-\nabla_{P} H_{i}\right)+\alpha_{0} \nabla_{P}\left(A-H_{i}\right)
$$

with

$$
\alpha_{0}=0 \quad \text { if } A\left(p^{\prime}\right)<H_{i}\left(p^{\prime}, p_{i}\right)
$$

If one sets $\alpha_{i}=1-\alpha_{0}-\alpha_{j}$, Equivalently, we have

$$
\left\{\begin{array}{l}
z_{i}=\alpha_{i} \partial_{i} H_{i}\left(p^{\prime}, p_{i}\right) \geq 0 \\
z_{j}=\alpha_{j} \partial_{j} H_{j}\left(p^{\prime}, p_{i}\right) \leq 0 \\
z^{\prime}=\alpha_{i} \nabla_{p^{\prime}} H_{i}+\alpha_{j} \nabla_{p^{\prime}} H_{j}+\alpha_{0} \nabla_{p^{\prime}} A
\end{array}\right.
$$

The constraints are qualified in particular if

$$
\begin{equation*}
\partial_{i} H_{i}\left(p^{\prime}, p_{i}\right)>0 \text { and } \partial_{j} H_{j}\left(p^{\prime}, p_{j}\right)<0 \tag{3.12}
\end{equation*}
$$

In this case we deduce that $\left(\alpha_{i}, \alpha_{j}, \alpha_{0}\right) \in \mathcal{T}$. Hence, the result is proved in case (3.12).
Now assume that $\partial_{i} H_{i}\left(p^{\prime}, p_{i}\right) \leq 0$. We remark that in all cases, $\partial_{i} H_{i}\left(p^{\prime}, p_{i}\right) \geq 0$ since $z_{i} \geq 0$. Hence, $\partial_{i} H_{i}\left(p^{\prime}, p_{i}\right)=0$ or, in other words, $H_{i}\left(p^{\prime}, p_{i}\right)=A_{i}\left(p^{\prime}\right)$. But the constraint $H_{i}\left(p^{\prime}, p_{i}\right) \geq$ $A\left(p^{\prime}\right)$, the assumption $A\left(p^{\prime}\right) \geq A_{0}\left(p^{\prime}\right)$ and the simple fact that $A_{i}\left(p^{\prime}\right) \leq A_{0}\left(p^{\prime}\right)$ imply in particular that $A\left(p^{\prime}\right)=A_{0}\left(p^{\prime}\right)$. We arrive at the same conclusion if $\partial_{j} H_{j}\left(p^{\prime}, p_{j}\right) \geq 0$. In other words,

$$
\begin{equation*}
\text { Condition (3.12) holds true as soon as } \quad \forall p^{\prime}, A\left(p^{\prime}\right)>A_{0}\left(p^{\prime}\right) \tag{3.13}
\end{equation*}
$$

In particular, the result of the lemma holds true under this latter condition: $A\left(p^{\prime}\right)>A_{0}\left(p^{\prime}\right)$ for all $p^{\prime} \in \mathbb{R}^{d}$. If now there are some $p^{\prime}$ such that $A\left(p^{\prime}\right)=A_{0}\left(p^{\prime}\right)$, we remark that

$$
\mathfrak{G}_{i j}(Z)=\lim _{\varepsilon \rightarrow 0} \mathfrak{G}_{i j}^{\varepsilon}(Z)
$$

where $\mathfrak{G}_{i j}^{\varepsilon}(Z)$ is associated with $A^{\varepsilon}\left(p^{\prime}\right)=\varepsilon+A\left(p^{\prime}\right)$. From the previous case, we know that there exists $P_{\varepsilon}$ and $\lambda_{\varepsilon}$ such that

$$
\mathfrak{G}_{i j}^{\varepsilon}(Z)=P_{\varepsilon} \cdot Z-\lambda_{\varepsilon}
$$

and $\alpha^{\varepsilon}=\left(\alpha_{i}^{\varepsilon}, \alpha_{j}^{\varepsilon}, \alpha_{0}^{\varepsilon}\right) \in \mathcal{T}$ such that

$$
Z=D(\alpha \cdot H)\left(P_{\varepsilon}\right)
$$

We can extract a subsequence such that $\alpha^{\varepsilon} \rightarrow \alpha$. Moreover, $P_{\varepsilon} \cdot Z-\lambda_{\varepsilon}$ is bounded from above and

$$
\lambda_{\varepsilon}=H_{i}\left(p^{\varepsilon}, p_{i}^{\varepsilon}\right)=H_{j}\left(p^{\prime \varepsilon}, p_{j}^{\varepsilon}\right)
$$

Since $H_{i}$ and $H_{j}$ are assumed to be superlinear, we conclude that we can also extract a converging subsequence from $P_{\varepsilon}$. This achieves the proof of the lemma.

Lemma 3.6 (Uniqueness of $P$ : ij-version). Let $Z=\left(z^{\prime}, z_{i}, z_{j}\right) \in \mathcal{Q}$. If there exists $\alpha, P, \lambda$ and $\beta, Q, \mu$ such that $\alpha, \beta \in \mathcal{T}$ and

$$
\left\{\begin{array}{l}
\mathfrak{G}_{i j}(Z)=P \cdot Z-\lambda=Q \cdot Z-\mu \\
Z=D(\alpha \cdot H)(P)=D(\beta \cdot H)(Q)
\end{array}\right.
$$

Then $\lambda=\mu, p^{\prime}=q^{\prime}$ and

$$
\begin{equation*}
p_{i}=q_{i}=\pi_{i}^{+}\left(p^{\prime}, \lambda\right) \tag{3.14}
\end{equation*}
$$

except in the case

$$
\begin{equation*}
\alpha_{i}=\beta_{i}=0=z_{i} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{j}=q_{j}=\pi_{j}^{-}\left(p^{\prime}, \lambda\right) \tag{3.16}
\end{equation*}
$$

except in the case

$$
\begin{equation*}
\alpha_{j}=\beta_{j}=0=z_{j} \tag{3.17}
\end{equation*}
$$

Moreover under the previous assumptions, and in all cases, we can define

$$
\hat{P}=\left(p^{\prime}, \pi_{i}^{+}\left(p^{\prime}, \lambda\right), \pi_{j}^{-}\left(p^{\prime}, \lambda\right)\right)
$$

and then we have

$$
\mathfrak{G}_{i j}(Z)=\hat{P} \cdot Z-\lambda \quad \text { and } \quad Z=D(\alpha \cdot H)(\hat{P})
$$

Proof. We consider the function $\Psi: \mathbb{R}^{d+2} \times \mathcal{T} \rightarrow \mathbb{R}$ defined as follows

$$
\Psi(P, \alpha)=D(\alpha \cdot H)(P)
$$

By assumption, we have

$$
0=D(\alpha \cdot H)(P)-D(\beta \cdot H)(Q)
$$

If $\bar{P}$ denotes $Q-P$ and $\bar{\alpha}$ denotes $\beta-\alpha$, then

$$
\begin{aligned}
0 & =\int_{0}^{1}\binom{\bar{P}}{\bar{\alpha}} \cdot D \Psi(P+\theta \bar{P}, \alpha+\theta \bar{\alpha}) d \theta \\
& =\int_{0}^{1} D_{P} \Psi(P+\theta \bar{P}, \alpha+\theta \bar{\alpha}) \bar{P} d \theta+\int_{0}^{1} D_{\alpha} \Psi(P+\theta \bar{P}, \alpha+\theta \bar{\alpha}) \bar{\alpha} d \theta
\end{aligned}
$$

Taking the scalar product with $\bar{P}$ yields

$$
\begin{aligned}
0 & =\int_{0}^{1} D_{P P}^{2}((\alpha+\theta \bar{\alpha}) \cdot H)(P+\theta \bar{P}) \bar{P} \cdot \bar{P} d \theta+\int_{0}^{1} D_{P} H(P+\theta \bar{P}) \bar{\alpha} \cdot \bar{P} d \theta \\
& =T_{1}+T_{2}
\end{aligned}
$$

with $T_{i} \geq 0, i=1,2$ and

$$
\begin{aligned}
& T_{1}=\int_{0}^{1} D_{P P}^{2}((\alpha+\theta \bar{\alpha}) \cdot H)(P+\theta \bar{P}) \bar{P} \cdot \bar{P} d \theta \geq 0 \\
& T_{2}=\int_{0}^{1} D_{P} H(P+\theta \bar{P}) \bar{\alpha} \cdot \bar{P} d \theta \geq 0
\end{aligned}
$$

