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Quasi-convex Hamilton-Jacobi equations posed

on junctions: the multi-dimensional case

C. Imbert∗ and R. Monneau†

July 6, 2016

Abstract

A multi-dimensional junction is the singular (d+1)-manifold obtained by gluying through
their boundaries a finite number of copies of the half-space R

d+1

+ . We show that the general
theory developed by the authors (2013) for the network setting can be adapted to this multi-
dimensional case. In particular, we prove that general quasi-convex junction conditions reduce
to flux-limited ones and that uniqueness holds true when flux limiters are quasi-convex and
continuous. The proof of the comparison principle relies on the construction of a (multi-
dimensional) vertex test function.
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1 Introduction

This paper is concerned with extending the theory developed for Hamilton-Jacobi (HJ) equations
posed on junctions in [9] to the multi-dimensional setting.

A multi-dimensional junction is made of N copies of Rd+1
+ glued through their boundaries.

J =
⋃

i=1,...,N

Ji with

{

Ji = {X = (x′, xi) : x
′ ∈ Rd, xi ≥ 0} ≃ R

d+1
+

Ji ∩ Jj = Γ ≃ Rd × {0} for i 6= j.
(1.1)

∗CNRS, UMR 7580, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94 010 Créteil cedex, France
†70, rue du Javelot, 75013 Paris, France
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We emphasize that the common boundary of the half-spaces Ji is denoted by Γ and is called the
junction interface. For points X,Y ∈ J , d(X,Y ) denotes |x′ − y′|+ d(x, y) with

d(x, y) =

{

x+ y if X ∈ Ji, Y ∈ Jj , i 6= j

|x− y| if X,Y ∈ Ji.

For a smooth real-valued function u defined on J , ∂iu(X) denotes the (spatial) derivative of
u with respect to xi at X = (x′, xi) ∈ Ji and D′u(X) denotes the (spatial) gradient of u with
respect to x′. The “gradient” of u is defined as follows,

Du(X) :=

{

(D′u(X), ∂iu(X)) if X ∈ J∗
i := Ji \ Γ,

(D′u(x′, 0), ∂1u(x
′, 0), ..., ∂Nu(x′, 0)) if X = (x′, 0) ∈ Γ.

(1.2)

With such a notation in hand, we consider the following Hamilton-Jacobi equation posed on the
multi-dimensional junction J

{

ut +Hi(Du) = 0 t > 0, X ∈ Ji \ Γ,
ut + F (Du) = 0 t > 0, X ∈ Γ

(1.3)

submitted to the initial condition

u(0, X) = u0(X) for X ∈ J. (1.4)

The second equation in (1.3) is referred to as the junction condition.

The Hamiltonians are supposed to satisfy the following conditions:














(Continuity) Hi ∈ C(Rd+1)

(Quasi-convexity) ∀λ, {Hi ≤ λ} is convex

(Coercivity) lim|P |→+∞ Hi(P ) = +∞.

(1.5)

We next define the A-limited flux function FA associated with the multi-dimensional junction
J . In order to do so, we first consider π0

i (p
′) ∈ R minimal such that pi 7→ Hi(p

′, pi) reaches its
minimum at pi = π0

i (p
′) and H−

i is defined by

H−
i (p′, pi) =

{

Hi(p
′, pi) if pi ≤ π0

i (p
′),

Hi(p
′, π0

i (p
′)) if p > π0

i (p
′).

In a similar way, we define

H+
i (p′, pi) =

{

Hi(p
′, π0

i (p
′)) if pi < π0

i (p
′),

Hi(p
′, pi) if p ≥ π0

i (p
′).

So-called flux-limiter functions A : Rd → R are always assumed to be continuous and, in some
important cases, to satisfy the following condition,

A : Rd → R is continuous and quasi-convex. (1.6)

The function FA is defined for p = (p1, . . . , pN) and P = (p′, p) as

FA(P ) = max

(

A(p′), max
i=1,...,N

H−
i (p′, pi)

)

. (1.7)

We now consider the following important special case of (1.3),
{

ut +Hi(Du) = 0 t > 0, X ∈ Ji \ Γ,
ut + FA(Du) = 0 t > 0, X ∈ Γ.

(1.8)
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We point out that A could be replaced with max(A,A0) where

A0(p
′) = max

i=1,...,N
Ai(p

′) with Ai(p
′) = min

pi∈R

Hi(p
′, pi). (1.9)

We notice (see Lemma A.1 in Appendix) that the functions Ai, i = 0, . . . , N are quasi-convex,
continuous and coercive.

As far as general junction conditions are concerned, we assume that the junction function
F : Rd × RN → R satisfies

{

(Continuity) F ∈ C(Rd × RN )

(Monotonicity) ∀i, pi 7→ F (p′, p1, . . . , pN ) is non-increasing
(1.10)

and, in some important cases,

(Quasi-convexity) ∀λ, {F ≤ λ} convex. (1.11)

In particular, under assumption (1.5), if A satisfies (1.6), then FA defined in (1.7), satisfies (1.10)
and (1.11).

1.1 Main results

For simplicity, we state the next theorem under a simple continuity assumption for subsolutions,
but a more general result is true (see Theorem 2.13).

Theorem 1.1 (General junction conditions reduce to FA). Let the Hamiltonians satisfy (1.5) and
let F : RN → R satisfy (1.10). There exists a unique coercive continuous function AF : Rd → R,
satisfying AF ≥ A0 with A0 defined in (1.9), such that the following holds. Every relaxed viscosity
super-solution (resp. sub-solution, which is moreover assumed to be continuous) of (1.3) is a
AF -flux limited super-solution (resp. sub-solution) of (1.8). Moreover, if F is quasi-convex, so is
AF .

Remark 1.2. Let p0i ≥ π0
i (p

′) be minimal such that Hi(p
′, pi) = A0 and let p0 denote (p01, . . . , p

0
N ).

The function AF is defined as follows: for each p′ ∈ Rd, if F (p′, p0) ≤ A0(p
′), then AF (p

′) = A0(p
′),

else AF (p
′) is the only λ ∈ R such that λ ≥ A0(p

′) = maxi Ai(p
′) and there exists p+i ≥ p0i such

that
Hi(p

′, p+i ) = F (p′, p+) = λ

where p+ = (p+1 , . . . , p
+
N ). Notice that even if λ is unique, p+ may be not unique.

Theorem 1.3 (Comparison principle on a multi-dimensional junction). Assume that the Hamil-
tonians satisfy (1.5), the function A satisfies (1.6) with A ≥ A0 where A0 is defined in (1.9),
and that the initial datum u0 is uniformly continuous. Then for all (relaxed) sub-solution u and
(relaxed) super-solution v of (1.3)-(1.4) with F = FA defined in (1.7), satisfying for some T > 0
and CT > 0 and X0 ∈ J ,

u(t,X) ≤ CT (1+d(X0, X)), v(t,X) ≥ −CT (1+d(X0, X)), for all (t,X) ∈ [0, T )×J, (1.12)

we have
u ≤ v in [0, T )× J.

We would like to mention that we decided to deal with a relatively simple framework; for
instance, Hamiltonians do not depend on time and space. Still, such generalizations can be
obtained with extra work using the same vertex test function constructed in the present article.
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1.2 Comparison with known results

In the special case N = 2, our results are related to [2, 3] where an optimal control problem in a
two-domain setting is studied. The state of the system evolves according to two different dynamics
on each side of an hypersurface. Moreover, the two dynamics at the interface corresponding to the
maximal and minimal Ishii’s discontinuous solutions of the associated Hamilton-Jacobi equation
are identified. One of the two value functions is characterized in terms of partial differential
equations. We showed in [9] that, in the one-dimensional setting, both value functions can be
characterized by using the notion of flux-limited solutions introduced in [9]. The result of the
present paper indicates that such a connexion holds in the general two-domain setting, even if this
is out of the scope of the present paper. Moreover, we can deal with quasi-convex Hamiltonians
instead of convex ones.

A two-domain Hamilton-Jacobi equation of the type of (1.8) appears naturally in the singular
perturbation problem studied in [1].

We would like to mention that the results of [2, 3] were recently extended to the general case
of stratified spaces in the very nice paper [4]. Such results also extend the ones from [5]. Some
results for discontinuous solutions of Hamilton-Jacobi equations in stratified spaces can be found
in [8]. In [6], the authors study eikonal equations in ramified spaces.

The reader is also referred to [13, 12] for optimal control problems in multi-domains. In
particular, the authors impose some transmission conditions. As we already mentioned it in [9],
Definition 2.6 is strongly related to these works. See also [11] for stationary Hamilton-Jacobi
problems on multi-dimensional junctions, where comparison principles are established using an
optimal control approach. We finally refer the reader to the numerous references given in [9] and
the comments there.

Up to a certain extent, some of our results are related to the ones in [7], in particular, in the
case of source terms located on hyperplanes.

Organization of the article. The paper is organized as follows. In Section 2, the notion of
viscosity solution in the setting of multi-dimensional junction is introduced. The proof of Theorem
1.1 is done in Subsection 2.3. Section 3 is devoted to the construction of the vertex test function.
The proof of Theorem 1.3 is sketched after the statement of Theorem 3.1 about the vertex test
function. A detailed proof is given in appendix for the reader’s convenience. In Section 4, we
study the special case N = 2 and identify the maximal and minimal Ishii solutions. The proof of
a technical lemma is presented in an appendix.

Notation. For a function f : D → R, epi f denotes its epigraph {(X, r) ∈ D × R : r ≥ f(X)}
and hypo f denotes its hypograph {(X, r) ∈ D × R : r ≤ f(X)}. We will use the notation P to
denote different objects, depending on the context.

