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Quasi-convex Hamilton-Jacobi equations posed

on junctions: the multi-dimensional case
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Abstract

A multi-dimensional junction is the singular d-manifold obtained by gluying through their
boundaries a finite number of copies of a half-hyperplane of Rd+1. We show that the general
theory developed by the authors (2013) for the network setting can be easily adapted to
this multi-dimensional case. In particular, we prove that general junction conditions reduce
to flux-limited ones and that uniqueness holds true when flux limiters are quasi-convex and
continuous. The proof of the comparison principle relies on the construction of a (multi-
dimensional) vertex test function.
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1 Introduction

This paper is concerned with extending the theory developed for Hamilton-Jacobi (HJ) equations
posed on junctions in [3] to the multi-dimensional setting.

A multi-dimensional junction is made of N copies of Rd+1
+ glued through their boundaries.

J =
⋃

i=1,...,N

Ji with

{
Ji = {X = (x′, xi) : x

′ ∈ Rd, xi ≥ 0} ≃ R
d+1
+

Ji ∩ Jj = Γ ≃ Rd for i 6= j.
(1.1)

We emphasize that the common boundary of the hyperspaces Ji is denoted by Γ. For points
X,Y ∈ J , d(X,Y ) denotes |x′ − y′|+ d(x, y) with

d(x, y) =

{
x+ y if X ∈ Ji, Y ∈ Jj , i 6= j

|x− y| if X,Y ∈ Ji.

For a smooth real-valued function u defined on J , ∂iu(X) denotes the (spatial) derivative of
u with respect to xi at X = (x′, xi) ∈ Ji and D′u(X) denotes the (spatial) gradient of u with
respect to x′. The “gradient” of u is defined as follows,

Du(X) :=

{
(D′u(X), ∂iu(X)) if X ∈ Ji \ Γ,

(D′u(x′, 0), ∂1u(x
′, 0), ..., ∂Nu(x′, 0)) if X ∈ Γ.

(1.2)
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With such a notation in hand, we consider the following Hamilton-Jacobi equation posed on the
multi-dimensional junction J

{
ut +Hi(Du) = 0 t > 0, X ∈ Ji \ Γ,
ut + F (Du) = 0 t > 0, X ∈ Γ

(1.3)

submitted to the initial condition

u(0, X) = u0(X) for X ∈ J. (1.4)

The second equation in (1.3) is referred to as the junction condition.

The Hamiltonians are supposed to satisfy the following conditions:





(Continuity) Hi ∈ C(Rd+1)

(Quasi-convexity) ∀λ, {Hi ≤ λ} is convex

(Coercivity) lim|P |→+∞ Hi(P ) = +∞.

(1.5)

We next define the A-limited flux function FA associated with the multi-dimensional junction J .
In order to do so, we first consider π0

i (p
′) ∈ R such that pi 7→ Hi(p

′, pi) reaches its minimum at
pi = π0

i (p
′) and H−

i is defined by

H−
i (p′, pi) =

{
Hi(p

′, pi) if pi ≤ π0
i (p

′),

Hi(p
′, π0

i (p
′)) if p > π0

i (p
′).

So-called flux-limiter functions A : Rd → R are always assumed to be continuous and, in some
important cases, to satisfy the following condition,

A : Rd → R is continuous and quasi-convex. (1.6)

The function FA is defined for p = (p1, . . . , pN) and P = (p′, p) as

FA(P ) = max

(
A(p′), max

i=1,...,N
H−

i (p′, pi)

)
. (1.7)

We now consider the following important special case of (1.3),

{
ut +Hi(Du) = 0 t > 0, X ∈ Ji \ Γ,
ut + FA(Du) = 0 t > 0, X ∈ Γ.

(1.8)

We point out that A could be replaced with max(A,A0) where

A0(p
′) = max

i=1,...,N
Ai(p

′) with Ai(p
′) = min

pi∈R

Hi(p
′, pi). (1.9)

We notice (see Lemma A.1 in Appendix) that the functions Ai, i = 0, . . . , N are quasi-convex,
continuous and coercive.

As far as general junction conditions are concerned, we assume that the junction function
F : Rd × RN → R satisfies

{
(Continuity) F ∈ C(Rd × RN )

(Monotonicity) ∀i, pi 7→ F (p′, p1, . . . , pN ) is non-increasing
(1.10)

and, in some important cases,

(Quasi-convexity) ∀λ, {F ≤ λ} convex. (1.11)
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1.1 Main results

Theorem 1.1 (General junction conditions reduce to FA). Let the Hamiltonians satisfy (1.5) and
let F : RN → R satisfy (1.10). There exists a unique coercive continuous function AF : Rd → R

such that every relaxed viscosity sub-solution (resp. super-solution) of (1.3) is a AF -flux limited
sub-solution (resp. super-solution) of (1.8). Moreover, if F is quasi-convex, so is AF .

Remark 1.2. Let p0i ≥ π0
i (p

′) be minimal such that Hi(p
′, pi) = A0 and let p0 denote (p01, . . . , p

0
N ).

The function AF is defined as follows: for all p′ ∈ Rd, if F (p′, p0) < A0(p
′), then AF (p

′) = A0(p
′),

else AF (p
′) is the only λ ∈ R such that λ ≥ A0(p

′) = maxi Ai(p
′) and there exists p+i ≥ p0i such

that
Hi(p

′, p+i ) = F (p′, p+) = λ

where p+ = (p+1 , . . . , p
+
N ).

Theorem 1.3 (Comparison principle on a multi-dimensional junction). Assume that the Hamil-
tonians satisfy (1.5), the junction function satisfies (1.10) and (1.11) and that the initial datum
u0 is uniformly continuous. Then for all (relaxed) sub-solution u and (relaxed) super-solution v
of (1.3)-(1.4) satisfying for some T > 0 and CT > 0,

u(t,X) ≤ CT (1 + d(0, X)), v(t,X) ≥ −CT (1 + d(0, X)), for all (t,X) ∈ [0, T )× J, (1.12)

we have
u ≤ v in [0, T )× J.