Indeed, keeping in mind that

$$
\left\{\begin{array} { l } 
{ H _ { i } ( P ) = H _ { j } ( P ) } \\
{ H _ { i } ( Q ) = H _ { j } ( Q ) }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\alpha_{0}\left(A(P)-H_{i}(P)\right)=0 \\
\beta_{0}\left(A(Q)-H_{i}(Q)\right)=0
\end{array}\right.\right.
$$

we remark that

$$
\begin{aligned}
\int_{0}^{1} D_{P} H(P+\theta \bar{P}) \bar{\alpha} \cdot \bar{P} d \theta & =\bar{\alpha} \cdot(H(Q)-H(P)) \\
& =\bar{\alpha}_{i}\left(H_{i}(Q)-H_{i}(P)\right)+\bar{\alpha}_{j}\left(H_{j}(Q)-H_{j}(P)\right)+\bar{\alpha}_{0}(A(Q)-A(P)) \\
& =\left(\beta_{0}-\alpha_{0}\right)\left(A(Q)-H_{i}(Q)-A(P)+H_{i}(P)\right) \\
& =\beta_{0}\left(H_{i}(P)-A(P)\right)+\alpha_{0}\left(H_{i}(Q)-A(Q)\right) \geq 0
\end{aligned}
$$

Hence, we get

$$
\begin{aligned}
& 0=\int_{0}^{1} D_{P P}^{2}((\alpha+\theta \bar{\alpha}) \cdot H)(P+\theta \bar{P}) \bar{P} \cdot \bar{P} d \theta \\
& 0=\beta_{0}\left(H_{i}(P)-A(P)\right) \\
& 0=\alpha_{0}\left(H_{i}(Q)-A(Q)\right)
\end{aligned}
$$

We distinguish three cases. We will use several times the fact that $H_{i}\left(p^{\prime}, p_{i}\right)=\lambda$ and $\partial_{i} H_{i}\left(p^{\prime}, p_{i}\right) \geq$ 0 implies that $p_{i}=\pi_{i}^{+}\left(p^{\prime}, \lambda\right)$. We will also use the corresponding property for $p_{j}: p_{j}=\pi_{j}^{-}\left(p^{\prime}, p_{j}\right)$.

- Case 1. If there exists $\theta \in(0,1)$ such that $\alpha+\theta \bar{\alpha} \in \operatorname{int} \mathcal{T}$, then $P=Q$ and

$$
\lambda=P \cdot Z-\mathfrak{G}_{i j}(Z)=\mu
$$

- Case 2. If $\alpha=\beta$ is a vertex of $\mathcal{T}$, then either $\alpha=(1,0,0)$ or $\alpha=(0,1,0)$ or $\alpha=(0,0,1)$.
- In the first subcase, $\alpha_{i}=1$, we get $p^{\prime}=q^{\prime}$ and $p_{i}=q_{i}$ and $Z=\nabla_{P} H_{i}(P)$ and

$$
0=\left(p_{j}-q_{j}\right) z_{j}=(P-Q) \cdot Z=\lambda-\mu
$$

We conclude by remarking that we can choose $p_{j}=\pi_{j}^{-}\left(p^{\prime}, \lambda\right)=q_{j}$ when $\alpha_{j}=\beta_{j}=0=$ $z_{j}$. The second subcase is similar.

- If now $\alpha=(0,0,1)$, then $p^{\prime}=q^{\prime}$ and $Z=\nabla_{P} A(P)$ and

$$
0=\left(p_{i}-q_{i}\right) z_{i}+\left(p_{j}-q_{j}\right) z_{j}=P \cdot Z=\lambda-\mu
$$

and we conclude as in the two previous subcases.

- Case 3. Assume finally that there exists $\theta \in(0,1)$ such that $\alpha+\theta \bar{\alpha} \in \partial \mathcal{T}$ but is not a vertex. In this third case, this implies that two components of $a=\alpha+\theta \bar{\alpha}=\left(a_{i}, a_{j}, a_{0}\right)$ are not 0 .
- If $a_{0}=0$ then $p^{\prime}=q^{\prime}$ and $p_{i}=q_{i}$ and $p_{j}=q_{j}$, i.e. $P=Q$.
- If $a_{i}=0$ then $p^{\prime}=q^{\prime}$ and $p_{j}=q_{j}$ and $z_{i}=0$ and $\lambda=\mu$ and we can choose $p_{i}=$ $\pi^{+}\left(p^{\prime}, \lambda\right)=q_{i}$ when $\alpha_{i}=\beta_{i}=0=z_{i}$. The third subcase $a_{j}=0$ is similar to the second one.

The proof of the lemma is now complete.
The two previous lemmas imply the following one.
Lemma 3.7 (Gradients of $G_{i j}^{0}$ ). The function $G_{i j}^{0}$ is $C^{1}$ in $J_{i} \times J_{j}$, up to the boundary, and

$$
D G_{i j}^{0}(X, Y)=\left(p^{\prime}, p_{i},-p^{\prime},-p_{j}\right), \quad p_{i}=\pi_{i}^{+}\left(p^{\prime}, \lambda\right), \quad p_{j}=\pi_{j}^{-}\left(p^{\prime}, \lambda\right) \quad \text { and } \quad P=\left(p^{\prime}, p_{i}, p_{j}\right)
$$

where $\left(p^{\prime}, \lambda\right)=(\mathfrak{P}(X, Y), \mathfrak{L}(X, Y))$ are uniquely determined by the relation for some $\alpha \in \mathcal{T}$

$$
\left\{\begin{array}{l}
G_{i j}^{0}(X, Y)=p^{\prime} \cdot\left(x^{\prime}-y^{\prime}\right)+p_{i} x_{i}-p_{j} y_{j}-\lambda \\
Z=D(\alpha \cdot H)(P) \quad \text { with } \quad Z=\left(x^{\prime}-y^{\prime}, x_{i},-y_{j}\right)
\end{array}\right.
$$

In particular, the maps $\mathfrak{P}$ and $\mathfrak{L}$ are continuous in $J_{i} \times J_{j}$.
The following lemma is elementary but it will be used below.
Lemma $3.8\left(G_{i j}^{0}\right.$ at the boundary). The restriction of $\mathfrak{G}_{i j}$ to $\left\{z_{i}=0\right\}$ and $\left\{z_{j}=0\right\}$ equals respectively $\left(H_{j} \vee A\right)^{\star}$ and $\left(H_{i} \vee A\right)^{\star}$, where the star exponent denotes here the Legendre-Fenchel transform.

### 3.3 The vertex test function in $J_{i} \times J_{i}$

In view of the definition of $G^{0}$, see (3.10), we have the following Legendre-Fenchel transform equality

$$
G_{i i}^{0}(X, Y)=\left(H_{i} \vee A\right)^{\star}(X-Y)
$$

In particular, we derive from Lemma 3.8 the following one.
Lemma 3.9 (Continuity of $G^{0}$ ). The function $G^{0}$ is continuous in $J \times J$.
We now state (without proof, because the proofs are even easier) the following two analogues of Lemmas 3.5 and 3.6.

Lemma 3.10 (Necessary conditions for the maximiser : ii-version). Let $\mathcal{T}_{i}$ be defined as follows

$$
\mathcal{T}_{i}=\left\{\left(\alpha_{i}, \alpha_{0}\right) \in[0,1]^{2}, \quad \alpha_{i}+\alpha_{0}=1\right\}
$$

and $\alpha \cdot H=\alpha_{i} H_{i}+\alpha_{0} A$, and $Z=\left(z^{\prime}, z_{i}\right)$. If the supremum defining $\mathfrak{G}_{i i}(Z)$ is reached at some $(P, \lambda) \in \mathcal{G}_{A}^{i i}$, then there exists $\alpha \in \mathcal{T}_{i}$ such that

$$
Z=D(\alpha \cdot H)(P)
$$

Lemma 3.11 (Uniqueness of $P$ : ii-version). Let $Z=\left(z^{\prime}, z_{i}\right) \in \mathbb{R}^{d+1}$. If there exists $\alpha, P, \lambda$ and $\beta, Q, \mu$ such that $\alpha, \beta \in \mathcal{T}_{i}$ and

$$
\left\{\begin{array}{l}
\mathfrak{G}_{i i}(Z)=P \cdot Z-\lambda=Q \cdot Z-\mu \\
Z=D(\alpha \cdot H)(P)=D(\beta \cdot H)(Q)
\end{array}\right.
$$

Then $\lambda=\mu, p^{\prime}=q^{\prime}$ and

$$
\begin{equation*}
p_{i}=q_{i}=\pi_{i}^{+}\left(p^{\prime}, \lambda\right) \quad \text { if } \quad z_{i}>0 \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i}=q_{i}=\pi_{i}^{-}\left(p^{\prime}, \lambda\right) \quad \text { if } \quad z_{i}<0 \tag{3.19}
\end{equation*}
$$