2 Viscosity solutions on a multi-dimensional junction

2.1 Definitions

2.1.1 Class of test functions

For T > 0, set JT = (0, T )× J . The class of test functions on JT is chosen as follows,

C1(JT ) =
{

ϕ ∈ C(JT ), ϕ restricted to (0, T )× Ji is C
1 for i = 1, ..., N

}

. (2.1)

2.1.2 Classical viscosity solutions

In order to define classical viscosity solutions, we recall the definition of upper and lower semi-
continuous envelopes u∗ and u∗ of a (locally bounded) function u defined on [0, T )× J :

u∗(t,X) = lim sup
(s,Y )→(t,X)

u(s, Y ) and u∗(t,X) = lim inf
(s,Y )→(t,X)

u(s, Y ).
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Definition 2.1 (Classical viscosity solutions). Assume the Hamiltonians satisfy (1.5) and the flux
function F satisfies (1.10). Let u : [0, T )× J → R be locally bounded.

i) We say that u is a (classical viscosity) sub-solution (resp. super-solution) of (1.3) in JT if for
all test function ϕ ∈ C1(JT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, X0) ∈ JT

with equality at (t0, X0) for some t0 > 0, we have

ϕt +Hi(Dϕ) ≤ 0 (resp. ≥ 0) at (t0, X0) if X0 ∈ J∗
i = Ji \ Γ

ϕt + F (Dϕ) ≤ 0 (resp. ≥ 0) at (t0, X0) if X0 ∈ Γ. (2.2)

ii) We say that u is a (classical viscosity) sub-solution (resp. super-solution) of (1.3)-(1.4) on
[0, T )× J if additionally

u∗(0, X) ≤ u0(X) (resp. u∗(0, X) ≥ u0(X)) for all x ∈ J.

iii) We say that u is a (classical viscosity) solution if u is both a sub-solution and a super-solution.

Definition 2.2 (Flux-limited solutions). Consider a continuous flux-limiter function A : Rd → R.
Then u is a A-flux limited sub-solution (resp. super-solution, solution) of (1.8) if it is a classical
sub-solution (resp. super-solution, solution) of (1.3) with F = FA.

2.1.3 Relaxed viscosity solutions

We next introduce relaxed viscosity solutions.

Definition 2.3 (Relaxed viscosity solutions). Assume the Hamiltonians satisfy (1.5) and the flux
function F satisfies (1.10). Let u : [0, T )× J → R be locally bounded.

i) We say that u is a relaxed sub-solution (resp. relaxed super-solution) of (1.3) in JT if for all
test function ϕ ∈ C1(JT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, X0) ∈ JT

with equality at (t0, X0) for some t0 > 0, we have

ϕt +Hi(Dϕ) ≤ 0 (resp. ≥ 0) at (t0, X0)

if X0 ∈ J∗
i , and

either ϕt + F (Dϕ) ≤ 0 (resp. ≥ 0)
or ϕt +Hi(Dϕ) ≤ 0 (resp. ≥ 0) for some i

∣

∣

∣

∣

at (t0, X0)

if X0 ∈ Γ.

ii) We say that u is a relaxed (viscosity) solution if u is both a sub-solution and a super-solution.

2.1.4 The “weak continuity” condition for sub-solutions

If F not only satisfies (1.10), but is also semi-coercive, that is to say if

F (p′, p) → +∞ as max
i

(max(0,−pi)) → +∞ for each p′ ∈ Rd (2.3)

then any F -relaxed sub-solution satisfies a “weak continuity” condition at the junction point.
Precisely, the following result holds true.
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Lemma 2.4 (“weak continuity” condition on the junction interface). Assume that the Hamilto-
nians satisfy (1.5) and that F satisfies (1.10) and (2.3). Then any relaxed sub-solution u of (1.3)
satisfies the following “weak continuity” property

u∗(t,X) = lim sup
(s,Y )→(t,X), Y ∈J∗

i

u(s, Y ) for all i = 1, . . . , N, for all (t,X) ∈ (0, T )× Γ (2.4)

where we recall that J∗
i = Ji\Γ.

The proof of this result is a straightforward adaptation of the one of Lemma 2.3 in [9] in the
case d = 0; so we skip the details of the proof.

As in [9], we will see that the “weak continuity” property is an important condition to avoid
pathological relaxed sub-solutions (that do exist) when F is not semi-coercive. Moreover it turns
ou that the notion of “weak continuity” is stable, as shown in the following result.

Proposition 2.5 (Stability of the weak continuity property). Consider a family of Hamiltonians
Hε

i satisfying (1.5). We also assume that the coercivity of the Hamiltonians is uniform in ε. Let
uε be a family of subsolutions of

ut +Hε
i (Du) = 0 in (0, T )× J∗

i

for all i = 1, . . . , N , and that uε satisfies the “weak continuity” property (2.4). If ū = lim sup ∗uε

is everywhere finite, then ū still satisfies the “weak continuity” property (2.4).

The proof of this result is also a straightforward adaptation of the one of Proposition 2.6 in [9]
in the case d = 0; so again we skip the details of the proof.

2.1.5 A reduced set of test functions

Let π±
i : Rd × R → R be defined as follows for λ ≥ Ai(p

′) = minHi(p
′, ·)

π+
i (p

′, λ) = inf{pi : Hi(p
′, pi) = H+

i (p′, pi) = λ}

π−
i (p

′, λ) = sup{pi : Hi(p
′, pi) = H−

i (p′, pi) = λ}.

Definition 2.6 (Reduced viscosity solutions – the flux-limited case). Assume the Hamiltonians
satisfy (1.5) and consider a continuous flux-limiter function A : Rd → R such that for all p′ ∈ Rd,
A(p′) ≥ A0(p

′). Given u : [0, T )× J → R locally bounded, the function u is a reduced sub-solution
(resp. reduced super-solution) of (1.3) with F = FA in JT if and only if u is a sub-solution
(resp. super-solution) outside Γ and for all test function ϕ ∈ C1(JT ) touching u from above at
(t0, X0) ∈ (0,+∞)× Γ, of the following form

ϕ(t, x′, x) = φ(t, x′) + φ0(x)

with
{

φ ∈ C1((0,+∞)× Rd)

D′φ(t0, x
′
0) = p′0

{

φ0 ∈ C1(R)

∂iφ0(0) = π+
i (p

′
0, A(p

′
0))

we have
ϕt + FA(Dϕ) ≤ 0 (resp. ≥ 0).

Proposition 2.7 (Equivalence of Definitions 2.2 and 2.6 under “weak continuity”). Every reduced
super-solution (resp. subsolution) u in the sense of Definition 2.2 is also, for Definition 2.6, a flux-
limited super-solution (resp. a flux-limited subsolution if u satisfies moreover the ”weak-continuity”
property (2.4)).
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Proof. It is clear that flux-limited sub-solutions (resp. super-solutions) are reduced sub-solutions
(resp. reduced super-solutions). To prove that the converse holds true, we proceed as in [9] by
considering critical slopes in x. Precisely, it is enough to prove the following lemmas.

Lemma 2.8 (Critical slopes for super-solutions). Let u be a super-solution of (1.8) away from Γ
and let ϕ touch u∗ from below at P0 = (t0, X0) with X0 ∈ Γ. Then the “critical slopes” defined as
follows

p̄i = sup{p̄ ∈ R+ : ∃r > 0, ϕ(t,X) + p̄x ≤ u∗(t,X) for (t,X) ∈ Br(P0) ∩ ((0,+∞)× Ji)}

satisfy for all i = 1, . . . , N ,

ϕt(P0) +Hi(D
′ϕ(P0), ∂iϕ(P0) + p̄i) ≥ 0,

with the convention for p̄i = +∞, that Hi(p
′,+∞) = +∞.

Lemma 2.9 (Critical slopes for sub-solutions). Let u be a sub-solution of (1.8) away from Γ and
let ϕ touch u∗ from above at P0 = (t0, X0) with X0 ∈ Γ. Then the “critical slopes” defined as
follows

p̄i = inf{p̄ ∈ R− : ∃r > 0, ϕ(t,X) + p̄x ≥ u∗(t,X) for (t,X) ∈ Br(P0) ∩ ((0,+∞)× Ji)}

satisfy for all i = 1, . . . , N ,

ϕt(P0) +Hi(D
′ϕ(P0), ∂iϕ(P0) + p̄i) ≤ 0 if p̄i > −∞.

Moreover, we have
p̄i > −∞ for each i = 1, . . . , N

if u satisfies the “weak continuity” property (2.4).

Remark 2.10. Even if Lemma 2.9 is not stated this way, a close look at its proof shows that it is
sufficient to have the “weak continuity” property pointwise at (t0, X0) and on a single branch J∗

i

to prove that p̄i > −∞ for the same index i.

The proofs of these lemmas are straightforward adaptations of the corresponding ones in [9]
so we skip them. The remaining of the proof is also analogous but we give some details in the
sub-solution case for the reader’s convenience.

Let ϕ touch u∗ from above at P0 = (t0, X0) with X0 = (x′
0, 0) ∈ Γ and let λ denote −ϕt(P0)

and P = (p′, p1, . . . , pN) denote Dϕ(P0). We want to prove

FA(P ) ≤ λ. (2.5)

We know from Lemma 2.9 that for all i = 1, . . . , N ,

Hi(p
′, pi + p̄i) ≤ λ (2.6)

for some p̄i ≤ 0. In particular,
A0(p

′) ≤ λ.

We write next

FA(P ) = max
i

(A(p′), H−
i (p′, pi))

≤ max
i

(A(p′), H−
i (p′, pi + p̄i))

≤ max
i

(A(p′), Hi(p
′, pi + p̄i))

≤ max(A(p′), λ).

If (A.3) does not hold true, then
A0(p

′) ≤ λ < A(p′).
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Moreover, we have from (2.6) that

pi + p̄i < π+
i (p

′, A(p′)).

Hence, we can consider the following test function

φ(t, x′, x) = ϕ(t, x′, 0) + φ0(x)

with ∂iφ0(0) = π+
i (p

′, A(p′)) for each i = 1, . . . , N . From the definition of reduced sub-solutions,
we thus get

A(p′) = FA(Dφ(P0)) ≤ λ

which is the desired contradiction.

2.2 Stability

In the following proposition, we assert that, for the special junction functions FA, relaxed solutions
are in fact always classical solutions, that is to say in the sense of Definition 2.1.