1.2 Comparison with known results

Our results are related to [1, 2] where an optimal control problem in a two-domain setting is
studied. The state of the system evolves according to two different dynamics on each side of an
hypersurface. Moreover, the two dynamics at the interface corresponding to the maximal and
minimal Ishii’s discontinuous solutions of the associated Hamilton-Jacobi equation are identified.
One of the two value functions is characterized in terms of partial differential equations. We
showed in [3] that, in the one-dimensional setting, both can be characterized by using the notion
of flux-limited solutions introduced in [3]. The result of the present paper indicates that such
a connexion holds in the general two-domain setting. Moreover, we can deal with quasi-convex
Hamiltonians instead of convex ones.

The reader is also referred to [5, 4] for optimal control problems in multi-domains. In particular,
the authors impose some transmission conditions. As we already mentioned it in [3], Definition 2.4
is strongly related to these works.

Organization of the article. The paper is organized as follows. In Section 2, the notion of
viscosity solution in the setting of multi-dimensional junction is introduced. Section 3 is devoted
to the construction of the vertex test function. The proof of a technical lemma is presented in an
appendix.

Notation. For a function f : D → R, epi f denotes its epigraph {(X, r) ∈ D × R : r ≥ f(X)}
and hypo f denotes its hypograph {(X, r) ∈ D × R : r ≤ f(X)}.

2 Viscosity solutions on a multi-dimensional junction

2.1 Definitions

2.1.1 Class of test functions

For T > 0, set JT = (0, T )× J . The class of test functions on JT is chosen as follows,

C1(JT ) =
{
ϕ ∈ C(JT ), ϕ restricted to (0, T )× Ji is C

1 for i = 1, ..., N
}
.
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2.1.2 Classical viscosity solutions

In order to define classical viscosity solutions, we recall the definition of upper and lower semi-
continuous envelopes u∗ and u∗ of a (locally bounded) function u defined on [0, T )× J :

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) and u∗(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

Definition 2.1 (Classical viscosity solutions). Assume the Hamiltonians satisfy (1.5) and the flux
function F satisfies (1.10). Let u : [0, T )× J → R be locally bounded.

i) We say that u is a (classical viscosity) sub-solution (resp. super-solution) of (1.3) in JT if for
all test function ϕ ∈ C1(JT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

ϕt +Hi(Dϕ) ≤ 0 (resp. ≥ 0) at (t0, x0) if x0 ∈ Ji \ Γ

ϕt + F (Dϕ) ≤ 0 (resp. ≥ 0) at (t0, x0) if x0 ∈ Γ. (2.1)

ii) We say that u is a (classical viscosity) sub-solution (resp. super-solution) of (1.3)-(1.4) on
[0, T )× J if additionally

u∗(0, x) ≤ u0(x) (resp. u∗(0, x) ≥ u0(x)) for all x ∈ J.

iii) We say that u is a (classical viscosity) solution if u is both a sub-solution and a super-solution.

Definition 2.2 (Flux-limited solutions). Consider a continuous flux-limiter function A : Rd → R.
Then u is a A-flux limited sub-solution (resp. super-solution, solution) of (1.8) if it is a classical
sub-solution (resp. super-solution, solution) of (1.3) with F = FA.

2.1.3 Relaxed viscosity solutions

We next introduce relaxed viscosity solutions.

Definition 2.3 (Relaxed viscosity solutions). Assume the Hamiltonians satisfy (1.5) and the flux
function F satisfies (1.10). Let u : [0, T )× J → R be locally bounded.

i) We say that u is a relaxed sub-solution (resp. relaxed super-solution) of (1.3) in JT if for all
test function ϕ ∈ C1(JT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

ϕt +Hi(Dϕ) ≤ 0 (resp. ≥ 0) at (t0, x0)

if x0 /∈ Γ, and

either ϕt + F (Dϕ) ≤ 0 (resp. ≥ 0)
or ϕt +Hi(Dϕ) ≤ 0 (resp. ≥ 0) for some i

∣∣∣∣ at (t0, x0)

if x0 ∈ Γ.

ii) We say that u is a relaxed (viscosity) solution if u is both a sub-solution and a super-solution.
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2.1.4 A reduced set of test functions

Let π±
i : Rd × R → R be defined as follows

π+
i (p

′, λ) = inf{pi : Hi(p
′, pi) = H+

i (p′, pi) = λ}

π−
i (p

′, λ) = sup{pi : Hi(p
′, pi) = H−

i (p′, pi) = λ}.

Definition 2.4 (Flux-limited viscosity solutions – again). Assume the Hamiltonians satisfy (1.5)
and consider a continuous flux-limiter function A : Rd → R such that for all p′ ∈ Rd, A(p′) ≥
A0(p

′). Given u : [0, T )× J → R locally bounded, the function u is a reduced sub-solution (resp.
super-solution) of (1.3) with F = FA in JT if and only if u is a sub-solution (resp. super-solution)
outside Γ and for all test function ϕ ∈ C1(JT ) touching u from above at (t0, X0) ∈ (0,+∞)× Γ,
of the following form

ϕ(t, x′, x) = φ(t, x′) + φ0(x)

with {
φ ∈ C1((0,+∞)× Rd)

D′φ(t0, x
′
0) = p′0

{
φ0 ∈ C1(R)

∂iφ0(0) = π+
i (p

′
0, A(p

′
0))

we have
ϕt + FA(Dϕ) ≤ 0 (resp. ≥ 0).

Proposition 2.5 (Equivalence of Definitions 2.2 and 2.4). The definitions 2.2 and 2.4 are equiv-
alent.

Proof. It is clear that flux-limited sub-solutions (resp. super-solutions) are reduced sub-solutions
(resp. reduced super-solutions). To prove that the converse holds true, we proceed as in [3] by
considering critical slopes in x. Precisely, it is enough to prove the following lemmas.