Moreover under the previous assumptions, and in all cases, we can define either

$$
\hat{P}=\left(p^{\prime}, \pi_{i}^{+}\left(p^{\prime}, \lambda\right)\right) \quad \text { if } \quad z_{i} \geq 0
$$

or

$$
\hat{P}=\left(p^{\prime}, \pi_{i}^{-}\left(p^{\prime}, \lambda\right)\right) \quad \text { if } \quad z_{i} \leq 0
$$

and then we always have

$$
\mathfrak{G}_{i j}(Z)=\hat{P} \cdot Z-\lambda \quad \text { and } \quad Z=D(\alpha \cdot H)(\hat{P})
$$

We now turn to the regularity of $G_{i i}^{0}$.
Lemma 3.12 (Gradients of $G_{i i}^{0}$ ). $G_{i i}^{0}$ is $C^{1}$ in $J_{i} \times J_{i} \backslash\left\{x_{i}=y_{i}>0\right\}$. For $(X, Y) \in J_{i} \times J_{i}$ such that $x_{i} \neq y_{i}$, we have

$$
D G_{i i}^{0}(X, Y)=\left(p^{\prime}, p_{i},-p^{\prime},-p_{i}\right) \quad \text { and } \quad P=\left(p^{\prime}, p_{i}\right)
$$

with $p_{i}=\pi_{i}^{ \pm}\left(p^{\prime}, \lambda\right)$ if $\pm\left(x_{i}-y_{i}\right)>0$. Here $\left(p^{\prime}, \lambda\right)=(\mathfrak{P}(X, Y), \mathfrak{L}(X, Y))$ is uniquely determined by

$$
\left\{\begin{array}{l}
G_{i i}^{0}(X, Y)=p^{\prime} \cdot\left(x^{\prime}-y^{\prime}\right)+p_{i}\left(x_{i}-y_{i}\right)-\lambda \\
Z=\alpha_{i} D H_{i}(P)+\left(1-\alpha_{i}\right) D A(P) \quad \text { with } \quad Z=\left(x^{\prime}-y^{\prime}, x_{i}-y_{i}\right)
\end{array}\right.
$$

which holds true for some $\alpha_{i} \in[0,1]$. In particular, the maps $\mathfrak{P}$ and $\mathfrak{L}$ are continuous in $J_{i} \times J_{i}$. Moreover the restrictions of $G_{i i}^{0}$ to $\left(J_{i} \times J_{i}\right) \cap\left\{ \pm\left(x_{i}-y_{i}\right) \geq 0\right\}$ are $C^{1}$ and

$$
G_{i i}^{0}\left(x^{\prime}, 0, y^{\prime}, 0\right)=p^{\prime} \cdot\left(x^{\prime}-y^{\prime}\right)-\lambda
$$

with

$$
D G_{i i}^{0}\left(x^{\prime}, 0, y^{\prime}, 0\right)=\left(p^{\prime}, \pi_{i}^{+}\left(p^{\prime}, \lambda\right),-p^{\prime},-\pi_{i}^{-}\left(p^{\prime}, \lambda\right)\right)
$$

### 3.4 Proof of Proposition 3.3

We now turn to the proof of Proposition 3.3.
Proof of Proposition 3.3. The proof proceeds in several steps.

Step 1: Regularity. We already noticed in Lemma 3.9 that $G^{0} \in C\left(J^{2}\right)$ and Lemmas 3.7 and 3.12 imply that $G^{0} \in C^{1}(\mathcal{R})$ for each region $\mathcal{R}$ given by

$$
\mathcal{R}= \begin{cases}J_{i} \times J_{j} & \text { if } \quad i \neq j  \tag{3.20}\\ T_{i}^{ \pm}=\left\{(X, Y) \in J_{i} \times J_{i}, \quad \pm\left(x_{i}-y_{i}\right) \geq 0\right\} & \text { if } \quad i=j\end{cases}
$$

Step 2: Computation of the gradients. For each $\mathcal{R}$ given by (3.20) and for all $(X, Y) \in$ $\mathcal{R} \subset J_{i} \times J_{j}$, Lemmas 3.7 and 3.12 imply that

$$
G^{0}(X, Y)=p^{\prime} \cdot\left(x^{\prime}-y^{\prime}\right)+p_{i} x_{i}-p_{j} y_{j}-\lambda
$$

and

$$
\left(D^{\prime}, \partial_{i}\right) G_{\mid \mathcal{R}}^{0}(X, Y)=\left(p^{\prime}, p_{i}\right) \quad \text { and } \quad-\left(D^{\prime}, \partial_{j}\right) G_{\mid \mathcal{R}}^{0}(X, Y)=\left(p^{\prime}, p_{j}\right)
$$

with $\lambda=\mathfrak{L}(X, Y)$ and $p^{\prime}=\mathfrak{P}(X, Y)$ with

$$
\left(p_{i}, p_{j}\right)=\left\{\begin{array}{lll}
\left(\pi_{i}^{+}\left(p^{\prime}, \lambda\right), \pi_{j}^{-}\left(p^{\prime}, \lambda\right)\right) & \text { if } \quad \mathcal{R}=J_{i} \times J_{j} & \text { with } \quad i \neq j,  \tag{3.21}\\
\left(\pi_{i}^{ \pm}\left(p^{\prime}, \lambda\right), \pi_{i}^{ \pm}\left(p^{\prime}, \lambda\right)\right) & \text { if } \quad \mathcal{R}=T_{i}^{ \pm} & \text {with } i=j
\end{array}\right.
$$

Notice in particular that $\mathfrak{P}$ and $\mathfrak{L}$ are continuous in $J \times J$. We also easily deduce that $G^{0}(X, Y) \geq$ $G^{0}(X, X)=G^{0}(0,0)$.

Step 3: Checking the compatibility condition on the gradients. Let us consider $(X, Y) \in$ $J^{2}, X=\left(x^{\prime}, x\right), Y=\left(y^{\prime}, y\right)$ with $x=y=0$ or $x \neq y$. We have

$$
\begin{array}{r}
D_{X}\left(G^{0}(\cdot, Y)\right)(X) \in\left\{\left(p^{\prime}, \pi_{i}^{ \pm}(\lambda)\right)\right\} \\
-\left(D_{Y} G^{0}(X, \cdot)\right)(Y) \in\left\{\left(p^{\prime}, \pi_{j}^{ \pm}(\lambda)\right)\right\}
\end{array}
$$

with $\lambda \geq A\left(p^{\prime}\right)$. We claim that

$$
\begin{equation*}
H\left(X, D_{X} G^{0}(X, Y)\right)=\lambda \quad \text { for } \quad N \geq 1 \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(Y,-D_{Y} G^{0}(X, Y)\right) \leq \lambda \quad \text { for } \quad N \geq 1 \tag{3.23}
\end{equation*}
$$

with equality for $N \geq 2$ (we use here once again the short hand notation (3.1).
Equality (3.22) is clear except if $x=0$. In this case, if $y \neq 0$, say $Y \in J_{j}$, the desired equality is rewritten as

$$
\max \left(A\left(p^{\prime}\right), \max _{i} H_{i}^{-}\left(p^{\prime}, p_{i}\right)\right)=\lambda
$$

with $p_{i}=\pi_{i}^{+}\left(p^{\prime}, \lambda\right)$ if $i \neq j$ and $p_{j}=\pi_{j}^{-}\left(p^{\prime}, \lambda\right)$. Since $\lambda \geq A\left(p^{\prime}\right)$ and $H_{j}^{-}\left(p^{\prime}, p_{j}\right)=\lambda$, we get the result for $N \geq 2$. For $N=1$, we have $x-y<0$ and then $p_{i}=\pi_{i}^{-}\left(p^{\prime}, \lambda\right)$ which gives again the result. If now $(x, y)=(0,0)$, then $p_{i}=\pi_{i}^{+}\left(p^{\prime}, \lambda\right)$ for all index $i$ and $\lambda=A\left(p^{\prime}\right) \geq A_{0}\left(p^{\prime}\right)$. Hence, we get (3.22) in this case too.

One can derive (3.23) in the same way, even with equality for $N \geq 2$. For $N=1$, where $y=0$, $X=\left(x^{\prime}, x_{i}\right) \in J_{i}^{*}$, i.e. $x_{i}-y_{i}>0$, this gives $p_{i}=\pi_{i}^{+}\left(p^{\prime}, \lambda\right)$, and we only get

$$
H\left(Y,-D_{Y} G^{0}(X, Y)\right)=\max \left(A\left(p^{\prime}\right), \min H_{i}\left(p^{\prime}, \cdot\right)\right) \leq \lambda
$$

with a strict inequality (for $\left.\lambda>A\left(p^{\prime}\right)\right)$. On the other hand, we recover equality for $y \neq 0$.