Proposition 2.11 (FA junction conditions are always satisfied in the classical sense). Assume
the Hamiltonians satisfy (1.5) and consider a continuous flux-limiter function A. If F = FA, then
relaxed viscosity solutions in the sense of Definition 2.3 coincide with viscosity solutions in the
sense of Definition 2.1.

Remark 2.12. Because relaxed solutions are always stable (see [9]), we also deduce from Proposition
2.11 that for the special case F = FA, classical solutions are also stable.

Proof. We treat successively the super-solution case and the sub-solution case.

Case 1: the super-solution case. Let u be a relaxed super-solution and let us assume by
contradiction that there exists a test function ϕ touching u∗ from below at P0 = (t0, X0) for some
t0 ∈ (0, T ) and X0 ∈ Γ, such that

ϕt + FA(Dϕ) < 0 at P0. (2.7)

Consider next the test function ϕ̃ satisfying ϕ̃ ≤ ϕ in a neighborhood of P0, with equality at P0

such that

ϕ̃t(P0) = ϕt(P0)
D′ϕ̃(P0) = D′ϕ(P0)

and ∂iϕ̃(P0) = min(π0
i (D

′ϕ(P0)), ∂iϕ(P0)) for i = 1, ..., N.

Using the fact that FA(Dϕ) = FA(Dϕ̃) ≥ H−
i (D′ϕ̃, ∂iϕ̃) = Hi(D

′ϕ̃, ∂iϕ̃) at P0 for all i, we deduce
a contradiction with (2.7) using the viscosity inequality satisfied by ϕ̃ for some i ∈ {1, . . . , N}.

Case 2: the sub-solution case. Let now u be a relaxed sub-solution and let us assume by
contradiction that there exists a test function ϕ touching u∗ from above at P0 = (t0, X0) for some
t0 ∈ (0, T ) and X0 ∈ Γ, such that

ϕt + FA(Dϕ) > 0 at P0. (2.8)

Let us define
I =

{

i ∈ {1, ..., N} , H−
i (D′ϕ, ∂iϕ) < FA(Dϕ) at P0

}

and for i ∈ I, let qi ≥ π0
i (D

′ϕ(P0)) be such that

Hi(D
′ϕ(P0), qi) = FA(Dϕ(P0))

where we have used the fact that Hi(D
′ϕ(P0),+∞) = +∞. Then we can construct a test function

ϕ̃ satisfying ϕ̃ ≥ ϕ in a neighborhood of P0, with equality at P0, such that

ϕ̃t(P0) = ϕt(P0)
D′ϕ̃(P0) = D′ϕ(P0)

and ∂iϕ̃(P0) =

{

max(qi, ∂iϕ(P0)) if i ∈ I,
∂iϕ(P0) if i 6∈ I.

Using the fact that FA(Dϕ) = FA(Dϕ̃) ≤ Hi(D
′ϕ̃, ∂iϕ̃) at P0 for all i, we deduce a contradiction

with (2.8) using the viscosity inequality for ϕ̃ for some i ∈ {1, . . . , N}.
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2.3 General junction conditions reduce to flux-limited ones

We have the following result which implies immediately Theorem 1.1.

Theorem 2.13 (General junction conditions reduce to flux-limited ones). Let the Hamiltonians
satisfy (1.5) and let F : RN → R satisfy (1.10). There exists a unique coercive continuous function
AF : Rd → R, satisfying AF ≥ A0 with A0 defined in (1.9), such that the following holds.

i) Every relaxed viscosity super-solution (resp. sub-solution satisfying moreover the “weak conti-
nuity” property (2.4)) of (1.3) is a AF -flux limited super-solution (resp. sub-solution) of (1.8).

ii) Conversely, every AF -flux limited super-solution (resp. sub-solution) of (1.8), is a F -relaxed
viscosity super-solution (resp. sub-solution) of (1.3).

iii) If F is quasi-convex, so is AF .

Proof. With the notation of Remark 1.2 in hand, we first recall that if F (p′, p0) ≥ A0(p
′), then

there exists only one λ ≥ A0(p
′) such that there exists p+ = (p+1 , . . . , p

+
N ) with p+i ≥ p0i such that

Hi(p
′, p+i ) = F (p′, p+) = λ.

The coercivity of AF is a direct consequence of the fact that AF ≥ A0. We thus prove next
that AF is continuous. Consider a sequence (p′n)n converging towards p′. Then we have two cases.

Case 1. There exists p+n = (p+1,n, . . . , p
+
N,n) with p+i,n ≥ p0i = p0i (p

′
n) such that

Hi(p
′
n, p

+
i,n) = F (p′n, p

+
n ) = An = AF (p

′
n) ≥ A0(p

′
n) if F (p′n, p

0(p′n)) ≥ A0(p
′
n). (2.9)

We can pass to the limit in (2.9) and get

Hi(p
′, p+i ) = F (p′, p+) = A ≥ A0(p

′)

with p+i ≥ p0i (p
′) and then A = AF (p

′).

Case 2.
An = A0(p

′
n) = AF (p

′
n) if F (p′n, p

0(p′n)) ≤ A0(p
′
n).

We first claim that (p+i,n)n is bounded. Indeed, if not, then An → +∞ and, for n large enough,

F (p′n, p
0(p′n)) ≥ An

which is impossible. The claim also implies that (An)n is also bounded. Consider now to converging
subsequences, still denoted by (p+n )n and (An)n, and let p+ and A be their limits. We get

A = A0(p
′)

If F (p′, p0(p′)) ≤ A0(p
′), then AF (p

′) = A0(p
′) = A.

If F (p′, p0(p′)) > A0(p
′), then we have to enter in more details in the results of the limit

process. We get

F (p′, p̄0) ≤ A0(p
′) and A = A0(p

′) = Hi(p
′, p̄0i ) where p̄0i ≥ π0

i (p
′)

with
p̄0 = lim p0(p′n) for a subsequence

which implies p̄0i ≥ p0i (p
′). Then we can choose some p+i ∈ [p0i (p

′), p̄0i ] such that

Hi(p
′, p+i ) = F (p′, p+) = A0(p

′) = A

9



which shows again that AF (p
′) = A. This ends the proof that AF is contiuous.

Proof of i)
We only do the proof for sub-solutions since the proof for super-solutions follows along the same
lines. Let ϕ be a test function touching u∗ from above at P0 = (t0, X0). We only need to consider
the case where X0 ∈ Γ. From Proposition 2.7, we can also assume that

ϕ(t,X) = φ(t, x′) + φ0(x)

with
D′φ(t0, x

′
0) = p′0 and ∂iφ0(0) = π+

i (p
′
0, AF (p

′
0)).

We have
ϕt(P0) + min(F (Dϕ(P0)),min

i
Hi(D

′ϕ(P0), ∂iϕ(P0)) ≤ 0

which yields
ϕt(P0) + max(F (p′0, π

+(p′0, AF (p
′
0))), AF (p

′
0)) ≤ 0.

In view of the definition of AF , we get

ϕt(P0) +AF (p
′
0) ≤ 0.

Now compute

FAF
(Dϕ(P0)) = max(AF (p

′
0),max

i
H−

i (p′0, π
+
i (p

′
0, AF (p

′
0))) = AF (p

′
0).

This ends the proof of i).

Proof of ii)
We only do the proof for super-solutions since the proof for sub-solutions follows along the same
lines. Let ϕ be a test function touching u∗ from below at P0 = (t0, X0). We want to show that it
is a F -relaxed viscosity supersolution, i.e.

max(F (Dϕ(P0)),max
i

Hi(D
′ϕ(P0), ∂iϕ(P0)) ≥ λ := −ϕt(P0) (2.10)

We set
Dϕ(P0) = (p′0, p) with p = (p1, . . . , pN)

We know that u is a FA-reduced viscosity solution with A = AF , i.e.

max(AF (p
′
0),max

i
H−

i (p′0, pi)) = FAF
(Dϕ(P0)) ≥ λ (2.11)

Moreover, we have
F (p′0, π

+(p′0, AF (p
′
0))) = AF (p

′
0) > A0(p

′
0) (2.12)

or
AF (p

′
0) = A0(p

′
0) (2.13)

We now distinguish two cases.

Case 1. Assume first that there exists an index i0 such that

Hi0(p
′
0, pi0) ≥ max(AF (p

′
0),max

i
Hi(p

′
0, pi)).

Then (2.11) implies the result (2.10).
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Case 2. Assume that for all i, we have Hi(p
′
0, pi) < AF (p

′
0). Then pi < π+

i (p
′
0, AF (p

′
0)) and

F (p′0, pi) ≥ F (p′0, π
+(p′0, AF (p

′
0)) = AF (p

′
0) ≥ λ in case of (2.12).

In the case of (2.13), we have AF (p
′
0) = A0(p

′
0) and the inequality for all i

Hi(p
′
0, pi) < AF (p

′
0) = A0(p

′
0) = max

j

(

min
qj

Hj(p
′
0, qj)

)

leads to a contradiction. The proof of ii) is now complete.

Proof of iii)
It follows from Proposition 2.14 below. The proof is now complete.

We now turn to the following useful proposition.

Proposition 2.14 (Quasi-convex Hamiltonians and flux functions generate quasi-convex flux
limiters). If the Hamiltonians Hi satisfy (1.5) and the flux function F satisfies (1.10)-(1.11), then
AF is continuous, quasi-convex and coercive.

The proof of this proposition is postponed and can be found in Appendix.

2.4 Existence

Theorem 2.15 (Existence). Let T > 0. Assume that Hamiltonians satisfy (1.5), that the junction
function F satisfies (1.10) and that the initial datum u0 is uniformly continuous. Then there exists
a relaxed viscosity solution u of (1.3)-(1.4) in [0, T )× J and a constant CT > 0 such that

|u(t,X)− u0(X)| ≤ CT for all (t,X) ∈ [0, T )× J.

Moreover u is continuous.

