
HAL Id: hal-01073947
https://hal.science/hal-01073947v1

Submitted on 10 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning for Interactive Systems: Challenges
and Future Trends

Olivier Pietquin, Manuel Lopes

To cite this version:
Olivier Pietquin, Manuel Lopes. Machine Learning for Interactive Systems: Challenges and Future
Trends. Workshop Affect, Compagnon Artificiel, Interaction (WACAI 2014), Jun 2014, Rouen, France.
�hal-01073947�

https://hal.science/hal-01073947v1
https://hal.archives-ouvertes.fr


Machine Learning for Interactive Systems : Challenges and Future Trends

Olivier Pietquin1 Manuel Lopes2

1 Université Lille 1 - LIFL (UMR 8022 CNRS/Lille 1) - France
2 Inria Bordeaux Sud-Ouest - France

olivier.pietquin@univ-lille1.fr - manuel.lopes@inria.fr

Abstract
Machine learning has been introduced more than 40 years
ago in interactive systems through speech recognition or
computer vision. Since that, machine learning gained in
interest in the scientific community involved in human-
machine interaction and raised in the abstraction scale.
It moved from fundamental signal processing to language
understanding and generation, emotion and mood recogni-
tion and even dialogue management or robotics control. So
far, existing machine learning techniques have often been
considered as a solution to some problems raised by inter-
active systems. Yet, interaction is also the source of new
challenges for machine learning and offers new interes-
ting practical but also theoretical problems to solve. In this
paper, we address these challenges and describe why re-
search in machine learning and interactive systems should
converge in the future.
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1 Introduction
Communication between humans involves complex signals
such as speech, gestures, facial expressions, body move-
ments, written texts, etc. These signals convey high-level
information such as semantics, emotions, context but can
take highly variable forms. For instance, there might be
many acoustic realizations for one word sequence, many
word sequences for one meaning, etc. To enable machines
to interact with humans in a natural manner, this variability
has to be handled. On another hand, machine learning is the
branch of artificial intelligence that addresses the problem
of learning intelligent behaviours from data. To deal with
communicative signal variability, machine learning has na-
turally been introduced very early in Human-Machine In-
teraction (HCI). The first and probably major achievement
of machine learning in HCI is the introduction of Hidden
Markov Models (HMM) in Automatic Speech Recognition
(ASR) in the mid 70’s [31, 30] which remains the stan-
dard method for ASR today. At the same time, data driven
methods for text-to-speech synthesis (TTS) were develo-

ped [60]. It is only much later that machine learning has
been exploited as a mean to interpret higher-level informa-
tion such as semantics [63] or facial expression [51]. As for
ASR and TTS, high-level analysis methods also gave rise
to new synthesis methods like data-driven language gene-
ration [76].

In this paper, we are interested in machine learning me-
thods intervening at a higher level : interaction manage-
ment. Indeed, building an interactive system is not only
about putting together all these input and output proces-
sing modules. There is a need for a intermediate module
for sequencing the interaction. Taking past inputs and out-
puts into account, the interaction manager is in charge of
deciding what should be the next system output. The inter-
action manager is probably one of the latest components
of an interactive system that benefited from machine lear-
ning techniques. In order to make the interaction more na-
tural, in a measurable way it is necessary to decide what
outputs to make at each step of the interaction. For this, in
the late 90’s, spoken dialogue management has been cast
into a sequential decision making problem [43] that could
be solved by machine learning methods such as reinforce-
ment learning [84]. This seminal work led to many other
applications of reinforcement learning to Spoken Dialogue
Systems (SDS) [81, 68, 42] but also to other types of inter-
acting systems such as tutoring applications [29, 66, 10],
museum guides [87], car driving assistance [73], recom-
mender systems [24] and even robotics bar tenders [20].

In the following, we address the different challenges ari-
sing when taking the sequential nature of interaction into
account. We first describe how interaction can be seen as a
sequential decision making problem in Section 2. We then
explain why and how this decision making problem has
been extended to handle partial observability in Section 3.
After 15 years of research in this area, these methods have
proven to be efficient in finding good interaction strategies
but not to be efficient in terms of data. Data sparsity thus
remains a problem addressed in Section 4. Thanks to im-
provement in data efficiency, there has been a lot of work
to enable systems to learn online, from interactions. In Sec-
tion 5, paradigms to improve efficiency by actively learn
new skills will be presented. Recently, going even further



active learning a new trend of research emerged : imitation
learning. This will be explained in Section 6. From this,
we will see that interaction provides now totally new pro-
blems to machine learning and we will summarize these in
Section 7 before coming to our conclusion.