Step 4: Superlinearity. In view of the definition of $G^{0}$, we deduce from (3.21) that for all $R>0$ and $\lambda>A\left(R\left(x^{\prime}-y^{\prime}\right) /\left|x^{\prime}-y^{\prime}\right|\right)$,

$$
G^{0}(X, Y) \geq R\left|x^{\prime}-y^{\prime}\right|+ \begin{cases}x \pi_{i}^{+}\left(R \widehat{x^{\prime}-y^{\prime}}, \lambda\right)-y \pi_{j}^{-}\left(R \widehat{x^{\prime}-y^{\prime}}, \lambda\right)-\lambda & \text { if } i \neq j \\ (x-y) \pi_{i}^{ \pm}\left(R \widehat{x^{\prime}-y^{\prime}}, \lambda\right)-\lambda & \text { if } i=j, \pm(x-y) \geq 0\end{cases}
$$

where $\hat{z}=z /|z|$. For $R>0$, we define

$$
\pi^{0}(R, \lambda):=\min _{ \pm, i=1, \ldots, N,\left|p^{\prime}\right| \leq R} \pm \pi_{i}^{ \pm}\left(p^{\prime}, \lambda\right) \geq 0
$$

Hence we get

$$
G^{0}(X, Y) \geq R\left|x^{\prime}-y^{\prime}\right|+\pi^{0}(R, \lambda) d(x, y)-\lambda
$$

where

$$
d(x, y)= \begin{cases}\left|x_{i}-y_{i}\right| & \text { if } X, Y \in J_{i} \\ x_{i}+y_{j} & \text { if } X \in J_{i}, Y \in J_{j}, i \neq j\end{cases}
$$

From the definition (3.9) of $\pi_{i}^{ \pm}$and the assumption (3.7) on the Hamiltonians, we deduce that

$$
\pi^{0}(R, \lambda) \rightarrow+\infty \quad \text { as } \quad \lambda \rightarrow+\infty
$$

and fix some $\lambda(R) \geq \sup _{\left|p^{\prime}\right| \leq R} A\left(p^{\prime}\right)$ such that $\pi^{0}(R, \lambda(R)) \geq R$. This gives

$$
G^{0}(X, Y) \geq R d(X, Y)-\lambda(R)
$$

Therefore we get (3.5) with

$$
g^{0}(a)=\sup _{R \geq 0}(R a-\lambda(R))
$$

Step 5: Gradient bounds. Because each component of the gradients of $G^{0}$ are equal to one of the $\left\{\left(p^{\prime}, \pi_{k}^{ \pm}\left(p^{\prime}, \lambda\right)\right)\right\}_{ \pm, k=1, \ldots, N}$ with $\lambda=\mathfrak{L}(X, Y)$ and $p^{\prime}=\mathfrak{P}(X, Y)$, we deduce (3.6) from the continuity of $\mathfrak{L}, \mathfrak{P}$ and $\pi_{k}^{ \pm}$. We use in particular the fact that $\mathfrak{L}$ and $\mathfrak{P}$ only depend on $x^{\prime}-y^{\prime}$ and $x_{i}-y_{i}$ if $X, Y \in J_{i}$; and $x^{\prime}-y^{\prime}$ and $\left(x_{i},-y_{j}\right)$ if $X \in J_{i}, Y \in J_{j}$ with $i \neq j$.

### 3.5 The general case

Let us consider a slightly stronger assumption than (1.5), namely

$$
\left\{\begin{array}{l}
H_{i} \in C^{2}\left(\mathbb{R}^{d+1}\right) \text { with } \min H_{i}=H_{i}\left(P_{i}^{0}\right) \quad \text { and } D^{2} H_{i}\left(P_{i}^{0}\right)>0  \tag{3.24}\\
D^{2} H>0 \text { on }\left(D H_{i}\right)^{\perp}, \quad \text { and } D H_{i}(P) \neq 0 \text { for } P \neq P_{i}^{0} \\
\lim _{|P| \rightarrow+\infty} H_{i}(P)=+\infty .
\end{array}\right.
$$

Notice that the second line basically says that the sub-level sets are strictly convex. The following technical result will allow us to reduce a large class of quasi-convex Hamiltonians to convex ones.
Lemma 3.13 (From quasi-convex to convex Hamiltonians). Given Hamiltonians $H_{i}$ satisfying (3.24), there exists a function $\beta: \mathbb{R} \rightarrow \mathbb{R}$ such that the functions $\beta \circ H_{i}$ satisfy (3.7) for $i=1, \ldots, N$. Moreover, we can choose $\beta$ such that

$$
\begin{equation*}
\beta \quad \text { is convex, } \quad \beta \in C^{2}(\mathbb{R}) \quad \text { and } \quad \beta^{\prime} \geq \delta>0 \tag{3.25}
\end{equation*}
$$

Proof. In view of $(3.24)$, it is easy to check that $D^{2}\left(\beta \circ H_{i}\right)>0$ if and only if we have

$$
\begin{equation*}
0<\left\{\left(\ln \beta^{\prime}\right)^{\prime}(\lambda)\right\}\left(\widehat{D H_{i}} \times \widehat{D H_{i}}\right) \circ \pi_{i}^{ \pm}\left(p^{\prime}, \lambda\right)+\frac{D^{2} H_{i}}{\left|D H_{i}\right|^{2}} \circ \pi_{i}^{ \pm}\left(p^{\prime}, \lambda\right) \quad \text { for } \quad \lambda>H_{i}\left(P_{i}^{0}\right), \quad p^{\prime} \in \mathbb{R}^{d} \tag{3.26}
\end{equation*}
$$

Because $D^{2} H_{i}\left(p_{i}^{0}\right)>0$, we see that the right hand side is positive for $\lambda$ close enough to $H_{i}\left(P_{i}^{0}\right)$. Then it is easy to choose a function $\beta$ satisfying (3.26) and (3.25) (looking at each level set $\left\{H_{i}=\lambda\right\}$ ). Finally, compositing $\beta$ with another convex increasing function which is superlinear at $+\infty$ if necessary, we can ensure that $\beta \circ H_{i}$ superlinear.

Lemma 3.14 (The case of smooth Hamiltonians). Theorem 3.1 holds true if the Hamiltonians satisfy (3.24).
Proof. We assume that the Hamiltonians $H_{i}$ satisfy (3.24). Let $\beta$ be the function given by Lemma 3.13. If $u$ solves (1.8) on $J_{T}$, then $u$ is also a viscosity solution of

$$
\left\{\begin{array}{llll}
\bar{\beta}\left(u_{t}\right)+\hat{H}_{i}(D u)=0 & \text { for } & t \in(0, T) & \text { and } \quad X \in J_{i}^{*},  \tag{3.27}\\
\bar{\beta}\left(u_{t}\right)+\hat{F}_{\hat{A}}(D u)=0 & \text { for } & t \in(0, T) & \text { and } \quad X \in \Gamma
\end{array}\right.
$$

with $\hat{F}_{\hat{A}}$ constructed as $F_{A}$ where $H_{i}$ and $A$ are replaced with $\hat{H}_{i}$ and $\hat{A}$ defined as follows

$$
\hat{H}_{i}=\beta \circ H_{i}, \quad \hat{A}=\beta(A)
$$

and $\bar{\beta}(\lambda)=-\beta(-\lambda)$. We can then apply Theorem 3.1 in the case of smooth convex Hamiltonians to construct a vertex test function $\hat{G}$ associated to problem (3.27) for every $\hat{\gamma}>0$. This means that we have with $\hat{H}(X, P)=\beta(H(X, P))$,

$$
\hat{H}\left(Y,-D_{Y} G\right) \leq \hat{H}\left(X, D_{X} G\right)+\hat{\gamma} .
$$

This implies

$$
H\left(Y,-D_{Y} G\right) \leq \beta^{-1}\left(\beta\left(H\left(X, D_{X} G\right)\right)+\hat{\gamma}\right) \leq H\left(X, D_{X} G\right)+\hat{\gamma}\left|\left(\beta^{-1}\right)^{\prime}\right|_{L^{\infty}(\mathbb{R})} .
$$

Because of the lower bound on $\beta^{\prime}$ given by Lemma 3.13, we get $\left|\left(\beta^{-1}\right)^{\prime}\right|_{L^{\infty}(\mathbb{R})} \leq 1 / \delta$ which yields the compatibility condition (3.4) with $\gamma=\hat{\gamma} / \delta$ arbitrarily small.

We are now in position to prove Theorem 3.1 in the general case.
Proof of Theorem 3.1. Let us now assume that the Hamiltonians only satisfy (1.5). In this case, we simply approximate the Hamiltonians $H_{i}$ by other Hamiltonians $\tilde{H}_{i}$ satisfying (3.24) such that

$$
\left|H_{i}-\tilde{H}_{i}\right| \leq \gamma .
$$

We then apply Theorem 3.1 to the Hamiltonians $\tilde{H}_{i}$ and construct an associated vertex test function $\tilde{G}$ also for the parameter $\gamma$. We deduce that

$$
H\left(Y,-\tilde{G}_{Y}\right) \leq H\left(X, \tilde{G}_{X}\right)+3 \gamma
$$

with $\gamma>0$ arbitrarily small, which shows again the compatibility condition on the Hamiltonians (3.4) for the Hamiltonians $H_{i}$ 's. The proof is now complete in the general case.