Sketch of the proof of Theorem 2.15. Using Perron’s method as in [9], we easily get existence of
relaxed viscosity solutions for general junction functions F satisfying (1.10). We only make com-
ments about the continuity of the solution u. We first construct u (by Perron’s method) as a
FA-relaxed solution with A = AF given by Theorem 1.1 and Remark 1.2. For this problem we can
apply the compariton principle (Theorem 1.3) which implies both the uniqueness and the conti-
nuity of u. Using Theorem 2.13 ii), we conclude that u is also an F -relaxed viscosity solution.

3 The multi-dimensional vertex test function

This section is devoted to the construction of the vertex test function to be used in the proof of
the comparison principle.

We will use below the following shorthand notation

H(X, p′, p) =

{

Hi(p
′, p) for p = pi if X ∈ Ji \ Γ,

FA(p
′, p) for p = (p1, ..., pN ) if X ∈ Γ.

(3.1)

We also introduce a modulus of continuity ωR (with obviously ωR(0) = 0), such that

|H(X,P )−H(X, P̂ )| ≤ ωR(|P − P̂ |) for all |P |, |P̂ | ≤ R. (3.2)

In particular, keeping in mind the definition of Du (see (1.2)), Problem (1.8) on the junction can
be rewritten as follows

ut +H(X,Du) = 0 for all (t,X) ∈ (0,+∞)× J.

In the spirit of the definition of test function in (2.1), we set

C1(J) =
{

φ ∈ C(J), φ restricted to Ji is C
1 for i = 1, . . . , N

}

.

Then our key result is the following one.
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Theorem 3.1 (The vertex test function). Let A satisfying (1.6) with A ≥ A0 and let γ ∈ (0, 1].
Assume the Hamiltonians satisfy (1.5). Then there exists a function G : J2 → R enjoying the
following properties.

i) (Regularity)

G ∈ C(J2) and

{

G(X, ·) ∈ C1(J) for all X ∈ J,
G(·, Y ) ∈ C1(J) for all Y ∈ J.

ii) (Bound from below) G ≥ 0 = G(0, 0).

iii) (Compatibility condition on the diagonal) For all X ∈ J ,

0 ≤ G(X,X)−G(0, 0) ≤ γ. (3.3)

iv) (Compatibility condition on the gradients) For all X,Y ∈ J and K > 0 with d(X,Y ) ≤ K,

H(Y,−DYG(X,Y ))−H(X,DXG(X,Y )) ≤ ωCK
(γCK) (3.4)

with CK given in (3.6) where notation introduced in (1.2), (3.1) and (3.2) are used.

v) (Superlinearity) There exists g : [0,+∞) → R nondecreasing and s.t. for (X,Y ) ∈ J2

g(d(X,Y )) ≤ G(X,Y ) and lim
a→+∞

g(a)

a
= +∞. (3.5)

vi) (Gradient bounds) For all K > 0, there exists CK > 0 such that for all (X,Y ) ∈ J2,

d(X,Y ) ≤ K =⇒ |GX(X,Y )|+ |GY (X,Y )| ≤ CK . (3.6)

We now assert that Theorem 1.3 is a direct consequence of Theorem 3.1. We just sketch it
here and we give details in appendix.

Sketch of the proof of Theorem 1.3. Use Theorem 3.1 and proceed as in [9] (indeed the modifica-
tion of estimate (3.4) with respect to the corresponding one in [9], does not affect the arguments
of the proof).

3.1 The case of smooth convex Hamiltonians

Assume that the Hamiltonians Hi satisfy the following assumptions for i = 1, ..., N ,

{

Hi ∈ C2(Rd+1) with D2Hi > 0 in Rd+1,

lim|P |→+∞
Hi(P )
|P | = +∞

(3.7)

and the flux limiter
A0 ≤ A ∈ C2(Rd) and D2A > 0 in Rd+1. (3.8)

It is useful to associate with each Hi satisfying (3.7) its partial inverse functions π±
i :

for λ ≥ Ai(p
′), Hi(p

′, π±
i (p

′, λ)) = λ such that π−
i (p′, λ) ≤ π0

i (p
′) ≤ π+

i (p
′, λ) (3.9)

where we recall that Ai(p
′) = minpi

Hi(p
′, pi). is convex in p′ (see Lemma A.1).

Lemma 3.2 (Properties of π±
i ). Assume (3.7). Then π±

i (p
′, ·) ∈ C2(Ai(p

′),+∞) and π±
i ∈

C(epiAi). Moreover, π±
i is concave w.r.t. (p′, λ) in epiAi and ±π±

i is non-decreasing w.r.t. λ.
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Proof. The regularity of π± can be derived thanks to the inverse function theorem. As far as
the concavity of π+

i is concerned, we can drop the subscript i and we do so for clarity. let
(p′, λ), (q′, µ) ∈ epiA and t ∈ (0, 1). Then

tλ+ (1− t)µ = tH(p′, π+(p′, λ)) + (1− t)H(q′, π+(q′, µ))

≥ H(tp′ + (1 − t)q′, tπ+(p′, λ) + (1− t)π+(q′, µ)).

Hence
π+(tp′ + (1− t)q′, tλ+ (1 − t)µ) ≥ tπ+(p′, λ) + (1− t)π+(q′, µ)

which is the desired result. The monotonicity of π+ is easy to derive from the convexity of H .
The proof of the lemma is now complete.

We next define the function G0 for X ∈ Ji, Y ∈ Jj , i, j = 1, ..., N , as follows,

G0(X,Y ) = sup
(P,λ)∈Gij

A

(p′ · (x′ − y′) + pix− pjy − λ) (3.10)

where

Gij
A =

{

{(P, λ) ∈ Rd+3 × R : P = (p′, pi, pj), λ = Hi(p
′, pi) = Hj(p

′, pj) ≥ A(p′)} if i 6= j

{(P, λ) ∈ Rd+2 × R : P = (p′, pi), λ = Hi(p
′, pi) ≥ A(p′)} if i = j

(3.11)
with A ≥ A0.

Proposition 3.3 (The vertex test function – the smooth convex case). Let A ≥ A0 with A0 given
by (1.9) and assume that the Hamiltonians satisfy (3.7) and the limiter A satisfies (3.8). Then
G0 satisfies

i) (Regularity)

G0 ∈ C(J2) and

{

G0 ∈ C1({(X,Y ) ∈ J × J, x 6= y}),
G0(0, ·) ∈ C1(J) and G0(·, 0) ∈ C1(J);

ii) (Bound from below) G0 ≥ G0(0, 0);

iii) (Compatibility conditions) (3.3) holds with γ = 0; and (3.4) holds with γ = 0 for X = (x′, x),
Y = (y′, y) with x 6= y or x = y = 0;

iv) (Superlinearity) (3.5) holds for some g = g0;

v) (Gradient bounds) (3.6) holds only for (X,Y ) ∈ J2 such that x 6= y or (x, y) = (0, 0);

The proof of this proposition is postponed until Subsection 3.4. With such a result in hand,
we can now prove Theorem 3.1 in the case of smooth convex Hamiltonians.

Lemma 3.4 (The case of smooth convex Hamiltonians). Assume that the Hamiltonians satisfy
(3.7) and the limiter A satisfies (3.8) with A ≥ A0. Then the conclusion of Theorem 3.1 holds
true.

Proof. Recall that
G0

ii(X,Y ) = Gii(Z) with Z = X − Y.

Up to substract G0(0, 0) to G0, we can assume that G0(0, 0) = 0. It is enough (and it is our goal)
to regularize G0

ii in a neighborhood of {xi = yi}\ {xi = yi = 0}. Let ε0 ∈ (0, 1] small to fix later,
and consider a smooth nondecreasing function ζ : R → [0, 1] satisfying ζ = 0 on (−∞, 0], ζ > 0
on (0,+∞), and ζ = 1 on [B,+∞), with B ≥ 1 large. We also consider a smooth nonincreasing
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function ξ : [0,+∞) → (0,+∞) with ξ(+∞) = 0, which satisfies in particular for Z = (z′, zi) and
a real z̄i

|Gii(z
′, zi)−Gii(z

′, z̄i)| ≤
|zi − z̄i|

ξ(|z′|)
if |zi|, |z̄i| ≤ 2ξ(|z′|)

We will regularize G0
ii in a neighborhood of the diagonal of half thickness ε0θ with

θ(z′, xi + yi) := ξ(|z′|)ζ(xi + yi)

To this end, we consider a smooth cut-off function Ψ : R → [0, 1] such that suppΨ ⊂ [−1, 1]
with Ψ = 1 on [−1/2, 1/2]. We will also use a one-dimensional non-negative mollifier

ρη(zi) =
1

η
ρ(

zi
η
)

with supp ρ ⊂ [−1, 1] to regularize by convolution the function Gii(Z) in the direction of zi only,
because Gii(Z) is already C1 in the other directions z′. Finally we define with Z = (z′, zi) and
z′ = x′ − y′, zi = xi − yi, the function

Gii(X,Y ) =

(

1−Ψ

(

zi
ε0θ(z′, xi + yi)

))

Gii(z
′, zi)+Ψ

(

zi
ε0θ(z′, xi + yi)

)
∫

a∈R

ρε0θ(z′,xi+yi)(a)Gii(z
′, zi−a).

This regularization procedure preserves the desired properties like estimates (3.5) (with a possible
different function g but independent on any ε0 ∈ (0, 1]) and (3.6) with a possible different constant
CK . Moreover, for ε0 > 0 small enough, this regularization procedure introduces a small error γ
in (3.3) and another small error γ in (3.4). This ends the proof of the lemma.

3.2 The vertex test function in Ji × Jj with i 6= j

In order to prove Proposition 3.3, we first need to study G0 for X ∈ Ji and Y ∈ Jj with i 6= j.
Then, one can write

G0
ij(X,Y ) = Gij(x

′ − y′, xi,−yj)

with
Gij(Z) = sup

(P,λ)∈Gij

A

(P · Z − λ)

where Gij
A is defined in (3.11). Remark that for X ∈ Ji and Y ∈ Jj , we have Z = X − Y ∈ Q

where
Q = Rd × [0,+∞[×]−∞; 0].