Lemma 2.6 (Critical slopes for super-solutions). Let u be a super-solution of (1.8) away from Γ
and let ϕ touch u∗ from below at P0 = (t0, X0) with X0 ∈ Γ. Then the “critical slopes” defined as
follows

p̄i = sup{p̄ ∈ R : ∃r > 0, ϕ(t,X) + p̄x ≤ u(t,X) for (t,X) ∈ Br(P0) ∩ (0,+∞)× Ji}

satisfy for all i = 1, . . . , N ,

ϕt(P0) +Hi(D
′ϕ(P0), ∂iϕ(P0) + p̄i) ≥ 0.

Lemma 2.7 (Critical slopes for sub-solutions). Let u be a sub-solution of (1.8) away from Γ and
let ϕ touch u∗ from above at P0 = (t0, X0) with X0 ∈ Γ. Then the “critical slopes” defined as
follows

p̄i = inf{p̄ ∈ R : ∃r > 0, ϕ(t,X) + p̄x ≥ u(t,X) for (t,X) ∈ Br(P0) ∩ (0,+∞)× Ji}

satisfy for all i = 1, . . . , N ,

ϕt(P0) +Hi(D
′ϕ(P0), ∂iϕ(P0) + p̄i) ≤ 0.

The proofs of these lemmas are straightforward adaptations of the corresponding ones in [3]
so we skip them. The remaining of the proof is also analogous but we give some details in the
sub-solution case for the reader’s convenience.

Let ϕ touch u∗ from below at P0 = (t0, X0) with X0 ∈ Γ and let λ denote ϕt(P0) and
P = (p′, p1, . . . , pN ) denote Dϕ(P0). We want to prove

FA(p
′, pi) ≤ λ. (2.2)

We know from Lemma 2.6 that for all i = 1, . . . , N ,

Hi(p
′, pi + p̄i) ≤ λ (2.3)
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for some p̄i ≤ 0. In particular,
A0(p

′) ≤ λ.

We write next

FA(p
′, pi) = max(A(p′), H−

i (p′, pi))

≤ max(A(p′), H−
i (p′, pi + p̄i))

≤ max(A(p′), Hi(p
′, pi + p̄i))

≤ max(A(p′), λ).

If (2.2) does not hold true, then
A0(p

′) ≤ λ < A(p′).

Moreover, we have from (2.3) that

pi + p̄i < π+
i (p

′, A(p′)).

Hence, we can consider the following test function

φ(t, x′, x) = ϕ(t, x′, 0) + φ0(x)

with ∂iφ0(0) = π+
i (p

′, A(p′)). From the definition of reduced sub-solutions, we thus get

A(p′) = FA(p
′, π+

i (p
′, A(p′))) ≤ λ

which is the desired contradiction.

2.2 Stability

In the following proposition, we assert that, for the special junction functions FA, the junction
condition is in fact always satisfied in the classical sense, that is to say in the sense of Definition 2.1.

Proposition 2.8 (FA junction conditions are always satisfied in the classical sense). Assume the
Hamiltonians satisfy (1.5) and consider a continuous flux-limiter function A. If F = FA, then
relaxed viscosity solutions in the sense of Definition 2.3 coincide with viscosity solutions in the
sense of Definition 2.1.

Proof. We treat successively the super-solution case and the sub-solution case.

Case 1: the super-solution case. Let u be a relaxed super-solution and let us assume by
contradiction that there exists a test function ϕ touching u from below at P0 = (t0, X0) for some
t0 ∈ (0, T ) and X0 ∈ Γ, such that

ϕt + FA(Dϕ) < 0 at P0. (2.4)

Consider next the test function ϕ̃ satisfying ϕ̃ ≤ ϕ in a neighborhood of P0, with equality at P0

such that

ϕ̃t(P0) = ϕt(P0)
D′ϕ̃(P0) = D′ϕ(P0)

and ∂iϕ̃(P0) = min(π0
i (D

′ϕ(P0)), ∂iϕ(P0)) for i = 1, ..., N.

Using the fact that FA(Dϕ) = FA(Dϕ̃) ≥ H−
i (D′ϕ, ∂iϕ̃) = Hi(D

′ϕ, ∂iϕ̃) at P0, we deduce a
contradiction with (2.4) using the viscosity inequality satisfied by ϕ for some i ∈ {1, . . . , N}.
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Case 2: the sub-solution case. Let now u be a relaxed sub-solution and let us assume by
contradiction that there exists a test function ϕ touching u from above at P0 = (t0, X0) for some
t0 ∈ (0, T ) and X0 ∈ Γ, such that

ϕt + FA(Dϕ) > 0 at P0. (2.5)

Let us define
I =

{
i ∈ {1, ..., N} , H−

i (D′ϕ, ∂iϕ) < FA(Dϕ) at P0

}

and for i ∈ I, let qi ≥ π0
i (D

′ϕ(P0)) be such that

Hi(D
′ϕ(P0), qi) = FA(Dϕ(P0))

where we have used the fact that Hi(D
′ϕ(P0),+∞) = +∞. Then we can construct a test function

ϕ̃ satisfying ϕ̃ ≥ ϕ in a neighborhood of P0, with equality at P0, such that

ϕ̃t(P0) = ϕt(P0)
D′ϕ̃(P0) = D′ϕ(P0)

and ∂iϕ̃(P0) =

{
max(qi, ∂iϕ(P0)) if i ∈ I,
∂iϕ(P0) if i 6∈ I.

Using the fact that FA(Dϕ) = FA(Dϕ̃) ≤ Hi(D
′ϕ, ∂iϕ) at P0 for all i, we deduce a contradiction

with (2.5) using the viscosity inequality for ϕ for some i ∈ {1, . . . , N}.

2.3 General junction conditions reduce to flux-limited ones

We first prove Theorem 1.1.

Proof of Theorem 1.1. With the notation of Remark 1.2 in hand, we first remark that there exists
only one λ ≥ A0(p

′) such that there exists p+ = (p+1 , . . . , p
+
N ) with p+i ≥ p0i such that

Hi(p
′, p+i ) = F (p′, p+) = λ.