## 4 Minimal/maximal Ishii solutions in the Euclidian setting

In this section, we extend the study of Ishii solutions started in [9] to a multi-dimensional setting. The proofs are straightforward extensions of the one contains in [9] but we provide them for the sake of completeness.

We are interested in the following Hamilton-Jacobi equations posed in $\mathbb{R}^{d+1}$

$$
\begin{cases}U_{t}+H_{L}(D U)=0, & t>0, X=\left(x^{\prime}, x_{d+1}\right), x_{d+1}<0  \tag{4.1}\\ U_{t}+H_{R}(D U)=0, & t>0, X=\left(x^{\prime}, x_{d+1}\right), x_{d+1}>0\end{cases}
$$

We recall that Ishii solutions are viscosity solutions of (4.1) in $\mathbb{R}^{d+1} \backslash\left\{x_{d+1}=0\right\}$ such that,

$$
\left\{\begin{array}{l}
U_{t}+\max \left(H_{L}(D U), H_{R}(D U)\right) \geq 0, \quad t>0, x_{d+1}=0  \tag{4.2}\\
U_{t}+\min \left(H_{L}(D U), H_{R}(D U)\right) \leq 0, \quad t>0, x_{d+1}=0
\end{array}\right.
$$

(in the viscosity sense). The Hamilton-Jacobi equation (4.1) posed in $\mathbb{R}^{d+1}$ is naturally associated with another HJ equation posed on a multi-dimensional junction with $N=2$ "branches" (or "sheets"). Indeed, if we define for $\left(x^{\prime}, x_{i}\right) \in J_{i}$,

$$
u\left(t,\left(x^{\prime}, x_{i}\right)\right)= \begin{cases}U\left(t,\left(x^{\prime},-x_{i}\right)\right) & \text { if } i=1  \tag{4.3}\\ U\left(t,\left(x^{\prime}, x_{i}\right)\right) & \text { if } i=2\end{cases}
$$

then $u$ is a solution of (1.3) in $J \backslash \Gamma$ with

$$
\begin{equation*}
H_{1}\left(p^{\prime}, p_{1}\right)=H_{L}\left(p^{\prime},-p_{1}\right) \quad \text { and } \quad H_{2}\left(p^{\prime}, p_{2}\right)=H_{R}\left(p^{\prime}, p_{2}\right) \tag{4.4}
\end{equation*}
$$

Conversely, if $u$ is a solution of (1.3) posed in $J$ with $N=2$, and $u^{i}$ denotes $u_{\mid(0, T) \times J^{i}}$, then the function $U$ defined by

$$
U\left(t,\left(x^{\prime}, x_{d+1}\right)\right)= \begin{cases}u^{1}\left(t,\left(x^{\prime},-x_{d+1}\right)\right) & \text { for } x_{d+1}<0  \tag{4.5}\\ u^{2}\left(t,\left(x^{\prime}, x_{d+1}\right)\right) & \text { for } x_{d+1}>0\end{cases}
$$

satisfies (4.1) in $\mathbb{R}^{d+1}$.
Proposition 4.1 (Minimal/maximal Ishii solutions in the Euclidian setting). The maximal (resp. minimal) Ishii solution $U^{ \pm}$of (4.1) corresponds to the $A_{I}^{\mp}$-flux-limited solution $u^{ \pm}$of (1.3) with Hamiltonians given by (4.4) and

$$
\begin{aligned}
& A_{I}^{+}\left(p^{\prime}\right)=\max \left(A_{0}\left(p^{\prime}\right), A^{*}\left(p^{\prime}\right)\right) \\
& A_{I}^{-}\left(p^{\prime}\right)= \begin{cases}A_{I}^{+}\left(p^{\prime}\right) & \text { if } \pi_{R}^{0}\left(p^{\prime}\right)<\pi_{L}^{0}\left(p^{\prime}\right) \\
A_{0}\left(p^{\prime}\right) & \text { if } \pi_{R}^{0}\left(p^{\prime}\right) \geq \pi_{L}^{0}\left(p^{\prime}\right)\end{cases}
\end{aligned}
$$

where

$$
A^{*}\left(p^{\prime}\right)=\max _{p_{d+1} \in\left[\pi_{L}^{0}\left(p^{\prime}\right) \wedge \pi_{R}^{0}\left(p^{\prime}\right), \pi_{L}^{0}\left(p^{\prime}\right) \vee \pi_{R}^{0}\left(p^{\prime}\right)\right]} H_{R}\left(p^{\prime}, p_{d+1}\right) \wedge H_{L}\left(p^{\prime}, p_{d+1}\right)
$$

Remark 4.2. The paper [9] contains a much more complete study of Ishii solutions in the monodimensional setting. Even if such a study most probably extends to the multi-dimensional setting, we focus here in the identification of the minimal and the maximal Ishii solutions. Such a result is used in [10].

The proof of Proposition 4.1 is very similar to the one in [9] for the mono-dimensional setting. We give details in appendix for the reader's convenience.

## A Appendix

## A. 1 Proof of a technical result

Before proving Proposition 2.14, we state and prove the following elementary lemma.
Lemma A. 1 (Quasi-convexity of the functions $A_{i}$ ). If the Hamiltonians $H_{i}$ are quasi-convex (resp. convex), continuous and coercive, so are the functions $A_{i}$ defined in (1.9). In particular, $A_{0}=\max _{i} A_{i}$ is quasi-convex (resp. convex), continuous and coercive.
Proof. We only address the question of the quasi-convexity of the functions $A_{i}$ since their continuity and coercivity are simpler.

Consider $p^{\prime}$ and $q^{\prime}$ such that $A_{i}\left(p^{\prime}\right) \leq \lambda$ and $A_{i}\left(q^{\prime}\right) \leq \lambda$ for some $\lambda \in \mathbb{R}$. There exists $p_{i}, q_{i} \in \mathbb{R}$ such that

$$
A_{i}\left(p^{\prime}\right)=H_{i}\left(p^{\prime}, p_{i}\right) \quad A_{i}\left(q^{\prime}\right)=H_{i}\left(q^{\prime}, q_{i}\right)
$$

Then $\left(p^{\prime}, p_{i}\right),\left(q^{\prime}, q_{i}\right) \in\left\{H_{i} \leq \lambda\right\}$ and we conclude from the convexity of $\left\{H_{i} \leq \lambda\right\}$ that for $t, s \geq 0$ with $t+s=1$,

$$
A_{i}\left(t p^{\prime}+s q^{\prime}\right) \leq H_{i}\left(t p^{\prime}+s q^{\prime}, t p_{i}+s q_{i}\right) \leq \lambda
$$

This achieves the proof of the lemma.

Proof of Proposition 2.14. We assume that the Hamiltonians $H_{i}$ are convex, $p_{i} \mapsto H_{i}\left(p^{\prime}, p_{i}\right)$ is increasing in $\left[\pi_{i}^{0}\left(p^{\prime}\right),+\infty\right)$ and decreasing in $\left(-\infty, \pi_{i}^{0}\left(p^{\prime}\right)\right]$ and $F$ is convex in all variables and $p \mapsto F\left(p^{\prime}, p\right)$ is decreasing in each variable for every $p^{\prime}$ fixed. In particular, the functions $\pm \pi_{i}^{ \pm}$ are concave. The general case follows by an approximation argument and by remarking that it is enough to find $\beta$ increasing such that $\beta \circ F$ and $\beta \circ H_{i}$ satisfy the previous assumptions (see Lemma 3.13).