We also consider the simplex

T = {(αi, αj , α0) ∈ [0, 1]3 : αi + αj + α0 = 1}.

Lemma 3.5 (Necessary conditions for the maximiser : ij-version). Given Z ∈ Q, the supremum
defining Gij(Z) is reached for some (P, λ) ∈ Gij

A and there exists (αi, αj , α0) ∈ T such that

Z = D(α ·H)(P )

with H = (Hi, Hj , A).

Proof. Gij(Z) is defined by maximizing a linear function under a equality constraint and an
inequality constraint. Constraints are qualified if

D(Hi −Hj) is not colinear with D(Hi −A).

When constraints are qualified, Karush-Kuhn-Tucker theorem asserts (computing DP (P ·Z −
λ)) that there exists αj ∈ R and α0 ≥ 0 such that

Z = ∇PHi + αj(∇PHj −∇PHi) + α0∇P (A−Hi)
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with
α0 = 0 if A(p′) < Hi(p

′, pi).

If one sets αi = 1− α0 − αj , Equivalently, we have











zi = αi∂iHi(p
′, pi) ≥ 0

zj = αj∂jHj(p
′, pi) ≤ 0

z′ = αi∇p′Hi + αj∇p′Hj + α0∇p′A

The constraints are qualified in particular if

∂iHi(p
′, pi) > 0 and ∂jHj(p

′, pj) < 0. (3.12)

In this case we deduce that (αi, αj , α0) ∈ T . Hence, the result is proved in case (3.12).
Now assume that ∂iHi(p

′, pi) ≤ 0. We remark that in all cases, ∂iHi(p
′, pi) ≥ 0 since zi ≥ 0.

Hence, ∂iHi(p
′, pi) = 0 or, in other words, Hi(p

′, pi) = Ai(p
′). But the constraint Hi(p

′, pi) ≥
A(p′), the assumption A(p′) ≥ A0(p

′) and the simple fact that Ai(p
′) ≤ A0(p

′) imply in particular
that A(p′) = A0(p

′). We arrive at the same conclusion if ∂jHj(p
′, pj) ≥ 0. In other words,

Condition (3.12) holds true as soon as ∀p′, A(p′) > A0(p
′). (3.13)

In particular, the result of the lemma holds true under this latter condition: A(p′) > A0(p
′)

for all p′ ∈ Rd. If now there are some p′ such that A(p′) = A0(p
′), we remark that

Gij(Z) = lim
ε→0

Gε
ij(Z)

where Gε
ij(Z) is associated with Aε(p′) = ε+ A(p′). From the previous case, we know that there

exists Pε and λε such that
Gε

ij(Z) = Pε · Z − λε

and αε = (αε
i , α

ε
j , α

ε
0) ∈ T such that

Z = D(α ·H)(Pε).

We can extract a subsequence such that αε → α. Moreover, Pε · Z − λε is bounded from above
and

λε = Hi(p
′ε, pεi ) = Hj(p

′ε, pεj).

Since Hi and Hj are assumed to be superlinear, we conclude that we can also extract a converging
subsequence from Pε. This achieves the proof of the lemma.

Lemma 3.6 (Uniqueness of P : ij-version). Let Z = (z′, zi, zj) ∈ Q. If there exists α, P, λ and
β,Q, µ such that α, β ∈ T and

{

Gij(Z) = P · Z − λ = Q · Z − µ,

Z = D(α ·H)(P ) = D(β ·H)(Q).

Then λ = µ, p′ = q′ and
pi = qi = π+

i (p
′, λ) (3.14)

except in the case
αi = βi = 0 = zi (3.15)

and
pj = qj = π−

j (p
′, λ) (3.16)

except in the case
αj = βj = 0 = zj (3.17)
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Moreover under the previous assumptions, and in all cases, we can define

P̂ = (p′, π+
i (p

′, λ), π−
j (p′, λ))

and then we have
Gij(Z) = P̂ · Z − λ and Z = D(α ·H)(P̂ )

Proof. We consider the function Ψ : Rd+2 × T → R defined as follows

Ψ(P, α) = D(α ·H)(P ).

By assumption, we have
0 = D(α ·H)(P )−D(β ·H)(Q).

If P̄ denotes Q− P and ᾱ denotes β − α, then

0 =

∫ 1

0

(

P̄
ᾱ

)

·DΨ(P + θP̄ , α+ θᾱ)dθ

=

∫ 1

0

DPΨ(P + θP̄ , α+ θᾱ)P̄ dθ +

∫ 1

0

DαΨ(P + θP̄ , α+ θᾱ)ᾱdθ.

Taking the scalar product with P̄ yields

0 =

∫ 1

0

D2
PP ((α+ θᾱ) ·H)(P + θP̄ )P̄ · P̄ dθ +

∫ 1

0

DPH(P + θP̄ )ᾱ · P̄ dθ

= T1 + T2

with Ti ≥ 0, i = 1, 2 and

T1 =

∫ 1

0

D2
PP ((α+ θᾱ) ·H)(P + θP̄ )P̄ · P̄ dθ ≥ 0

T2 =

∫ 1

0

DPH(P + θP̄ )ᾱ · P̄ dθ ≥ 0.

Indeed, keeping in mind that

{

Hi(P ) = Hj(P )
Hi(Q) = Hj(Q)

and

{

α0(A(P )−Hi(P )) = 0

β0(A(Q) −Hi(Q)) = 0

we remark that
∫ 1

0

DPH(P + θP̄ )ᾱ · P̄ dθ = ᾱ · (H(Q)−H(P ))

= ᾱi(Hi(Q)−Hi(P )) + ᾱj(Hj(Q)−Hj(P )) + ᾱ0(A(Q)−A(P ))

= (β0 − α0)(A(Q)−Hi(Q)−A(P ) +Hi(P ))

= β0(Hi(P )−A(P )) + α0(Hi(Q)−A(Q)) ≥ 0.

Hence, we get

0 =

∫ 1

0

D2
PP ((α+ θᾱ) ·H)(P + θP̄ )P̄ · P̄ dθ

0 = β0(Hi(P )−A(P ))

0 = α0(Hi(Q)−A(Q)).

We distinguish three cases. We will use several times the fact that Hi(p
′, pi) = λ and ∂iHi(p

′, pi) ≥
0 implies that pi = π+

i (p
′, λ). We will also use the corresponding property for pj : pj = π−

j (p′, pj).
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• Case 1. If there exists θ ∈ (0, 1) such that α+ θᾱ ∈ int T , then P = Q and

λ = P · Z −Gij(Z) = µ.

• Case 2. If α = β is a vertex of T , then either α = (1, 0, 0) or α = (0, 1, 0) or α = (0, 0, 1).

– In the first subcase, αi = 1, we get p′ = q′ and pi = qi and Z = ∇PHi(P ) and

0 = (pj − qj)zj = (P −Q) · Z = λ− µ.

We conclude by remarking that we can choose pj = π−
j (p

′, λ) = qj when αj = βj = 0 =
zj . The second subcase is similar.

– If now α = (0, 0, 1), then p′ = q′ and Z = ∇PA(P ) and

0 = (pi − qi)zi + (pj − qj)zj = P · Z = λ− µ

and we conclude as in the two previous subcases.

• Case 3. Assume finally that there exists θ ∈ (0, 1) such that α+θᾱ ∈ ∂T but is not a vertex.
In this third case, this implies that two components of a = α+ θᾱ = (ai, aj, a0) are not 0.

– If a0 = 0 then p′ = q′ and pi = qi and pj = qj , i.e. P = Q.

– If ai = 0 then p′ = q′ and pj = qj and zi = 0 and λ = µ and we can choose pi =
π+(p′, λ) = qi when αi = βi = 0 = zi. The third subcase aj = 0 is similar to the second
one.

The proof of the lemma is now complete.

The two previous lemmas imply the following one.

Lemma 3.7 (Gradients of G0
ij). The function G0

ij is C1 in Ji × Jj, up to the boundary, and

DG0
ij(X,Y ) = (p′, pi,−p′,−pj), pi = π+

i (p
′, λ), pj = π−

j (p
′, λ) and P = (p′, pi, pj)

where (p′, λ) = (P(X,Y ),L(X,Y )) are uniquely determined by the relation for some α ∈ T

{

G0
ij(X,Y ) = p′ · (x′ − y′) + pixi − pjyj − λ,

Z = D(α ·H)(P ) with Z = (x′ − y′, xi,−yj)

In particular, the maps P and L are continuous in Ji × Jj.

The following lemma is elementary but it will be used below.

Lemma 3.8 (G0
ij at the boundary). The restriction of Gij to {zi = 0} and {zj = 0} equals

respectively (Hj ∨ A)⋆ and (Hi ∨ A)⋆, where the star exponent denotes here the Legendre-Fenchel
transform.

3.3 The vertex test function in Ji × Ji

In view of the definition of G0, see (3.10), we have the following Legendre-Fenchel transform
equality

G0
ii(X,Y ) = (Hi ∨ A)⋆(X − Y ).

In particular, we derive from Lemma 3.8 the following one.

Lemma 3.9 (Continuity of G0). The function G0 is continuous in J × J .

We now state (without proof, because the proofs are even easier) the following two analogues
of Lemmas 3.5 and 3.6.
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Lemma 3.10 (Necessary conditions for the maximiser : ii-version). Let Ti be defined as follows

Ti =
{

(αi, α0) ∈ [0, 1]2, αi + α0 = 1
}

,

and α ·H = αiHi + α0A, and Z = (z′, zi). If the supremum defining Gii(Z) is reached at some
(P, λ) ∈ Gii

A, then there exists α ∈ Ti such that

Z = D(α ·H)(P )

Lemma 3.11 (Uniqueness of P : ii-version). Let Z = (z′, zi) ∈ Rd+1. If there exists α, P, λ and
β,Q, µ such that α, β ∈ Ti and

{

Gii(Z) = P · Z − λ = Q · Z − µ,

Z = D(α ·H)(P ) = D(β ·H)(Q).