The coercivity of AF is a direct consequence of the fact that AF ≥ A0. We thus prove next that
AF is continuous. Consider a sequence (p′n)n converging towards p′ and let p+n = (p+1,n, . . . , p

+
N,n)

with p+i,n ≥ p0i be such that

Hi(p
′
n, p

+
i,n) = F (p′n, p

+
n ) = An (2.6)

with An = AF (p
′
n). We first claim that (p+i,n)n is bounded. Indeed, if not, then An → +∞ and,

for n large enough,
F (p′n, p

0) ≥ An

which is impossible. The claim also implies that (An)n is also bounded. Consider now to converging
subsequences, still denoted by (p+n )n and (An)n, and let p+ and A be their limits. We can pass to
the limit in (2.6) and get

Hi(p
′, p+i ) = F (p′, p+) = A

which implies that A = AF (p
′).

We only do the proof for super-solutions since the proof for sub-solutions follows along the
same lines. Let ϕ be a test function touching u∗ from below at P0 = (t0, X0). We only need to
consider the case where X0 ∈ Γ. We can also assume that

ϕ(t,X) = φ(t, x′) + φ0(x)

with
D′φ(t0, x

′
0) = p′0 and ∂iφ0(0) = π+

i (p
′
0, AF (p

′
0)).

We have
ϕt(P0) + max(F (Dϕ(P0)),max

i
Hi(Dϕ(P0)) ≥ 0

7



which yields
ϕt(P0) + max(F (p′0, π

+(p′0, AF (p
′
0))), AF (p

′
0)) ≥ 0.

In view of the definition of AF , we get

ϕt(P0) +AF (p
′
0) ≥ 0.

Now compute

FAF
(Dϕ(P0)) = max(AF (p

′
0),max

i
H−

i (p′0, π
+
i (p

′
0, AF (p

′
0))) = AF (p

′
0).

The proof is now complete.

We now turn to the following useful proposition.

Proposition 2.9 (Quasi-convex Hamiltonians and flux functions generate quasi-convex flux lim-
iters). If the Hamiltonians Hi satisfy (1.5) and the flux function F satisfies (1.10)-(1.11), then
AF is continuous, quasi-convex and coercive.

The proof of this proposition is postponed and can be found in Appendix.

2.4 Existence

Using Perron’s method as in [3], we easily get existence of relaxed viscosity solutions for general
junction functions F satisfying (1.10).

Theorem 2.10 (Existence). Let T > 0. Assume that Hamiltonians satisfy (1.5), that the junction
function F satisfies (1.10) and that the initial datum u0 is uniformly continuous. Then there exists
a relaxed viscosity solution u of (1.3)-(1.4) in [0, T )× J and a constant CT > 0 such that

|u(t,X)− u0(X)| ≤ CT for all (t,X) ∈ [0, T )× J.

3 Vertex test function

This section is devoted to the construction of the vertex test function to be used in the proof of
the comparison principle.

We will use below the following shorthand notation

H(X, p′, p) =

{
Hi(p

′, p) for p = pi if X ∈ Ji \ Γ,
FA(p

′, p) for p = (p1, ..., pN ) if X ∈ Γ.
(3.1)

In particular, keeping in mind the definition of Du (see (1.2)), Problem (1.8) on the junction can
be rewritten as follows

ut +H(X,Du) = 0 for all (t,X) ∈ (0,+∞)× J.

Then our key result is the following one.

Theorem 3.1 (The vertex test function). Let A : Rd → R be quasi-convex and γ > 0. Assume
the Hamiltonians satisfy (1.5). Then there exists a function G : J2 → R enjoying the following
properties.

i) (Regularity)

G ∈ C(J2) and

{
G(X, ·) ∈ C1(J) for all X ∈ J,
G(·, Y ) ∈ C1(J) for all Y ∈ J.

ii) (Bound from below) G ≥ 0 = G(0, 0).
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iii) (Compatibility condition on the diagonal) For all X ∈ J ,

0 ≤ G(X,X)−G(0, 0) ≤ γ. (3.2)

iv) (Compatibility condition on the gradients) For all (X,Y ) ∈ J2,

H(Y,−DYG(X,Y ))−H(X,DXG(X,Y )) ≤ γ (3.3)

where notation introduced in (1.2) and (3.1) are used.

v) (Superlinearity) There exists g : [0,+∞) → R nondecreasing and s.t. for (X,Y ) ∈ J2

g(d(X,Y )) ≤ G(X,Y ) and lim
a→+∞

g(a)

a
= +∞. (3.4)

vi) (Gradient bounds) For all K > 0, there exists CK > 0 such that for all (X,Y ) ∈ J2,

d(X,Y ) ≤ K =⇒ |Gx(X,Y )|+ |Gy(X,Y )| ≤ CK . (3.5)

We now assert that Theorem 1.3 is a direct consequence of Theorem 3.1.

Proof of Theorem 1.3. Use Theorem 3.1 and proceed as in [3].

3.1 The case of smooth convex Hamiltonians

Assume that the Hamiltonians Hi satisfy the following assumptions for i = 1, ..., N ,

{
Hi ∈ C2(Rd+1) with D2Hi > 0 in Rd+1,

lim|P |→+∞
Hi(P )
|P | = +∞

(3.6)

and the flux limiter
A ∈ C2(Rd) and D2A > 0 in R

d+1. (3.7)

It is useful to associate with each Hi satisfying (3.6) its partial inverse functions π±
i :

for λ ≥ Ai(p
′), Hi(p

′, π±
i (p

′, λ)) = λ such that π−
i (p′, λ) ≤ π0

i (p
′) ≤ π+

i (p
′, λ) (3.8)

where we recall that Ai(p
′) = minpi

Hi(p
′, pi).

Lemma 3.2 (Properties of π±
i ). Assume (3.6). Then π±

i (p
′, ·) ∈ C2(Ai(p

′),+∞) and π±
i ∈

C(epiAi). Moreover, π±
i is concave w.r.t. (p′, λ) in epiAi and ±π±

i is non-decreasing w.r.t. λ.

Proof. The regularity of π± can be derived thanks to the inverse function theorem. As far as
the concavity of π+

i is concerned, we can drop the subscript i and we do so for clarity. let
(p′, λ), (q′, µ) ∈ epiA and t ∈ (0, 1). Then

tλ+ (1− t)µ = tH(p′, π+(p′, λ)) + (1− t)H(q′, π+(q′, µ))

≥ H(tp′ + (1 − t)q′, tπ+(p′, λ) + (1− t)π+(q′, µ)).