We now prove that

$$
G\left(p^{\prime}, \lambda\right)=F\left(p^{\prime}, \pi^{+}\left(p^{\prime}, \lambda\right)\right)
$$

is convex w.r.t. $\left(p^{\prime}, \lambda\right) \in$ epi $A_{0}$. For $\left(p^{\prime}, \lambda\right),\left(q^{\prime}, \mu\right) \in$ epi $A_{0}$ and $t, s \geq 0$ with $t+s=1$, we can use the monotonicity of $F$ together with the concavity of $\pi_{i}^{+}$(see Lemma 3.2) to get

$$
\begin{aligned}
t G\left(p^{\prime}, \lambda\right)+s G\left(q^{\prime}, \mu\right) & \geq F\left(t p^{\prime}+s q^{\prime}, t \pi^{+}\left(p^{\prime}, \lambda\right)+s \pi^{+}\left(q^{\prime}, \mu\right)\right) \\
& \geq F\left(t p^{\prime}+s q^{\prime}, \pi^{+}\left(t p^{\prime}+s q^{\prime}, t \lambda+s \mu\right)\right) \\
& =G\left(t p^{\prime}+s q^{\prime}, t \lambda+s \mu\right)
\end{aligned}
$$

Similarly, we can see that $G$ is non-increasing with respect to $\lambda$.
We next remark that

$$
A_{F}\left(p^{\prime}\right)=G\left(p^{\prime}, A_{F}\left(p^{\prime}\right)\right)
$$

and for $p^{\prime}, q^{\prime} \in \mathbb{R}^{d}$ and $t, s \geq 0$ with $t+s=1$, we can write

$$
\begin{aligned}
t A_{F}\left(p^{\prime}\right)+s A_{F}\left(q^{\prime}\right) & =t G\left(p^{\prime}, A_{F}\left(p^{\prime}\right)\right)+s G\left(q^{\prime}, A_{F}\left(q^{\prime}\right)\right) \\
& \geq G\left(t p^{\prime}+s q^{\prime}, t A_{F}\left(p^{\prime}\right)+s A_{F}\left(q^{\prime}\right)\right)
\end{aligned}
$$

and

$$
A_{F}\left(t p^{\prime}+s q^{\prime}\right)=G\left(t p^{\prime}+s q^{\prime}, A_{F}\left(t p^{\prime}+s q^{\prime}\right)\right)
$$

We thus deduce from the monotonicity of $G$ in $\lambda$ that

$$
A_{F}\left(t p^{\prime}+s q^{\prime}\right) \leq t A_{F}\left(p^{\prime}\right)+s A_{F}\left(q^{\prime}\right)
$$

The proof is now complete.

## A. 2 Detailed proof of the comparison principle

This section is devoted to the proof of Theorem 1.3. It is a straightforward extension of the monodimensional case [9] but we provide it for the reader's convenience and for the sake of completeness. The following elementary a priori estimate is needed.

Lemma A. 2 (A priori control). For $u$ and $v$ as in the statement of Theorem 1.3, there exists $C>0$ such that for all $(t, X),(s, Y) \in(0, T) \times J$,

$$
\begin{equation*}
u(t, X) \leq v(s, Y)+C(1+d(X, Y))) \tag{A.1}
\end{equation*}
$$

Proof. The proof proceeds in several steps.
BARRIERS. Since $u_{0}$ is uniformly continuous, there exists $u_{0}^{\varepsilon}$ which is Lipschitz continuous and such that

$$
\left|u_{0}^{\varepsilon}-u_{0}\right| \leq \varepsilon
$$

We remark that

$$
U_{\varepsilon}^{ \pm}(t, X)=u_{0}^{\varepsilon}(x) \pm C t \pm \varepsilon
$$

is a super-(resp. sub-)solution of (1.3), (1.4) if $C$ is chosen large enough.
Control at the same time. We first prove that for $(t, X) \in(0, T) \times J$,

$$
\begin{equation*}
u(t, X) \leq v(t, Y)+C_{1}(1+d(X, Y)) \tag{A.2}
\end{equation*}
$$

In order to get such an estimate, we consider

$$
\phi(X, Y)=\left(1+d^{2}(X, Y)\right)^{\frac{1}{2}}
$$

It is $C^{1}$ in $J^{2}$ and 1-Lipschitz continuous. We then consider

$$
M=\sup _{t \in(0, T), X, Y \in J} u(t, X)-v(t, Y)-C_{1,1} t-C_{1,2} \phi(X, Y)-\frac{\eta}{T-t}-\alpha d^{2}\left(X_{0}, X\right)
$$

for some $X_{0} \in J$. Our goal is to prove that $M \leq 0$ for $C_{1,1}$ and $C_{1,2}$ sufficiently large (independently of $\eta$ and $\alpha$ in ( 0,1 ), say). Since $u$ and $v$ are sub-linear, see (1.12), we have

$$
u(t, X)-v(t, Y) \leq C_{T}\left(2+d\left(X_{0}, X\right)+d\left(X_{0}, Y\right)\right)
$$

In particular, the supremum $M$ is reached as soon as $C_{1,2}>C_{T}$. Since $u_{0}$ is uniformly continuous, there exists $C_{0}>0$ such that

$$
u_{0}(X)-u_{0}(Y) \leq C_{0} \phi(X, Y)
$$

In particular, if $C_{1,2}>C_{0}$, we are sure that the supremum is reached for some $t>0$.
We next explain why

$$
\begin{equation*}
\alpha d\left(X_{0}, X\right) \leq 2 C_{T}\left(1+C_{T}\right)=\tilde{C}_{T} \tag{A.3}
\end{equation*}
$$

for $X$ realizing the supremum $M$. we have

$$
\begin{aligned}
C_{1,2} \phi(X, Y)+\alpha d^{2}\left(X_{0}, X\right) & \leq u(t, X)-v(t, Y) \\
& \leq C_{T}\left(2+d\left(X_{0}, X\right)+d\left(X_{0}, Y\right)\right) \\
& \leq C_{T}\left(2+2 d\left(X_{0}, X\right)+\phi(X, Y)\right.
\end{aligned}
$$

In particular, with $C_{1,2}>C_{T}$, we get

$$
\alpha d^{2}\left(X_{0}, X\right) \leq 2 C_{T}\left(1+d\left(X_{0}, X\right)\right)
$$

which yields (A.3).
We now write the two viscosity inequalities. There exists $a, b \in \mathbb{R}$ with $a-b=C_{1,1}+\eta(T-t)^{2}$ such that

$$
\begin{aligned}
a+H\left(X, C_{1,2} \phi_{X}(X, Y)+2 \alpha d\left(X_{0}, X\right)\right) & \leq 0 \\
b+H\left(Y,-C_{1,2} \phi_{Y}(X, Y)\right) & \geq 0
\end{aligned}
$$

where we abuse notation by writing $2 \alpha d\left(X_{0}, X\right)$. Substracting these inequalities yields

$$
C_{1,1} \leq H\left(Y,-C_{1,2} \phi_{Y}(X, Y)\right)-H\left(X, C_{1,2} \phi_{X}(X, Y)+2 \alpha d\left(X_{0}, X\right)\right)
$$

We finally remark that the right hand side is bounded by a constant depending on $C_{1,2}$. We thus can choose $C_{1,1}$ large enough to reach the desired contradiction.

Control at different times. We now derive (A.1) from the barriers constructed above and (A.2). Remark that

$$
U_{\varepsilon}^{+}(t, Y)-U_{\varepsilon}^{-}(s, X) \leq L_{\varepsilon} d(X, Y)+2 C T+2 \varepsilon \leq C_{2}(1+d(X, Y))
$$

Applying (A.2) to $u$ and $U_{\varepsilon}^{+}$and then to $U_{\varepsilon}^{-}$and $v$, we get

$$
\begin{gathered}
u(t, X) \leq U_{\varepsilon}^{+}(t, Y)+C_{1}(1+d(X, Y)) \\
U_{\varepsilon}^{-}(s, X) \leq v(s, Y)+C_{1}(1+d(X, Y))
\end{gathered}
$$

Combining the three previous inequalities yields the desired result.

Proof of Theorem 1.3. Our goal is to prove that

$$
M=\sup _{t \in(0, T), X \in J} u(t, X)-v(t, X) \leq 0
$$

We argue by contradiction and assume that $M>0$. This implies that for $\eta$ and $\alpha$ small enough, we have for all $\varepsilon>0, \nu>0$ that $M_{\varepsilon, \alpha} \geq \frac{3 M}{4}>0$ where

$$
M_{\varepsilon, \alpha}=\sup _{(t, X),(s, Y) \in(0, T) \times J} u(t, X)-v(s, Y)-\varepsilon G\left(\varepsilon^{-1} X, \varepsilon^{-1} Y\right)-\frac{(t-s)^{2}}{2 \nu}-\frac{\eta}{T-t}-\alpha d^{2}\left(X_{0}, X\right)
$$

where $G$ is the vertex test function given by Theorem 3.1 with $\gamma$ to be choosen.
Since $M_{\varepsilon, \alpha}$ is larger than $3 M / 4$, we can restrict the supremum to points $(t, X),(s, Y)$ such that

$$
\begin{equation*}
u(t, X)-v(s, Y)-\varepsilon G\left(\varepsilon^{-1} X, \varepsilon^{-1} Y\right)-\frac{(t-s)^{2}}{2 \nu}-\frac{\eta}{T-t}-\alpha d^{2}\left(X_{0}, X\right) \geq M / 2 \tag{A.4}
\end{equation*}
$$

In particular, thanks to (3.5) and Lemma A.2, these points satisfy

$$
\varepsilon g\left(\frac{d(X, Y)}{\varepsilon}\right) \leq C(1+d(X, Y))
$$

Since $g$ is super-linear, we have

$$
d(X, Y)=\omega(\varepsilon)
$$

for some modulus of continuity $\omega$ depending on $g$ and $C$. We can also derive from (A.4) and Lemma A. 2 that

$$
\begin{equation*}
\alpha d^{2}\left(X_{0}, X\right) \leq C(1+d(X, Y)) \leq C(1+\omega(\varepsilon)) \tag{A.5}
\end{equation*}
$$

In particular, the points satisfying (A.4) are such that $X$ and $Y$ are bounded by a constant depending on $\alpha$; this implies that $M_{\varepsilon, \alpha}$ is reached at points we keep denoting by $(t, X)$ and $(s, Y)$.