Then λ = µ, p′ = q′ and
pi = qi = π+

i (p
′, λ) if zi > 0 (3.18)

and
pi = qi = π−

i (p
′, λ) if zi < 0 (3.19)

Moreover under the previous assumptions, and in all cases, we can define either

P̂ = (p′, π+
i (p

′, λ)) if zi ≥ 0

or
P̂ = (p′, π−

i (p
′, λ)) if zi ≤ 0

and then we always have

Gij(Z) = P̂ · Z − λ and Z = D(α ·H)(P̂ )

We now turn to the regularity of G0
ii.

Lemma 3.12 (Gradients of G0
ii). G0

ii is C1 in Ji × Ji \ {xi = yi > 0}. For (X,Y ) ∈ Ji × Ji such
that xi 6= yi, we have

DG0
ii(X,Y ) = (p′, pi,−p′,−pi) and P = (p′, pi)

with pi = π±
i (p′, λ) if ±(xi− yi) > 0. Here (p′, λ) = (P(X,Y ),L(X,Y )) is uniquely determined by

{

G0
ii(X,Y ) = p′ · (x′ − y′) + pi(xi − yi)− λ

Z = αiDHi(P ) + (1− αi)DA(P ) with Z = (x′ − y′, xi − yi)

which holds true for some αi ∈ [0, 1]. In particular, the maps P and L are continuous in Ji × Ji.
Moreover the restrictions of G0

ii to (Ji × Ji) ∩ {±(xi − yi) ≥ 0} are C1 and

G0
ii(x

′, 0, y′, 0) = p′ · (x′ − y′)− λ

with
DG0

ii(x
′, 0, y′, 0) = (p′, π+

i (p
′, λ),−p′,−π−

i (p
′, λ))

3.4 Proof of Proposition 3.3

We now turn to the proof of Proposition 3.3.

Proof of Proposition 3.3. The proof proceeds in several steps.
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Step 1: Regularity. We already noticed in Lemma 3.9 that G0 ∈ C(J2) and Lemmas 3.7 and
3.12 imply that G0 ∈ C1(R) for each region R given by

R =

{

Ji × Jj if i 6= j,

T±
i = {(X,Y ) ∈ Ji × Ji, ±(xi − yi) ≥ 0} if i = j.

(3.20)

Step 2: Computation of the gradients. For each R given by (3.20) and for all (X,Y ) ∈
R ⊂ Ji × Jj , Lemmas 3.7 and 3.12 imply that

G0(X,Y ) = p′ · (x′ − y′) + pixi − pjyj − λ

and
(D′, ∂i)G

0
|R(X,Y ) = (p′, pi) and − (D′, ∂j)G

0
|R(X,Y ) = (p′, pj)

with λ = L(X,Y ) and p′ = P(X,Y ) with

(pi, pj) =

{

(π+
i (p

′, λ), π−
j (p′, λ)) if R = Ji × Jj with i 6= j,

(π±
i (p

′, λ), π±
i (p′, λ)) if R = T±

i with i = j.
(3.21)

Notice in particular that P and L are continuous in J×J . We also easily deduce that G0(X,Y ) ≥
G0(X,X) = G0(0, 0).

Step 3: Checking the compatibility condition on the gradients. Let us consider (X,Y ) ∈
J2, X = (x′, x), Y = (y′, y) with x = y = 0 or x 6= y. We have

DX(G0(·, Y ))(X) ∈ {(p′, π±
i (λ))}

−(DY G
0(X, ·))(Y ) ∈ {(p′, π±

j (λ))}

with λ ≥ A(p′). We claim that

H(X,DXG0(X,Y )) = λ for N ≥ 1 (3.22)

and
H(Y,−DY G

0(X,Y )) ≤ λ for N ≥ 1 (3.23)

with equality for N ≥ 2 (we use here once again the short hand notation (3.1).
Equality (3.22) is clear except if x = 0. In this case, if y 6= 0, say Y ∈ Jj , the desired equality

is rewritten as
max(A(p′),max

i
H−

i (p′, pi)) = λ

with pi = π+
i (p

′, λ) if i 6= j and pj = π−
j (p

′, λ). Since λ ≥ A(p′) and H−
j (p′, pj) = λ, we get the

result for N ≥ 2. For N = 1, we have x − y < 0 and then pi = π−
i (p′, λ) which gives again the

result. If now (x, y) = (0, 0), then pi = π+
i (p

′, λ) for all index i and λ = A(p′) ≥ A0(p
′). Hence,

we get (3.22) in this case too.

One can derive (3.23) in the same way, even with equality for N ≥ 2. For N = 1, where y = 0,
X = (x′, xi) ∈ J∗

i , i.e. xi − yi > 0, this gives pi = π+
i (p

′, λ), and we only get

H(Y,−DY G
0(X,Y )) = max(A(p′),minHi(p

′, ·)) ≤ λ

with a strict inequality (for λ > A(p′)). On the other hand, we recover equality for y 6= 0.
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Step 4: Superlinearity. In view of the definition of G0, we deduce from (3.21) that for all
R > 0 and λ > A(R(x′ − y′)/|x′ − y′|),

G0(X,Y ) ≥ R|x′ − y′|+

{

xπ+
i (Rx̂′ − y′, λ)− yπ−

j (Rx̂′ − y′, λ)− λ if i 6= j,

(x− y)π±
i (Rx̂′ − y′, λ)− λ if i = j,±(x− y) ≥ 0

where ẑ = z/|z|. For R > 0, we define

π0(R, λ) := min
±, i=1,...,N,|p′|≤R

±π±
i (p

′, λ) ≥ 0.

Hence we get
G0(X,Y ) ≥ R|x′ − y′|+ π0(R, λ)d(x, y) − λ

where

d(x, y) =

{

|xi − yi| if X,Y ∈ Ji

xi + yj if X ∈ Ji, Y ∈ Jj , i 6= j.

From the definition (3.9) of π±
i and the assumption (3.7) on the Hamiltonians, we deduce that

π0(R, λ) → +∞ as λ → +∞

and fix some λ(R) ≥ sup|p′|≤R A(p′) such that π0(R, λ(R)) ≥ R. This gives

G0(X,Y ) ≥ Rd(X,Y )− λ(R).

Therefore we get (3.5) with
g0(a) = sup

R≥0
(Ra− λ(R)).

Step 5: Gradient bounds. Because each component of the gradients of G0 are equal to one
of the

{

(p′, π±
k (p

′, λ))
}

±,k=1,...,N
with λ = L(X,Y ) and p′ = P(X,Y ), we deduce (3.6) from the

continuity of L, P and π±
k . We use in particular the fact that L and P only depend on x′ − y′

and xi − yi if X,Y ∈ Ji; and x′ − y′ and (xi,−yj) if X ∈ Ji, Y ∈ Jj with i 6= j.

3.5 The general case

Let us consider a slightly stronger assumption than (1.5), namely










Hi ∈ C2(Rd+1) with minHi = Hi(P
0
i ) and D2Hi(P

0
i ) > 0,

D2H > 0 on (DHi)
⊥, and DHi(P ) 6= 0 for P 6= P 0

i

lim
|P |→+∞

Hi(P ) = +∞.
(3.24)

Notice that the second line basically says that the sub-level sets are strictly convex. The following
technical result will allow us to reduce a large class of quasi-convex Hamiltonians to convex ones.

Lemma 3.13 (From quasi-convex to convex Hamiltonians). Given Hamiltonians Hi satisfying
(3.24), there exists a function β : R → R such that the functions β◦Hi satisfy (3.7) for i = 1, ..., N .
Moreover, we can choose β such that

β is convex, β ∈ C2(R) and β′ ≥ δ > 0. (3.25)

Proof. In view of (3.24), it is easy to check that D2(β ◦Hi) > 0 if and only if we have

0 < {(ln β′)′(λ)}
(

D̂Hi × D̂Hi

)

◦ π±
i (p

′, λ) +
D2Hi

|DHi|2
◦ π±

i (p
′, λ) for λ > Hi(P

0
i ), p′ ∈ Rd.

(3.26)
Because D2Hi(p

0
i ) > 0, we see that the right hand side is positive for λ close enough to Hi(P

0
i ).

Then it is easy to choose a function β satisfying (3.26) and (3.25) (looking at each level set
{Hi = λ}). Finally, compositing β with another convex increasing function which is superlinear
at +∞ if necessary, we can ensure that β ◦Hi superlinear.
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Lemma 3.14 (The case of smooth Hamiltonians). Theorem 3.1 holds true if the Hamiltonians
satisfy (3.24).

Proof. We assume that the Hamiltonians Hi satisfy (3.24). Let β be the function given by
Lemma 3.13. If u solves (1.8) on JT , then u is also a viscosity solution of

{

β̄(ut) + Ĥi(Du) = 0 for t ∈ (0, T ) and X ∈ J∗
i ,

β̄(ut) + F̂
Â
(Du) = 0 for t ∈ (0, T ) and X ∈ Γ

(3.27)

with F̂
Â
constructed as FA where Hi and A are replaced with Ĥi and Â defined as follows

Ĥi = β ◦Hi, Â = β(A)

and β̄(λ) = −β(−λ). We can then apply Theorem 3.1 in the case of smooth convex Hamiltonians
to construct a vertex test function Ĝ associated to problem (3.27) for every γ̂ > 0. This means
that we have with Ĥ(X,P ) = β(H(X,P )),

Ĥ(Y,−DY G) ≤ Ĥ(X,DXG) + γ̂.

This implies

H(Y,−DY G) ≤ β−1(β(H(X,DXG)) + γ̂) ≤ H(X,DXG) + γ̂|(β−1)′|L∞(R).

Because of the lower bound on β′ given by Lemma 3.13, we get |(β−1)′|L∞(R) ≤ 1/δ which yields
the compatibility condition (3.4) with γ = γ̂/δ arbitrarily small.

We are now in position to prove Theorem 3.1 in the general case.