Hence
π+(tp′ + (1− t)q′, tλ+ (1 − t)µ) ≥ tπ+(p′, λ) + (1− t)π+(q′, µ)

which is the desired result. The monotonicity of π+ is easy to derive from the convexity of H .
The proof of the lemma is now complete.
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We next define the function G0 for X ∈ Ji, Y ∈ Jj , i, j = 1, ..., N , as follows,

G0(X,Y ) = sup
(P,λ)∈Gij

A

(p′ · (x′ − y′) + pix− pjy − λ) (3.9)

where

Gij
A =

{
{(P, λ) ∈ Rd+2 × R : P = (p′, pi, pj), Hi(p

′, pi) = Hj(p
′, pj) ≥ A(p′)} if i 6= j

{(P, λ) ∈ Rd+1 × R : P = (p′, pi), Hi(p
′, pi) ≥ A(p′)} if i = j

(3.10)

with A ≥ A0 and A quasi-convex.

Proposition 3.3 (The vertex test function – the smooth convex case). Let A ≥ A0 with A0 given
by (1.9) and assume that the Hamiltonians satisfy (3.6). Then G0 satisfies

i) (Regularity)

G0 ∈ C(J2) and

{
G0 ∈ C1({(X,Y ) ∈ J × J, x 6= y}),
G0(0, ·) ∈ C1(J) and G0(·, 0) ∈ C1(J);

ii) (Bound from below) G0 ≥ G0(0, 0);

iii) (Compatibility conditions) (3.2) and (3.3) hold with γ = 0;

iv) (Superlinearity) (3.4) holds for some g = g0;

v) (Gradient bounds) (3.5) holds only for (X,Y ) ∈ J2 such that x 6= y or (x, y) = (0, 0);

The proof of this proposition is postponed until Subsection 3.4. With such a result in hand,
we can now prove Theorem 3.1 in the case of smooth convex Hamiltonians.

Lemma 3.4 (The case of smooth convex Hamiltonians). Assume that the Hamiltonians satisfy
(3.6). Then the conclusion of Theorem 3.1 holds true.

Proof. It is enough to regularize G0
ii in a neighborhood of {xi = yi}. Fix ε0 > 0 and t0 > 0 and

consider a function ε : [0,+∞[→ [0, ε0[ such that ε(t) = ε0 for t ≥ t0. Consider also a smooth
cut-off function Ψ : R → [0, 1] such that suppΨ ⊂ [−1, 1] and a mollifier ρ. Then define

Gii(X,Y ) =

(
1−Ψ

(
xi − yi

ε(xi + yi)

))
G0

ii(X,Y ) + Ψ

(
xi − yi

ε(xi + yi)

)
ρε(xi+yi) ⋆ G

0
ii(X,Y ).

This regularization procedure introduces a small error γ in (3.2) and (3.3) but preserves the other
desired properties.

3.2 The vertex test function in Ji × Jj with i 6= j

In order to prove Proposition 3.3, we first need to study G0 for X ∈ Ji and Y ∈ Jj with i 6= j.
Then, one can write

G0
ij(X,Y ) = Gij(x

′ − y′, xi,−yj)

with
Gij(Z) = sup

(P,λ)∈Gij
A

(P · Z − λ)

with Gij
A is defined in (3.10). Remark that for X ∈ Ji and Y ∈ Jj , we have Z = X −Y ∈ Q where

Q = R
d × [0,+∞[×]−∞; 0].

We also consider the simplex

T = {(αi, αj , α0) ∈ [0, 1]3 : αi + αj + α0 = 1}.
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Lemma 3.5 (Necessary conditions for the maximiser). Given Z ∈ Q, the supremum defining Gij

is reached for some (P, λ) ∈ Gij
A and there exists (αi, αj , α0) ∈ T such that

Z = D(α ·H)(P )

with H = (Hi, Hj , A).

Proof. Gij(Z) is defined by maximizing a linear function under a equality constraint and an
inequality constraint. Constraints are qualified if

D(Hi −Hj) is not colinear with D(Hi −A).

When constraints are qualified, Karush-Kuhn-Tucker theorem asserts that there exists αj ∈ R

and α0 ≥ 0 such that

Z = ∇PHi + αj(∇PHj −∇PHi) + α0∇P (A−Hi)

with
α = 0 if A(p′) < Hi(p

′, pi).

If one sets αi = 1− α0 − αj , Equivalently, we have





zi = αi∂iHi(p
′, pi) ≥ 0

zj = αj∂jHj(p
′, pi) ≤ 0

z′ = αi∇p′Hi + αj∇p′Hj + α0∇p′A

In particular, (αi, αj , α0) ∈ T . Hence, the result is proved when constraints are qualified. This is
in particular true if

∂iHi(p
′, pi) > 0 and ∂jHj(p

′, pj) < 0.

Now assume that ∂iHi(p
′, pi) ≤ 0. We remark that in all cases, ∂iHi(p

′, pi) ≥ 0 since zi ≥ 0.
Hence, ∂iHi(p

′, pi) = 0 or, in other words, Hi(p
′, pi) = Ai(p

′). But the constraint Hi(p
′, pi) ≥

A(p′), the assumption A(p′) ≥ A0(p
′) and the simple fact that Ai(p

′) ≤ A0(p
′) imply in particular

that A(p′) = A0(p
′). We arrive at the same conclusion if ∂jHj(p

′, pj) ≥ 0. In other words,

Constraints are qualified as soon as ∀p′, A(p′) > A0(p
′). (3.11)

In particular, the result of the lemma holds true under this latter condition: A(p′) > A0(p
′)

for all p′ ∈ Rd. If now there are some p′ such that A(p′) = A0(p
′), we remark that

Gij(Z) = lim
ε→0

Gε
ij(Z)

where Gε
ij(Z) is associated with Aε(p′) = ε+ A(p′). From the previous case, we know that there

exists Pε and λε such that
Gε

ij(Z) = Pε · Z − λε

and αε = (αε
i , α

ε
j , α

ε
0) ∈ T such that

Z = D(α ·H)(Pε).