Assume that there exists a sequence $\nu_{n} \rightarrow 0$ such that the corresponding points $\left(t_{n}, X_{n}\right)$ and $\left(s_{n}, Y_{n}\right)$ are such that $t_{n}=0$ or $s_{n}=0$. If $\left(X_{0}, Y_{0}\right)$ is an accumulation point of $\left(X_{n}, Y_{n}\right)$, we have

$$
0<\frac{M}{2} \leq u_{0}\left(X_{0}\right)-u_{0}\left(Y_{0}\right) \leq \omega_{0}\left(d\left(X_{0}, Y_{0}\right)\right) \leq \omega_{0}(\omega(\varepsilon))
$$

where $\omega_{0}$ is the modulus of continuity of $u_{0}$. This implies a contradiction by choosing $\varepsilon$ small.
We conclude that for $\nu$ small enough, we have $t>0$ and $s>0$ and that we can write two viscosity inequalities.

$$
\begin{aligned}
\frac{\eta}{T^{2}}+\frac{t-s}{\nu}+H\left(X, G_{X}\left(\varepsilon^{-1} X, \varepsilon^{-1} Y\right)+\alpha d\left(X_{0}, X\right)\right) & \leq 0 \\
\frac{t-s}{\nu}+H\left(Y,-G_{Y}\left(\varepsilon^{-1} X, \varepsilon^{-1} Y\right)\right) & \leq 0
\end{aligned}
$$

where we abuse notation by writing $\alpha d\left(X_{0}, X\right)$. Substracting these inequalities and using (3.4), we get

$$
\frac{\eta}{T^{2}} \leq H\left(X, G_{X}\left(\varepsilon^{-1} X, \varepsilon^{-1} Y\right)\right)-H\left(X, G_{X}\left(\varepsilon^{-1} X, \varepsilon^{-1} Y\right)+\alpha d\left(X_{0}, X\right)\right)+\omega_{C_{K_{\varepsilon}}}\left(\gamma C_{K_{\varepsilon}}\right)
$$

where $K_{\varepsilon}=\varepsilon^{-1} \omega(\varepsilon)$. Letting $\alpha \rightarrow 0$, we get from (A.5) that $\alpha d\left(X_{0}, X\right) \rightarrow 0$ and letting $\gamma \rightarrow 0$, we get $\omega_{C_{K_{\varepsilon}}}\left(\gamma C_{K_{\varepsilon}}\right) \rightarrow 0$. These limits imply the following contradiction $\frac{\eta}{T^{2}} \leq 0$.

## A. 3 Proof of Proposition 4.1

The proof of Proposition 4.1 makes use of the following lemma, which is the analogue of [9, Lemma 2.18]. Since the proof follows along the same lines, we skip it.

Lemma A. 3 ("weak continuity" condition with $C^{1}$ test functions). Given two Hamiltonians $H_{L}, H_{R}$ satisfying (1.5) and $H_{0}$ continuous and coercive (i.e. $\lim _{|P| \rightarrow+\infty} H_{0}(P)=+\infty$ ), let $u:(0, T) \times \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ be upper semi-continuous such that every $C^{1}$ function $\phi$ touching $u$ from above at $(t, X)$ with $X=\left(x^{\prime}, x_{d+1}\right)$ and $t>0$, satisfies

$$
\begin{cases}\phi_{t}+H_{L}(D \phi) \leq 0 & \text { if } x_{d+1}<0 \\ \phi_{t}+H_{R}(D \phi) \leq 0 & \text { if } x_{d+1}>0 \\ \phi_{t}+H_{0}(D \phi) \leq 0 & \text { if } x_{d+1}=0\end{cases}
$$

Then for all $t \in(0, T)$ and $X=\left(x^{\prime}, 0\right)$,

$$
u(t, X)=\limsup _{(s, Y) \rightarrow(t, X), y_{d+1}>0} u(s, Y)=\limsup _{(s, Y) \rightarrow(t, X), y_{d+1}<0} u(s, Y)
$$

where $Y=\left(y^{\prime}, y_{d+1}\right)$.
Proof of Proposition 4.1. We have to prove the four following assertions:
i) every $F_{A_{I}^{ \pm}}$-flux-limited sub-solution corresponds to a Ishii sub-solution;
ii) every $F_{A_{I}^{ \pm}}$-flux-limited super-solution corresponds to a Ishii super-solution;
iii) every Ishii sub-solution corresponds to an $F_{A_{I}^{-}}$-flux-limited sub-solution;
iv) every Ishii super-solution corresponds to an $F_{A_{I}^{+-}}$flux-limited super-solution.

In order to prove these assetions, it is convenient to translate the notion of $A$-flux-limited solution to the Euclidian setting. It reduces to replace $F_{A}$ with $\check{F}_{A}$ where

$$
\check{F}_{A}\left(p^{\prime}, p_{L}, p_{R}\right)=\max \left(A\left(p^{\prime}\right), H_{L}^{+}\left(p^{\prime}, p_{L}\right), H_{R}^{-}\left(p^{\prime}, p_{R}\right)\right)
$$

where $H_{L}^{+}\left(p^{\prime}, p_{L}\right)=H_{1}^{-}\left(p^{\prime},-p_{L}\right)$ is the non-decreasing part of $p_{L} \mapsto H_{L}\left(p^{\prime}, p_{L}\right)$. In particular, $H_{L}^{+}\left(p^{\prime}, p_{L}\right)=H_{L}\left(p^{\prime}, p_{L}\right)$ if $p \geq \pi_{L}^{0}=p_{L}^{+}$. In the same way, $H_{R}^{-}\left(p^{\prime}, p_{R}\right)=H_{R}\left(p^{\prime}, p_{R}\right)$ if $p \leq \pi_{R}^{0}=$ $p_{R}^{-}$.

Let $\phi \in C^{1}\left((0,+\infty) \times \mathbb{R}^{d+1}\right)$ be a test function touching a $\check{F}_{A_{I}^{ \pm}}$-FL sub-solution from above at $X$. We have

$$
\check{F}_{A}\left(p^{\prime}, p, p\right) \leq \lambda
$$

where $p^{\prime}=D^{\prime} \phi(X), p=\partial_{d+1} \phi(X)$ and $\lambda=-\phi_{t}(X)$. This means

$$
\max \left(A_{I}^{ \pm}\left(p^{\prime}\right), H_{L}^{+}\left(p^{\prime}, p\right), H_{R}^{-}\left(p^{\prime}, p\right)\right) \leq \lambda
$$

If $p \leq p_{R}^{-}$or $p \geq p_{L}^{+}$, then $H_{R}^{-}\left(p^{\prime}, p\right)=H_{R}\left(p^{\prime}, p\right)$ or $H_{L}^{+}\left(p^{\prime}, p\right)=H_{L}\left(p^{\prime}, p\right)$ and we get

$$
\min \left(H_{R}\left(p^{\prime}, p\right), H_{L}\left(p^{\prime}, p\right)\right) \leq \lambda
$$

If now $p_{L}^{+}<p<p_{R}^{-}$, then $A_{I}^{+}\left(p^{\prime}\right)=A_{I}^{-}\left(p^{\prime}\right) \geq A^{*}\left(p^{\prime}\right)$ and

$$
\min \left(H_{R}\left(p^{\prime}, p\right), H_{L}\left(p^{\prime}, p\right)\right) \leq A^{*}\left(p^{\prime}\right) \leq A_{I}^{ \pm} \leq \lambda
$$

and we conclude in this case too. This achieves the proof of i).
In order to prove ii), we remark that

$$
A_{I}^{+}\left(p^{\prime}\right) \leq \max \left(H_{L}\left(p^{\prime}, p\right), H_{R}\left(p^{\prime}, p\right)\right)
$$

Let $\phi \in C^{1}\left((0,+\infty) \times \mathbb{R}^{d+1}\right)$ be a test function touching a $\check{F}_{A_{I}^{ \pm}}$-FL super-solution from below at $X$. We have in this case

$$
\max \left(A_{I}^{ \pm}\left(p^{\prime}\right), H_{L}^{+}\left(p^{\prime}, p\right), H_{R}^{-}\left(p^{\prime}, p\right)\right) \geq \lambda
$$

Since $A_{I}^{-} \leq A_{I}^{+}$, we get immediately that

$$
\max \left(H_{L}\left(p^{\prime}, p\right), H_{R}\left(p^{\prime}, p\right)\right) \geq \lambda
$$