2 Interaction as a sequential decision
making process

Interaction management is the problem of deciding on what
to do in a given context, knowing that this context will be
influenced by the decision. It is thus a sequential decision
making problem where present decisions influence future
ones and the success of the interaction. To optimize this
process, planning algorithms [21] were first proposed. Yet,
planning makes a lot of assumptions such as being able to
enumerate all the possible contexts or knowing transition
probabilities between states given actions. Also, the objec-
tive has to be known in advance so that the optimal path in
the graph can be computed. Such approach is not robust to
model uncertainty and does not have a proper solution in
realistic stochastic scenarios. Once the plan is computed,
it can hardly be modified even though the interaction goes
wrong.
The machine learning answer to the sequential deci-
sion making optimisation problem is Reinforcement Lear-
ning [84]. Although model-based approach have been stu-
died for a long time [2], it’s only in the 90’s that is has been
applied to real world problems where there is no know-
ledge about the model, and so the system as to simulta-
neously optimize and estimate the model. In this paradigm,
an agent (e.g. interactive systems) faces a dynamic system
(e.g. humans) that steps from state to state as an effect of
the actions of the agent. The agent has to learn which is
the sequence of actions that makes the system go through
desired states. To assess the quality of a state, the agent
receives rewards after each action it performs in the envi-
ronment. It thus tries to follow a path in the state space
that offers the best cumulative reward. If one assumes that
human-machine interaction is a turn-taking process (which
is a strong assumption that is more and more contested
in incremental systems [82]), then interaction management
becomes such a sequential decision making problem.
Using reinforcement learning requires casting the task into
the Markov Decision Processes (MDP) paradigm [2]. An
MDP is formally a t-uple {S,A,R, T, γ} where S is the
state space, A is the action space, R : S → R is the re-
ward function, T : S × A → P(S) is a set of Markovian
transition probabilities and γ is a discount factor to be defi-
ned later. The optimisation of the decision making problem
consists in finding a policy π : S → P(A) that maps states
to actions in such a way that the cumulative reward obtai-
ned by following this policy is maximized. To do so, the
quality of a policy is measured in every state as the expec-
ted cumulative reward that can be obtained by following
the policy starting from that state. This measure is called

the value function V π : S → R :

V π(s) = E

[ ∞∑
i=0

γiR(si)|s0 = s, ai = π(si)

]
(1)

One can define an order on value functions such as V π1 >
V π2 if ∀s V π1(s) > V π2(s). The optimal policy π∗ is
the one that maximizes the value function for every state :
π∗ = argmaxπ V

π . Many algorithms have been propo-
sed in the literature to attempt at solving this problem [84],
especially when the transition probabilities are not known,
and this is still an active research area.
We can now cast human-machine interaction management
as an MDP (first proposed in the late 90’s [44]). The state
space is the set of all possible interaction contexts and ac-
tions are the communicative acts the system can perform.
The transition probabilities are usually unknown and seve-
ral definitions for the reward function can be found in the
literature. It is generally argued that the user satisfaction
should be used as a reward [83] which can be approxima-
ted as a linear combination of objective measures that can
be gathered during the interaction [88]. Yet, this reward is
most often a very simple handcrafted function [44, 68, 89].
To define such a reward is very task-dependent. If the sys-
tem is devoted to goal-oriented dialogues, social chat, emo-
tion control etc. it of course has to be different.

3 Partial Observability and non-
Markovian processes

The MDP framework makes several strong assumptions.
For instance, the dialogue contexts cannot be perfectly
observed due to the recognition error introduced by the
speech and the semantic analysers. The task is therefore
non-Markov in the observation space. To meet the Markov
assumption made by the MDP framework, the underlying
states have to be inferred from observations using what is
called a belief tracker. For example, the Hidden Informa-
tion State [90] paradigm builds a list of the most probable
current situations given the past observations, which is sup-
posed to be a Markovian representation allowing for taking
decisions in the MDP framework.
To take into account the perceptual aliasing problem intro-
duced by error-prone speech and language understanding
modules, Partially Observable MDP (POMDP) have been
proposed to model the dialogue management task [77] and
the tutoring task [75]. Yet, solving the POMDP problem
requires the transition and observation models to be known
which also requires a lot of assumptions and engineering
work. There has been a lot of work to make this approach
tractable and suitable for learning online making this ap-
proach very promising [89, 12].
There has been some attempts to either learn a Markov
state representation online [13] or to learn a policy without
making the Markov assumption [14].