We can extract a subsequence such that αε → α. Moreover, Pε · Z − λε is bounded from above
and

λε = Hi(p
′ε, pεi ) = Hj(p

′ε, pεj).

Since Hi and Hj are assumed to be superlinear, we conclude that we can also extract a converging
subsequence from Pε. This achieves the proof of the lemma.
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Lemma 3.6 (Uniqueness of P ). Let Z ∈ Q. If there exists α, P and β,Q such that

{
Gij(Z) = P · Z − λ = Q · Z − µ,

Z = D(α ·H)(P ) = D(β ·H)(Q).

Then P = Q.

Proof. We consider the function Ψ : Rd+2 × T → R defined as follows

Ψ(P, α) = D(α ·H)(P ).

By assumption, we have
0 = D(α ·H)(P )−D(β ·H)(Q).

If P̄ denotes Q− P and ᾱ denotes β − α, then

0 =

∫ 1

0

DΨ(P + θP̄ , α+ θᾱ)dθ

=

∫ 1

0

DPΨ(P + θP̄ , α+ θᾱ)P̄ dθ +

∫ 1

0

DαΨ(P + θP̄ , α+ θᾱ)ᾱdθ.

Taking the scalar product with P̄ yields

0 =

∫ 1

0

D2
PP ((α+ θᾱ) ·H)(P + θP̄ )P̄ · P̄ dθ +

∫ 1

0

DPH(P + θP̄ )ᾱ · P̄ dθ

= T1 + T2

with Ti ≥ 0, i = 1, 2 and

T1 =

∫ 1

0

D2
PP ((α+ θᾱ) ·H)(P + θP̄ )P̄ · P̄ dθ ≥ 0

T2 =

∫ 1

0

DPH(P + θP̄ )ᾱ · P̄ dθ ≥ 0.

Indeed, keeping in mind that

{
Hi(P ) = Hj(P )
Hi(Q) = Hj(Q)

and

{
α0(A(P )−Hi(P )) = 0

β0(A(Q) −Hi(Q)) = 0

we remark that
∫ 1

0

DPH(P + θP̄ )ᾱ · P̄ dθ = ᾱ · (H(Q)−H(P ))

= ᾱi(Hi(Q)−Hi(P )) + ᾱj(Hj(Q)−Hj(P )) + ᾱ0(A(Q)−A(P ))

= (β0 − α0)(A(Q)−Hi(Q)−A(P ) +Hi(P ))

= β0(Hi(P )−A(P )) + α0(Hi(Q)−A(Q)) ≥ 0.

Hence, we get

0 =

∫ 1

0

D2
PP ((α+ θᾱ) ·H)(P + θP̄ )P̄ · P̄ dθ

0 = β0(Hi(P )−A(P ))

0 = α0(Hi(Q)−A(Q)).

We distinguish three cases. We will use several times the fact that Hi(p
′, pi) = λ and ∂iHi(p

′, pi) ≥
0 implies that pi = π+

i (p
′, λ). We will also use the corresponding property for pj : pj = π−

j (p′, pj).

12



• Case 1. If there exists θ ∈ (0, 1) such that α+ θᾱ ∈ int T , then P = Q and

λ = P · Z −Gij(Z) = µ.

• Case 2. If α = β is a vertex of T , then either α = (1, 0, 0) or α = (0, 1, 0) or α = (0, 0, 1).

– In the first subcase, αi = 1, we get p′ = q′ and pi = qi and Z = ∇PHi(P ) and

0 = (pj − qj)zj = (P −Q) · Z = λ− µ.

We conclude by remarking that pj = π−
j (p

′, λ) = qj . The second subcase is similar.

– If now α = (0, 0, 1), then p′ = q′ and Z = ∇PA(P ) and

0 = (pi − qi)zi + (pj − qj)zj = P · Z = λ− µ

and we conclude as in the two previous subcases.

• Case 3. Assume finally that there exists θ ∈ (0, 1) such that α+θᾱ ∈ ∂T but is not a vertex.
In this third case, this implies that two components of a = α+ θᾱ = (ai, aj, a0) are not 0.

– If a0 = 0 then p′ = q′ and pi = qi and pj = qj , i.e. P = Q.

– If ai = 0 then p′ = q′ and pj = qj and zi = 0 and λ = µ and pi = π+(p′, λ) = qi. The
third subcase aj = 0 is similar to the second one.

The proof of the lemma is now complete.

The two previous lemmas imply the following one.

Lemma 3.7 (Gradients of G0
ij). The function G0

ij is C1 in Ji × Jj, up to the boundary, and

DG0
ij(X,Y ) = (p′, pi, pj), pi = π+

i (p
′, λ), pj = π−

j (p
′, λ)

where (p′, λ) = (P(X,Y ),L(X,Y )) are uniquely determined by the relation

G0
ij(X,Y ) = p′ · (x′ − y′) + pixi − pjxj − λ.

In particular, the maps P and L are continuous in Ji × Jj.

The following lemma is elementary but it will be used below.

Lemma 3.8 (G0
ij at the boundary). The restriction of Gij to {zi = 0} and {zj = 0} equals

respectively (Hi ∨ A)∗ and (Hj ∨ A)∗.

3.3 The vertex test function in Ji × Ji

In view of the definition of G0, see (3.9), we have

G0
ii(X,Y ) = (Hi ∨ A)∗(X − Y ).

In particular, we derive from Lemma 3.8 the following one.

Lemma 3.9 (Continuity of G0). The function G0 is continuous in J × J .

We now turn to the regularity of G0
ii.

Lemma 3.10 (Regularity of G0
ii). G0

ii is C1 in Ji × Ji \ {xi = yi}.
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Proof. Since G0
ii is convex, it is C1 if and only if there exists one and only one subgradient.

Consider two distinct subgradients (p′, pi) and (q′, qi) of (max(Hi, A))
∗ at some point (z′, zi) =

(x′ − y′, xi − yi). This implies that

(z′, zi) ∈ ∂max(Hi, A)(p
′, pi) ∩max(Hi, A)(q

′, qi).