Proof of Theorem 3.1. Let us now assume that the Hamiltonians only satisfy (1.5). In this case,
we simply approximate the Hamiltonians Hi by other Hamiltonians H̃i satisfying (3.24) such that

|Hi − H̃i| ≤ γ.

We then apply Theorem 3.1 to the Hamiltonians H̃i and construct an associated vertex test
function G̃ also for the parameter γ. We deduce that

H(Y,−G̃Y ) ≤ H(X, G̃X) + 3γ

with γ > 0 arbitrarily small, which shows again the compatibility condition on the Hamiltonians
(3.4) for the Hamiltonians Hi’s. The proof is now complete in the general case.

4 Minimal/maximal Ishii solutions in the Euclidian setting

In this section, we extend the study of Ishii solutions started in [9] to a multi-dimensional setting.
The proofs are straightforward extensions of the one contains in [9] but we provide them for the
sake of completeness.

We are interested in the following Hamilton-Jacobi equations posed in Rd+1

{

Ut +HL(DU) = 0, t > 0, X = (x′, xd+1), xd+1 < 0,

Ut +HR(DU) = 0, t > 0, X = (x′, xd+1), xd+1 > 0.
(4.1)

We recall that Ishii solutions are viscosity solutions of (4.1) in Rd+1 \ {xd+1 = 0} such that,

{

Ut +max(HL(DU), HR(DU)) ≥ 0, t > 0, xd+1 = 0

Ut +min(HL(DU), HR(DU)) ≤ 0, t > 0, xd+1 = 0
(4.2)
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(in the viscosity sense). The Hamilton-Jacobi equation (4.1) posed in Rd+1 is naturally associated
with another HJ equation posed on a multi-dimensional junction with N = 2 “branches” (or
“sheets”). Indeed, if we define for (x′, xi) ∈ Ji,

u(t, (x′, xi)) =

{

U(t, (x′,−xi)) if i = 1,

U(t, (x′, xi)) if i = 2,
(4.3)

then u is a solution of (1.3) in J \ Γ with

H1(p
′, p1) = HL(p

′,−p1) and H2(p
′, p2) = HR(p

′, p2). (4.4)

Conversely, if u is a solution of (1.3) posed in J with N = 2, and ui denotes u|(0,T )×Ji , then the
function U defined by

U(t, (x′, xd+1)) =

{

u1(t, (x′,−xd+1)) for xd+1 < 0

u2(t, (x′, xd+1)) for xd+1 > 0
(4.5)

satisfies (4.1) in Rd+1.

Proposition 4.1 (Minimal/maximal Ishii solutions in the Euclidian setting). The maximal (resp.
minimal) Ishii solution U± of (4.1) corresponds to the A∓

I -flux-limited solution u± of (1.3) with
Hamiltonians given by (4.4) and

A+
I (p

′) = max(A0(p
′), A∗(p′))

A−
I (p

′) =

{

A+
I (p

′) if π0
R(p

′) < π0
L(p

′)

A0(p
′) if π0

R(p
′) ≥ π0

L(p
′).

where
A∗(p′) = max

pd+1∈[π0
L
(p′)∧π0

R
(p′),π0

L
(p′)∨π0

R
(p′)]

HR(p
′, pd+1) ∧HL(p

′, pd+1).

Remark 4.2. The paper [9] contains a much more complete study of Ishii solutions in the monodi-
mensional setting. Even if such a study most probably extends to the multi-dimensional setting,
we focus here in the identification of the minimal and the maximal Ishii solutions. Such a result
is used in [10].

The proof of Proposition 4.1 is very similar to the one in [9] for the mono-dimensional setting.
We give details in appendix for the reader’s convenience.

A Appendix

A.1 Proof of a technical result

Before proving Proposition 2.14, we state and prove the following elementary lemma.

Lemma A.1 (Quasi-convexity of the functions Ai). If the Hamiltonians Hi are quasi-convex
(resp. convex), continuous and coercive, so are the functions Ai defined in (1.9). In particular,
A0 = maxiAi is quasi-convex (resp. convex), continuous and coercive.

Proof. We only address the question of the quasi-convexity of the functions Ai since their conti-
nuity and coercivity are simpler.

Consider p′ and q′ such that Ai(p
′) ≤ λ and Ai(q

′) ≤ λ for some λ ∈ R. There exists pi, qi ∈ R

such that
Ai(p

′) = Hi(p
′, pi) Ai(q

′) = Hi(q
′, qi).

Then (p′, pi), (q
′, qi) ∈ {Hi ≤ λ} and we conclude from the convexity of {Hi ≤ λ} that for t, s ≥ 0

with t+ s = 1,
Ai(tp

′ + sq′) ≤ Hi(tp
′ + sq′, tpi + sqi) ≤ λ.

This achieves the proof of the lemma.
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Proof of Proposition 2.14. We assume that the Hamiltonians Hi are convex, pi 7→ Hi(p
′, pi) is

increasing in [π0
i (p

′),+∞) and decreasing in (−∞, π0
i (p

′)] and F is convex in all variables and
p 7→ F (p′, p) is decreasing in each variable for every p′ fixed. In particular, the functions ±π±

i

are concave. The general case follows by an approximation argument and by remarking that it
is enough to find β increasing such that β ◦ F and β ◦ Hi satisfy the previous assumptions (see
Lemma 3.13).

We now prove that
G(p′, λ) = F (p′, π+(p′, λ))

is convex w.r.t. (p′, λ) ∈ epiA0. For (p
′, λ), (q′, µ) ∈ epiA0 and t, s ≥ 0 with t+ s = 1, we can use

the monotonicity of F together with the concavity of π+
i (see Lemma 3.2) to get

tG(p′, λ) + sG(q′, µ) ≥ F (tp′ + sq′, tπ+(p′, λ) + sπ+(q′, µ))

≥ F (tp′ + sq′, π+(tp′ + sq′, tλ+ sµ))

= G(tp′ + sq′, tλ+ sµ).

Similarly, we can see that G is non-increasing with respect to λ.
We next remark that

AF (p
′) = G(p′, AF (p

′))

and for p′, q′ ∈ Rd and t, s ≥ 0 with t+ s = 1, we can write

tAF (p
′) + sAF (q

′) = tG(p′, AF (p
′)) + sG(q′, AF (q

′))

≥ G(tp′ + sq′, tAF (p
′) + sAF (q

′))

and
AF (tp

′ + sq′) = G(tp′ + sq′, AF (tp
′ + sq′)).

We thus deduce from the monotonicity of G in λ that

AF (tp
′ + sq′) ≤ tAF (p

′) + sAF (q
′).

The proof is now complete.

A.2 Detailed proof of the comparison principle

This section is devoted to the proof of Theorem 1.3. It is a straightforward extension of the monodi-
mensional case [9] but we provide it for the reader’s convenience and for the sake of completeness.
The following elementary a priori estimate is needed.

Lemma A.2 (A priori control). For u and v as in the statement of Theorem 1.3, there exists
C > 0 such that for all (t,X), (s, Y ) ∈ (0, T )× J ,

u(t,X) ≤ v(s, Y ) + C(1 + d(X,Y ))). (A.1)

Proof. The proof proceeds in several steps.

Barriers. Since u0 is uniformly continuous, there exists uε
0 which is Lipschitz continuous and

such that
|uε

0 − u0| ≤ ε.

We remark that
U±
ε (t,X) = uε

0(x)± Ct± ε

is a super-(resp. sub-)solution of (1.3), (1.4) if C is chosen large enough.

Control at the same time. We first prove that for (t,X) ∈ (0, T )× J ,

u(t,X) ≤ v(t, Y ) + C1(1 + d(X,Y )). (A.2)
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In order to get such an estimate, we consider

φ(X,Y ) = (1 + d2(X,Y ))
1
2 .

It is C1 in J2 and 1-Lipschitz continuous. We then consider

M = sup
t∈(0,T ),X,Y ∈J

u(t,X)− v(t, Y )− C1,1t− C1,2φ(X,Y )−
η

T − t
− αd2(X0, X)

for someX0 ∈ J . Our goal is to prove thatM ≤ 0 for C1,1 and C1,2 sufficiently large (independently
of η and α in (0, 1), say). Since u and v are sub-linear, see (1.12), we have

u(t,X)− v(t, Y ) ≤ CT (2 + d(X0, X) + d(X0, Y )).

In particular, the supremum M is reached as soon as C1,2 > CT . Since u0 is uniformly continuous,
there exists C0 > 0 such that

u0(X)− u0(Y ) ≤ C0φ(X,Y ).

In particular, if C1,2 > C0, we are sure that the supremum is reached for some t > 0.
We next explain why

αd(X0, X) ≤ 2CT (1 + CT ) = C̃T . (A.3)

for X realizing the supremum M . we have

C1,2φ(X,Y ) + αd2(X0, X) ≤ u(t,X)− v(t, Y )

≤ CT (2 + d(X0, X) + d(X0, Y ))

≤ CT (2 + 2d(X0, X) + φ(X,Y ).

In particular, with C1,2 > CT , we get

αd2(X0, X) ≤ 2CT (1 + d(X0, X))

which yields (A.3).
We now write the two viscosity inequalities. There exists a, b ∈ R with a− b = C1,1+ η(T − t)2

such that

a+H(X,C1,2φX(X,Y ) + 2αd(X0, X)) ≤ 0

b+H(Y,−C1,2φY (X,Y )) ≥ 0

where we abuse notation by writing 2αd(X0, X). Substracting these inequalities yields

C1,1 ≤ H(Y,−C1,2φY (X,Y ))−H(X,C1,2φX(X,Y ) + 2αd(X0, X)).

We finally remark that the right hand side is bounded by a constant depending on C1,2. We thus
can choose C1,1 large enough to reach the desired contradiction.

Control at different times. We now derive (A.1) from the barriers constructed above
and (A.2). Remark that

U+
ε (t, Y )− U−

ε (s,X) ≤ Lεd(X,Y ) + 2CT + 2ε ≤ C2(1 + d(X,Y )).