4 Data sparsity
The data required to create complete and accurate models
of interactive systems is often impossible to obtain. To al-
leviate this problem, interaction simulation based on user
modeling [80, 64, 45] together with error modeling (ASR
etc.) [72, 67, 86] is most often used to artificially expand
training datasets. However, the learnt strategies are sensible
to the quality of the user model which is very difficult to as-
sess [79, 71].
An alternative to this bootstrapping method is to use gene-
ralization frameworks adapted to RL such as approximate
dynamic programming. Although this idea was first pro-
posed very early [3] it took a long time before it has been
studied in the field of reinforcement learning [25, 41, 84].
Because it was very new in machine learning at the time
RL was first introduced in interactive systems, very few at-
tempts to apply generalization methods in the framework
of interaction management can be found in the literature.
In [28], the authors use the SARSA(λ) algorithm [84] with
linear function approximation which is known to be sample
inefficient. In [46], LSPI [41] is used with feature selection
and linear function approximation. Recently, Fitted Value
Iteration (FVI) [25] has also been applied to dialogue ma-
nagement [6, 70]. All these studies report batch learning
of dialog policies from fixed sets of data and thus learn
in an off-policy manner, meaning that they learn an opti-
mal policy from observations generated with another po-
licy (which is mandatory for learning from fixed sets of
data). It also means that, once a strategy is learnt from these
datasets, it doesn’t evolve anymore while, of course, one
cannot expect to have a representative enough dataset for
complex tasks.

5 Online and active learning
To alleviate the problem of incompleteness and inconsis-
tency of data collected offline, online learning of interac-
tion management strategies has recently been made pos-
sible. These systems optimize the policy while interacting
with a user. This requires permanently changing the policy
to be learnt, and a trade-off must be made between trying
new actions to learn their effects (exploration) and use ac-
tions whose effects are already known (exploitation).
Examples are Gaussian Processes [22], Natural Actor Cri-
tic [34] or Kalman Temporal Differences [69]. The two
former [22, 34] report the use of online and on-policy al-
gorithms that change the policy frequently. These changes
to the policy made during learning are visible to the user
which may cause problems in real applications at the early
stage of learning where the changes in the policy can lead
to very bad behaviors. Thus, user simulation is still requi-
red. The later [69] makes possible online and off-policy
learning which means that the system can learn online by
observing a non-optimal policy in action (e.g. an hand-
crafted safe but suboptimal strategy). To make online lear-
ning safer (to avoid the online learner to take very bad ac-
tion), active learning has been proposed [11]. This method

estimates the uncertainty about the outcomes of actions and
decides to explore the most uncertain but promising ac-
tions. This approach has shown to perform very efficiently
online in simulation [12] and in real world [23]. Similar
approaches could be made even under a POMDP frame-
work [17].

6 Learning from Demonstrations
Being the optimization of the behavior of an interactive
system such a hard problem, it has been suggested to learn
such behaviors from humans. Indeed, it is not a strong as-
sumption to say that humans are experts in interaction that
should be used as model for machines. Here again, several
approaches can be envisioned.
Many criticisms have been done to the reinforcement lear-
ning approach to interaction management [61, 62]. Espe-
cially, one criticism that has not been much addressed, is
that these algorithms require providing the learning agent
with a reward after each interaction. Although there have
been attempts to define objective reward functions such as
the PARADISE framework [88], this reward is indeed ge-
nerally handcrafted by the system designer who introduces
some expertise in the system [44, 68, 89] but also a strong
bias. Very little attention has been paid to the particular
problem of defining the best reward function for interac-
tive systems.
A formal approach that tries to learn a reward function
from human behavior is Inverse Reinforcement Learning
(IRL) [78, 56]. It is of major importance in human-machine
interaction where naturalness of the interaction is a desired
feature. Indeed, since quantifying naturalness and user sa-
tisfaction is tricky, imitating the behavior of human opera-
tors can be a solution as suggested in [62]. This solution
has been used to model human behaviours [4, 65] or for
learning the reward of a dialogue system [9].
Nevertheless, IRL is not without problems. It is an ill-posed
problem since the zero-reward is a solution whatever the
expert policy (in other words, if you receive a zero-reward
whatever you do, every policy is optimal). Also, most al-
gorithms suppose that the direct RL problem can be sol-
ved as many time as needed or that any number of ran-
dom samples of interactions can be generated [1, 55, 35].
Yet, this is not true since solving the direct RL problem
or gathering random data requires interacting with humans
with whom the system cannot be random. New paradigms
that do not make these assumptions have been recently pro-
posed [36, 74, 53] and applied to Embodied Conversional
Agents applications [58]
Defining the appropriate reward function that will lead to a
desired behavior is actually a real problem and sometimes
it is easier to demonstrate examples of optimal behaviors.
Giving driving lessons is such a task where demonstrating
a good behavior is easier than associating a reward to each
couple of contexts and actions. Interaction management is
also such a task since it is very natural for human beings to
interact with each other although it is much harder to iso-