Since Hi is strictly convex, this can only happen when Hi = A and since (p′, pi) 6= (q′, qi), this
implies zi = 0.

Lemma 3.11 (Gradients of G0
ii). For (X,Y ) ∈ Ji × Ji such that xi 6= yi, we have

DG0
ii(X,Y ) = (p′, pi,−p′,−pi)

with pi = π±
i (p′, λ) if ±(xi − yi) ≥ 0. (p′, λ) = (P(X,Y ),L(X,Y )) is uniquely determined by

{
Z = αiDHi(P ) + (1− αi)DA(P )

G0
ii(X,Y ) = p′ · (x′ − y′) + pi(xi − yi)− λ

which holds true for some αi ∈ [0, 1]. In particular, the maps P and L are continuous in Ji × Ji \
{xi = yi 6= 0}.

Proof. Lemma 3.10 implies that P = (p′, pi,−pi) is unique. Hence λ is unique too. Moreover
pi = π±

i (p′, λ) if ±(xi − yi) ≥ 0. Remark that P = D(Hi ∨ A)∗(Z) with Z = X − Y is equivalent
to

Z ∈ D(Hi ∨ A)(P )

which implies
Z = αiDHi(P ) + (1 − αi)DA(P )

for some αi ∈ [0, 1]. Lemma 3.6 allows us to conclude.

3.4 Proof of Proposition 3.3

We now turn to the proof of Proposition 3.3.

Proof of Proposition 3.3. The proof proceeds in several steps.

Step 1: Regularity. We already noticed in Lemma 3.9 that G0 ∈ C(J2) and Lemmas 3.7 and
3.10 imply that G0 ∈ C1(R) for each region R given by

R =

{
Ji × Jj if i 6= j,

T±
i = {(X,Y ) ∈ Ji × Ji, ±(xi − yi) ≥ 0} if i = j.

(3.12)

Step 2: Computation of the gradients. For each R given by (3.12) and for all (X,Y ) ∈ R ⊂
Ji × Jj , Lemmas 3.7 and 3.11 imply that

G0(X,Y ) = p′ · (x′ − y′) + pixi − pjyj − λ

and
(D′, ∂i)G

0
|R(X,Y ) = (p′, pi) and − (D′, ∂j)G

0
|R(X,Y ) = (p′, pj)

with λ = L(X,Y ) and p′ = P(X,Y ) with

(pi, pj) =

{
(π+

i (p
′, λ), π−

j (p′, λ)) if R = Ji × Jj with i 6= j,

(π±
i (p′, λ), π±

i (p′, λ)) if R = T±
i with i = j.

(3.13)

Notice in particular that P and L are continuous in J × J except on ∪N
i=1{xi = yi 6= 0}.
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Step 3: Checking the compatibility condition on the gradients. Let us consider (x, y) ∈
J2 with x = y = 0 or x 6= y. We have

DX(G0(·, Y ))(X) ∈ {(p′, π±
i (λ))}

−(DY G
0(X, ·))(Y ) ∈ {(p′, π±

j (λ))}

with λ ≥ A(p′). We claim that
H(X,DXG0(X,Y )) = λ (3.14)

and
H(Y,−DYG

0(X,Y )) = λ (3.15)

(we use here once again the short hand notation (3.1).
(3.14) is clear except if X = 0. In this case, if Y 6= 0, say Y ∈ Jj , the desired equality is

rewritten as
max(A(p′),max

i
H−

i (p′, pi)) = λ

with pi = π+
i (p

′, λ) if i 6= j and pj = π−
j (p

′, λ). Since λ ≥ A(p′) and H−
j (p′, pj) = λ, we get the

result. If now (X,Y ) = (0, 0), then pi = π+
i (p

′, λ) and λ = A(p′). Hence, we get (3.14) in this
case too. One can derive (3.15) in the same way.

Step 4: Superlinearity. In view of the definition of G0, we deduce from (3.13) that for all
R > 0 and λ > Ai(R(x′ − y′)/|x′ − y′|),

G0(X,Y ) ≥ R|x′ − y′|+

{
xπ+

i (Rx̂′ − y′, λ)− yπ−
j (Rx̂′ − y′, λ)− λ if i 6= j,

(x− y)π±
i (Rx̂′ − y′, λ)− λ if i = j,±(x− y) ≥ 0

where ẑ = z/|z|. For R > 0, we define

λ(R) = sup
i=1,...,N,|e|=1

Ai(Re),

and
π0(R) := min

±, i=1,...,N,|e|=1
±π±

i (Re, λ(R)) ≥ 0.

Hence we get
G0(X,Y ) ≥ R|x′ − y′|+ π0(R)d(x, y) − λ(R)

where

d(x, y) =

{
|xi − yi| if X,Y ∈ Ji

xi + yj if X ∈ Ji, Y ∈ Jj , i 6= j.

From the definition (3.8) of π±
i and the assumption (3.6) on the Hamiltonians, we deduce that

π0(R) → +∞ as R → +∞

which implies that for any K ≥ 0, there exists a constant CK ≥ 0 such that

G0(X,Y ) ≥ K(|x′ − y′|+ d(x, y)) − CK .

Therefore we get (3.4) with
g0(a) = sup

K≥0
(Ka− CK).

Step 5: Gradient bounds. Because each component of the gradients of G0 are equal to one
of the

{
(p′, π±

k (p
′, λ))

}
±,k=1,...,N

with λ = L(X,Y ) and p′ = P(X,Y ), we deduce (3.5) from the

continuity of L, P and π±
k .
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3.5 The general case

Let us consider a slightly stronger assumption than (1.5), namely





Hi ∈ C2(Rd+1) with minHi = Hi(p
0
i ) and D2Hi(p

0
i ) > 0,

D2H(I − D̂H ⊗ D̂H) > 0,
lim

|q|→+∞
Hi(q) = +∞.

(3.16)

Notice that the second line basically says that the sub-level sets are strictly convex. The following
technical result will allow us to reduce a large class of quasi-convex Hamiltonians to convex ones.