This achieves the proof of ii).
We next prove iii). First, the weak continuity condition at $x_{d+1}=0$ holds true thanks to Lemma A.3. Then we can apply Proposition 2.7 and consider a test function $\phi \in C((0,+\infty) \times$ $\left.\mathbb{R}^{d+1}\right)$ such that $\phi_{\mid\left\{ \pm x_{d+1} \geq 0\right\}}$ are $C^{1}$ and

$$
\begin{gathered}
p_{L}=\partial_{d+1} \phi\left(x^{\prime}, 0-\right)=\pi_{L}^{-}\left(p^{\prime}, A_{I}^{-}\left(p^{\prime}\right)\right) \\
p_{R}=\partial_{d+1} \phi\left(x^{\prime}, 0+\right)=\pi_{R}^{+}\left(p^{\prime}, A_{I}^{-}\left(p^{\prime}\right)\right)
\end{gathered}
$$

Assume that $\phi$ touches an Ishii sub-solution at a point $X$. Let $p^{\prime}=D^{\prime} \phi(X)$. If $A_{I}^{-}\left(p^{\prime}\right)=A_{0}\left(p^{\prime}\right)$, then we can argue as in [9, Theorem 2.7,i)] and get the desired result. We thus assume that $A_{I}^{-}\left(p^{\prime}\right)=A_{I}^{+}\left(p^{\prime}\right)=A^{*}\left(p^{\prime}\right)=H_{L}\left(p^{\prime}, p^{*}\right)=H_{R}\left(p^{\prime}, p^{*}\right)$ with $p^{*} \in\left[\pi_{R}^{0}\left(p^{\prime}\right), \pi_{L}^{0}\left(p^{\prime}\right)\right]$. But in this case

$$
p_{L}=p_{R}=p^{*}
$$

and the test function

$$
\phi\left(t, x^{\prime}, x\right)=\varphi\left(t, x^{\prime}\right)+p^{*} x_{d+1}
$$

is $C^{1}$ in $(0,+\infty) \times \mathbb{R}^{d+1}$. In particular, since $u$ is an Ishii sub-solution, we get

$$
A_{I}^{-}\left(p^{\prime}\right)=\min \left(H_{L}\left(p^{\prime}, p^{*}\right), H_{R}\left(p^{\prime}, p^{*}\right)\right) \leq \lambda
$$

which yields the desired inequality (this can be checked easily). This achieves the proof of iii).
We finally prove iv). We use once again the reduced set of test functions and consider $\phi$ of the form

$$
\phi\left(t, x^{\prime}, x_{d+1}\right)=\varphi\left(t, x^{\prime}\right)+\phi_{0}\left(x_{d+1}\right)
$$

with

$$
\phi_{0}^{\prime}(0+)=\pi_{R}^{+}\left(p^{\prime}, A_{I}^{+}\left(p^{\prime}\right)\right) \quad \text { and } \quad \phi_{0}^{\prime}(0-)=\pi_{L}^{-}\left(p^{\prime}, A_{I}^{+}\left(p^{\prime}\right)\right)
$$

where $p^{\prime}=D^{\prime} \varphi\left(t_{0}, x_{0}^{\prime}\right)$ if $\phi$ touches the Ishii super-solution $u$ from below at $\left(t_{0},\left(x_{0}^{\prime}, 0\right)\right)$.
If $A_{I}^{+}\left(p^{\prime}\right)=A^{*}\left(p^{\prime}\right) \geq A_{0}\left(p^{\prime}\right)$, then we choose $\phi_{0}\left(x_{d+1}\right)=p^{*} x_{d+1}$ with $p^{*}$ such that $A^{*}\left(p^{\prime}\right)=$ $H_{R}\left(p^{\prime}, p^{*}\right)=H_{L}\left(p^{\prime}, p^{*}\right)$. Since $u$ is an Ishii super-solution, we have

$$
\varphi_{t}\left(t_{0}, x_{0}^{\prime}\right)+\max \left(H_{R}\left(p^{\prime}, p^{*}\right), H_{L}\left(p^{\prime}, p^{*}\right)\right) \geq 0
$$

that is to say

$$
\varphi_{t}\left(t_{0}, x_{0}^{\prime}\right)+A_{I}^{+}\left(p^{\prime}\right) \geq 0
$$

which is the desired inequality.
If now $A_{I}^{+}\left(p^{\prime}\right)=A_{0}\left(p^{\prime}\right) \geq A^{*}\left(p^{\prime}\right)$, then we choose

$$
\phi_{0}\left(x_{d+1}\right)=\pi_{R}^{+}\left(p^{\prime}, A_{0}\left(p^{\prime}\right)\right) x_{d+1} \mathbf{1}_{x_{d+1} \geq 0}+\pi_{L}^{-}\left(p^{\prime}, A_{0}\left(p^{\prime}\right)\right) x_{d+1} \mathbf{1}_{x_{d+1} \leq 0}
$$

We notice that there exists $\alpha \in\{R, L\}$ such that $A_{0}\left(p^{\prime}\right)=H_{\alpha}\left(p^{\prime}, \pi_{\alpha}^{0}\left(p^{\prime}\right)\right)$ and

$$
\pi_{L}^{-}\left(p^{\prime}, A_{0}\left(p^{\prime}\right)\right) \leq \pi_{R}^{+}\left(p^{\prime}, A_{0}\left(p^{\prime}\right)\right)
$$

and one of them equals $\pi_{\alpha}^{0}\left(p^{\prime}\right)$. These three facts imply that

$$
\tilde{\phi}\left(t, x^{\prime}, x_{d+1}\right):=\varphi\left(t, x^{\prime}\right)+\pi_{\alpha}^{0}\left(p^{\prime}\right) x_{d+1} \leq \phi\left(t, x,{ }^{\prime}, x_{d+1}\right)
$$

In particular $\tilde{\phi}$ is a $C^{1}$ test function touching $u$ from below at $\left(t_{0},\left(x_{0}^{\prime}, 0\right)\right)$. Since $u$ is an Ishii super-solution, we get in this case,

$$
\varphi_{t}\left(t_{0}, x_{0}^{\prime}\right)+\max \left(H_{R}\left(p^{\prime}, \pi_{\alpha}^{0}\left(p^{\prime}\right)\right), H_{L}\left(p^{\prime}, \pi_{\alpha}^{0}\left(p^{\prime}\right)\right)\right) \geq 0
$$

which implies

$$
\varphi_{t}\left(t_{0}, x_{0}^{\prime}\right)+A_{0}\left(p^{\prime}\right) \geq 0
$$

The proof is now complete.
Aknowledgements. This work was partially supported by the ANR-12-BS01-0008-01 HJnet project.

## References

[1] Yves Achdou, Salomé Oudet, and Nicoletta Tchou. Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface. Journal de Mathématiques Pures et Appliquées, 2016.
[2] G. Barles, A. Briani, and E. Chasseigne. A Bellman approach for two-domains optimal control problems in $\mathbb{R}^{N}$. ESAIM Control Optim. Calc. Var., 19(3):710-739, 2013.
[3] G. Barles, A. Briani, and E. Chasseigne. A Bellman approach for regional optimal control problems in $\mathbb{R}^{N}$. SIAM J. Control Optim., 52(3):1712-1744, 2014.
[4] Guy Barles and Emmanuel Chasseigne. (Almost) everything you always wanted to know about deterministic control problems in stratified domains. Netw. Heterog. Media, 10(4):809836, 2015.
[5] Alberto Bressan and Yunho Hong. Optimal control problems on stratified domains. Netw. Heterog. Media, 2(2):313-331, 2007.
[6] Fabio Camilli, Dirk Schieborn, and Claudio Marchi. Eikonal equations on ramified spaces. Interfaces Free Bound., 15(1):121-140, 2013.
[7] Yoshikazu Giga and Nao Hamamuki. Hamilton-Jacobi equations with discontinuous source terms. Comm. Partial Differential Equations, 38(2):199-243, 2013.
[8] C. Hermosilla and H. Zidani. Infinite horizon problems on stratifiable state-constraints sets. J. Differential Equations, 258(4):1430-1460, 2015.
[9] Cyril Imbert and Régis Monneau. Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. HAL 00832545v5, Version 5, 2016.
[10] Cyril Imbert and Vinh Duc Nguyen. Generalized junction conditions for degenerate parabolic equations. 26 pages, 2016.
[11] S. Oudet. Hamilton-jacobi equations for optimal control on multidimensional junctions. arXiv:1412.2679v2, 2014.
[12] Z. Rao, A. Siconolfi, and H. Zidani. Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations. J. Differential Equations, 257(11):3978-4014, 2014.
[13] Zhiping Rao and Hasnaa Zidani. Hamilton-Jacobi-Bellman equations on multi-domains. Control and Optimization with PDE Constraints, International Series of Numerical Mathematics, 164, 2013.


[^0]:    * CNRS, UMR 7580, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France ${ }^{\dagger} 70$, rue du Javelot, 75013 Paris, France