late contexts and associate a reward to each possible action
in these contexts. Humans can thus help machines to learn
policies during an interactive process [16, 48, 15]. Under
this approach the human user is considered as a teacher that
interacts with the machine and provides extra feedback.
Approaches have considered extra reinforcement signals
[85], action requests [27, 50], disambiguation among ac-
tions [8], preferences among states [52], iterations between
practice and user feedback sessions [33, 39] and choosing
actions that maximize the user feedback [37, 38], expert
judgement [18].
No matter what formalism being used, while learning from
humans, it is possible to rely on active learning approaches
that ensure that the data provided by the human is the most
relevant. Such approaches can be applied when learning a
reward function [50, 32] or a policy directly [8, 53]. Ano-
ther reason to learn from humans is that when the users
train the system they might become more comfortable with
using it and accept it. See the work from [59] for a study
on this subject. The queries of the machine will have the
dual goal of allowing it to deal with its own limitations and
give the user information about the its uncertainty on the
task being learned [19, 7].

7 New challenges for machine lear-
ning

As shown before, interactive systems have many proper-
ties that require innovative machine learning techniques
such as the sequential nature of interaction, the partial ob-
servability of inputs or the non-deterministic behaviour of
users. Although these fields are still under active research
(like imitation learning), there are many other big chal-
lenges brought by interactive systems to machine learning
that will undoubtedly generate fundamental research in this
field.
A first one is to clearly understand the theoretical proper-
ties of such systems. Machine learning has became a very
theoretical field with time which can create a big gap bet-
ween the interests of different communities. But on ano-
ther hand, using machine learning in human-computer in-
teraction requires theoretical proofs since empirical ones
are hard to obtain. For instance, guarantees about security
are often required before using robots in an inhabited area.
Having a human on the loop we have to consider the risks
involved by a decision or the cost in terms of tiredness of
making many queries in an interactive learning setting. Es-
timating risks in a sequential decision making process is
a real machine learning challenge [54]. Studies and algo-
rithms have also addressed the problem of deciding when
to ask. Most approaches will just ask to user whenever
the information is needed [57] or when there is high un-
certainty [8]. A more advanced situation considers making
queries only when it is too risky to try experiments [17].
Another challenge is to take into account the fact that hu-
man users may also change their behaviour with time. Its
not only that this makes the environment of the machine-

learning agent non-stationary but adversarial. Indeed, the
users adapt their behaviour to the one of the machine which
itself learns from the observations they make from the hu-
man behaviour. This co-adaptation phenomenon is very
poorly addressed in the HCI literature [5] (although it is
also known in brain-computer interaction [40]) but it is also
not common in the machine learning community because
it brings very tricky problems to solve [47].
A related challenging aspects of this co-adaptation is when
parts of interactions are not understood by one of the
agents. Here the machine must be able to learn the mea-
ning of such unknown symbols [26, 49].
These are only few examples of unsolved challenges, but
there are many others such as scalability, weakly supervi-
sed learning, transfer learning, cold start and so on.

8 Conclusion
In this paper, we described a list of challenges induced by
interactive systems that were addressed by means of ma-
chine learning. Especially, we were interested in the pro-
blem of managing interactions which is intrinsically se-
quential. Although interactive systems were at the origin
of major signal processing and machine learning achieve-
ments initially (as for HMMs), they became consumers of
machine learning techniques in the last decades in the field
of sequential decision making. It is now again a source of
big challenges for the machine learning community and,
especially, it offers a panel of killing applications that has
the potential to increase the visibility of machine learning.
For these reasons, we believe that links between communi-
ties will be tighter than ever in the near future.
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