Applying (A.2) to u and U+
ε and then to U−

ε and v, we get

u(t,X) ≤ U+
ε (t, Y ) + C1(1 + d(X,Y ))

U−
ε (s,X) ≤ v(s, Y ) + C1(1 + d(X,Y ))

Combining the three previous inequalities yields the desired result.
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Proof of Theorem 1.3. Our goal is to prove that

M = sup
t∈(0,T ),X∈J

u(t,X)− v(t,X) ≤ 0.

We argue by contradiction and assume that M > 0. This implies that for η and α small enough,
we have for all ε > 0, ν > 0 that Mε,α ≥ 3M

4 > 0 where

Mε,α = sup
(t,X),(s,Y )∈(0,T )×J

u(t,X)− v(s, Y )− εG(ε−1X, ε−1Y )−
(t− s)2

2ν
−

η

T − t
− αd2(X0, X)

where G is the vertex test function given by Theorem 3.1 with γ to be choosen.

Since Mε,α is larger than 3M/4, we can restrict the supremum to points (t,X), (s, Y ) such
that

u(t,X)− v(s, Y )− εG(ε−1X, ε−1Y )−
(t− s)2

2ν
−

η

T − t
− αd2(X0, X) ≥ M/2. (A.4)

In particular, thanks to (3.5) and Lemma A.2, these points satisfy

εg

(

d(X,Y )

ε

)

≤ C(1 + d(X,Y )).

Since g is super-linear, we have
d(X,Y ) = ω(ε)

for some modulus of continuity ω depending on g and C. We can also derive from (A.4) and
Lemma A.2 that

αd2(X0, X) ≤ C(1 + d(X,Y )) ≤ C(1 + ω(ε)). (A.5)

In particular, the points satisfying (A.4) are such that X and Y are bounded by a constant
depending on α; this implies that Mε,α is reached at points we keep denoting by (t,X) and (s, Y ).

Assume that there exists a sequence νn → 0 such that the corresponding points (tn, Xn) and
(sn, Yn) are such that tn = 0 or sn = 0. If (X0, Y0) is an accumulation point of (Xn, Yn), we have

0 <
M

2
≤ u0(X0)− u0(Y0) ≤ ω0(d(X0, Y0)) ≤ ω0(ω(ε))

where ω0 is the modulus of continuity of u0. This implies a contradiction by choosing ε small.

We conclude that for ν small enough, we have t > 0 and s > 0 and that we can write two
viscosity inequalities.

η

T 2
+

t− s

ν
+H(X,GX(ε−1X, ε−1Y ) + αd(X0, X)) ≤ 0

t− s

ν
+H(Y,−GY (ε

−1X, ε−1Y )) ≤ 0

where we abuse notation by writing αd(X0, X). Substracting these inequalities and using (3.4),
we get

η

T 2
≤ H(X,GX(ε−1X, ε−1Y ))−H(X,GX(ε−1X, ε−1Y ) + αd(X0, X)) + ωCKε

(γCKε
)

where Kε = ε−1ω(ε). Letting α → 0, we get from (A.5) that αd(X0, X) → 0 and letting γ → 0,
we get ωCKε

(γCKε
) → 0. These limits imply the following contradiction η

T 2 ≤ 0.
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A.3 Proof of Proposition 4.1

The proof of Proposition 4.1 makes use of the following lemma, which is the analogue of [9,
Lemma 2.18]. Since the proof follows along the same lines, we skip it.

Lemma A.3 (“weak continuity” condition with C1 test functions). Given two Hamiltonians
HL, HR satisfying (1.5) and H0 continuous and coercive (i.e. lim|P |→+∞ H0(P ) = +∞), let

u : (0, T ) × Rd+1 → R be upper semi-continuous such that every C1 function φ touching u from
above at (t,X) with X = (x′, xd+1) and t > 0, satisfies











φt +HL(Dφ) ≤ 0 if xd+1 < 0,

φt +HR(Dφ) ≤ 0 if xd+1 > 0,

φt +H0(Dφ) ≤ 0 if xd+1 = 0.

Then for all t ∈ (0, T ) and X = (x′, 0),

u(t,X) = lim sup
(s,Y )→(t,X),yd+1>0

u(s, Y ) = lim sup
(s,Y )→(t,X),yd+1<0

u(s, Y )

where Y = (y′, yd+1).

Proof of Proposition 4.1. We have to prove the four following assertions:

i) every FA
±

I
-flux-limited sub-solution corresponds to a Ishii sub-solution;

ii) every FA
±

I
-flux-limited super-solution corresponds to a Ishii super-solution;

iii) every Ishii sub-solution corresponds to an FA
−

I
-flux-limited sub-solution;

iv) every Ishii super-solution corresponds to an FA+

I
-flux-limited super-solution.

In order to prove these assetions, it is convenient to translate the notion of A-flux-limited solution
to the Euclidian setting. It reduces to replace FA with F̌A where

F̌A(p
′, pL, pR) = max(A(p′), H+

L (p′, pL), H
−
R (p′, pR))

where H+
L (p′, pL) = H−

1 (p′,−pL) is the non-decreasing part of pL 7→ HL(p
′, pL). In particular,

H+
L (p′, pL) = HL(p

′, pL) if p ≥ π0
L = p+L . In the same way, H−

R (p′, pR) = HR(p
′, pR) if p ≤ π0

R =
p−R.

Let φ ∈ C1((0,+∞)×Rd+1) be a test function touching a F̌A
±

I
-FL sub-solution from above at

X . We have
F̌A(p

′, p, p) ≤ λ

where p′ = D′φ(X), p = ∂d+1φ(X) and λ = −φt(X). This means

max(A±
I (p

′), H+
L (p′, p), H−

R (p′, p)) ≤ λ.

If p ≤ p−R or p ≥ p+L , then H−
R (p′, p) = HR(p

′, p) or H+
L (p′, p) = HL(p

′, p) and we get

min(HR(p
′, p), HL(p

′, p)) ≤ λ.

If now p+L < p < p−R, then A+
I (p

′) = A−
I (p

′) ≥ A∗(p′) and

min(HR(p
′, p), HL(p

′, p)) ≤ A∗(p′) ≤ A±
I ≤ λ

and we conclude in this case too. This achieves the proof of i).

In order to prove ii), we remark that

A+
I (p

′) ≤ max(HL(p
′, p), HR(p

′, p)).
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Let φ ∈ C1((0,+∞)× Rd+1) be a test function touching a F̌A
±

I
-FL super-solution from below at

X . We have in this case
max(A±

I (p
′), H+

L (p′, p), H−
R (p′, p)) ≥ λ.

Since A−
I ≤ A+

I , we get immediately that

max(HL(p
′, p), HR(p

′, p)) ≥ λ.

This achieves the proof of ii).

We next prove iii). First, the weak continuity condition at xd+1 = 0 holds true thanks to
Lemma A.3. Then we can apply Proposition 2.7 and consider a test function φ ∈ C((0,+∞) ×
Rd+1) such that φ|{±xd+1≥0} are C1 and

pL = ∂d+1φ(x
′, 0−) = π−

L (p′, A−
I (p

′))

pR = ∂d+1φ(x
′, 0+) = π+

R(p
′, A−

I (p
′)).

Assume that φ touches an Ishii sub-solution at a point X . Let p′ = D′φ(X). If A−
I (p

′) = A0(p
′),

then we can argue as in [9, Theorem 2.7,i)] and get the desired result. We thus assume that
A−

I (p
′) = A+

I (p
′) = A∗(p′) = HL(p

′, p∗) = HR(p
′, p∗) with p∗ ∈ [π0

R(p
′), π0

L(p
′)]. But in this case

pL = pR = p∗

and the test function
φ(t, x′, x) = ϕ(t, x′) + p∗xd+1

is C1 in (0,+∞)× Rd+1. In particular, since u is an Ishii sub-solution, we get

A−
I (p

′) = min(HL(p
′, p∗), HR(p

′, p∗)) ≤ λ

which yields the desired inequality (this can be checked easily). This achieves the proof of iii).

We finally prove iv). We use once again the reduced set of test functions and consider φ of the
form

φ(t, x′, xd+1) = ϕ(t, x′) + φ0(xd+1)

with
φ′
0(0+) = π+

R(p
′, A+

I (p
′)) and φ′

0(0−) = π−
L (p

′, A+
I (p

′))

where p′ = D′ϕ(t0, x
′
0) if φ touches the Ishii super-solution u from below at (t0, (x

′
0, 0)).

If A+
I (p

′) = A∗(p′) ≥ A0(p
′), then we choose φ0(xd+1) = p∗xd+1 with p∗ such that A∗(p′) =

HR(p
′, p∗) = HL(p

′, p∗). Since u is an Ishii super-solution, we have

ϕt(t0, x
′
0) + max(HR(p

′, p∗), HL(p
′, p∗)) ≥ 0

that is to say
ϕt(t0, x

′
0) +A+

I (p
′) ≥ 0

which is the desired inequality.
If now A+

I (p
′) = A0(p

′) ≥ A∗(p′), then we choose

φ0(xd+1) = π+
R(p

′, A0(p
′))xd+11xd+1≥0 + π−

L (p′, A0(p
′))xd+11xd+1≤0.

We notice that there exists α ∈ {R,L} such that A0(p
′) = Hα(p

′, π0
α(p

′)) and

π−
L (p

′, A0(p
′)) ≤ π+

R(p
′, A0(p

′))

and one of them equals π0
α(p

′). These three facts imply that

φ̃(t, x′, xd+1) := ϕ(t, x′) + π0
α(p

′)xd+1 ≤ φ(t, x,′ , xd+1).
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In particular φ̃ is a C1 test function touching u from below at (t0, (x
′
0, 0)). Since u is an Ishii

super-solution, we get in this case,

ϕt(t0, x
′
0) + max(HR(p

′, π0
α(p

′)), HL(p
′, π0

α(p
′))) ≥ 0

which implies
ϕt(t0, x

′
0) +A0(p

′) ≥ 0.

The proof is now complete.
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