Lemma 3.12 (From quasi-convex to convex Hamiltonians). Given Hamiltonians Hi satisfying
(3.16), there exists a function β : R → R such that the functions β◦Hi satisfy (3.6) for i = 1, ..., N .
Moreover, we can choose β such that

β is convex, β ∈ C2(R), β(0) = 0 and β′ ≥ δ > 0. (3.17)

Proof. In view of (3.16), it is easy to check that (β ◦Hi)
′′ > 0 if and only if we have

(lnβ′)′(λ) > −
D2Hi

|DHi|2
◦ π±

i (p
′, λ) for λ > Hi(p

0
i ), p′ ∈ R

d. (3.18)

Because D2H ′′
i (p

0
i ) > 0, we see that the right hand side is negative for λ close enough to Hi(p

0
i ).

Then it is easy to choose a function β satisfying (3.18) and (3.17). Finally, compositing β with
another convex increasing function which is superlinear at +∞ if necessary, we can ensure that
β ◦Hi superlinear.

Lemma 3.13 (The case of smooth Hamiltonians). Theorem 3.1 holds true if the Hamiltonians
satisfy (3.16).

Proof. We assume that the Hamiltonians Hi satisfy (3.16). Let β be the function given by
Lemma 3.12. If u solves (1.8) on JT , then u is also a viscosity solution of

{
β̄(ut) + Ĥi(Du) = 0 for t ∈ (0, T ) and x ∈ J∗

i ,

β̄(ut) + F̂
Â
(Du) = 0 for t ∈ (0, T ) and x = 0

(3.19)

with F̂
Â
constructed as FA where Hi and A are replaced with Ĥi and Â defined as follows

Ĥi = β ◦Hi, Â = β(A)

and β̄(λ) = −β(−λ). We can then apply Theorem 3.1 in the case of smooth convex Hamiltonians
to construct a vertex test function Ĝ associated to problem (3.19) for every γ̂ > 0. This means
that we have with Ĥ(x, p) = β(H(x, p)),

Ĥ(y,−DY G) ≤ Ĥ(x,DXG) + γ̂.

This implies

H(y,−DY G) ≤ β−1(β(H(x,DXG)) + γ̂) ≤ H(x,DXG) + γ̂|(β−1)′|L∞(R).

Because of the lower bound on β′ given by Lemma 3.12, we get |(β−1)′|L∞(R) ≤ 1/δ which yields
the compatibility condition (3.3) with γ = γ̂/δ arbitrarily small.

We are now in position to prove Theorem 3.1 in the general case.
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Proof of Theorem 3.1. Let us now assume that the Hamiltonians only satisfy (1.5). In this case,
we simply approximate the Hamiltonians Hi by other Hamiltonians H̃i satisfying (3.16) such that

|Hi − H̃i| ≤ γ.

We then apply Theorem 3.1 to the Hamiltonians H̃i and construct an associated vertex test
function G̃ also for the parameter γ. We deduce that

H(y,−G̃y) ≤ H(x, G̃x) + 3γ

with γ > 0 arbitrarily small, which shows again the compatibility condition on the Hamiltonians
(3.3) for the Hamiltonians Hi’s. The proof is now complete in the general case.

A Proof of Proposition 2.9

Before proving Proposition 2.9, we state and prove the following elementary lemma.

Lemma A.1 (Quasi-convexity of the functions Ai). If the Hamiltonians Hi are quasi-convex,
continuous and coercive, so are the functions Ai. In particular, A0 = maxAi is quasi-convex,
continuous and coercive.

Proof. We only address the question of the quasi-convexity of the functions Ai since their conti-
nuity and coercivity are simpler.

Consider p′ and q′ such that Ai(p
′) ≤ λ and Ai(q

′) ≤ λ for some λ ∈ R. There exists pi, qi ∈ R

such that
Ai(p

′) = Hi(p
′, pi) Ai(q

′) = Hi(q
′, qi).

Then (p′, pi), (q
′, qi) ∈ {Hi ≤ λ} and we conclude from the quasi-convexity of Hi that for t, s ≥ 0

with t+ s = 1,

Ai(tp
′ + sq′) ≤ Hi(tp

′ + sq′, tpi + sqi) ≤ tHi(p
′, pi) + sHi(q

′, qi) ≤ λ.

This achieves the proof of the lemma.

Proof of Proposition 2.9. We assume that the Hamiltonians Hi are convex, λ 7→ Hi(p
′, λ) is in-

creasing in [Ai(p
′),+∞) and decreasing in (−∞, Ai(p

′)] and F is convex and decreasing in all
variables. In particular, the functions ±π±

i are concave. The general case follows by approxima-
tion by remarking that it is enough to find β increasing such that β ◦ F and β ◦ Hi satisfy the
previous assumptions.

We now prove that
G(p′, λ) = F (p′, π+(p′, λ))

is convex w.r.t. (p′, λ) ∈ epiA0. For (p
′, λ), (q′, µ) ∈ epiA0 and t, s ≥ 0 with t+ s = 1, we can use

the monotonicity of F together with the concavity of π+
i (see Lemma 3.2) to get

tG(p′, λ) + sG(q′, µ) ≥ F (tp′ + sq′, tπ+(p′, λ) + sπ+(q′, µ))

≥ F (tp′ + sq′, π+(tp′ + sq′, tλ+ sµ))

= G(tp′ + sq′, tλ+ sµ).

Similarly, we can see that G is non-increasing with respect to λ.
We next remark that

AF (p
′) = G(p′, AF (p

′))

and for p′, q′ ∈ Rd and t, s ≥ 0 with t+ s = 1, we can write

tAF (p
′) + sAF (q

′) = tG(p′, AF (p
′)) + sG(q′, AF (q

′))

≥ G(tp′ + sq′, tAF (p
′) + sAF (q

′))
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and
AF (tp

′ + sq′) = G(tp′ + sq′, AF (tp
′ + sq′)).

We thus deduce from the monotonicity of G in λ that

AF (tp
′ + sq′) ≤ tAF (p

′) + sAF (q
′).

The proof is now complete.
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