
HAL Id: hal-01073936
https://hal.science/hal-01073936v2

Submitted on 24 Feb 2015 (v2), last revised 16 Mar 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Petri automata for Kleene allegories
Brunet Paul, Damien Pous

To cite this version:
Brunet Paul, Damien Pous. Petri automata for Kleene allegories. [Research Report] LIP - ENS Lyon.
2015. �hal-01073936v2�

https://hal.science/hal-01073936v2
https://hal.archives-ouvertes.fr

Petri automata for Kleene allegories
Paul Brunet and Damien Pous

Plume team – LIP, CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon, UMR 5668
{paul.brunet,damien.pous}@ens-lyon.fr

Abstract—Kleene algebra axioms are complete with respect to
both language models and binary relation models. In particular,
two regular expressions recognise the same language if and only
if they are universally equivalent in the model of binary relations.

We consider Kleene allegories, i.e. Kleene algebra with two
additional operations which are natural in binary relation
models: intersection and converse. While regular languages are
closed under those operations, the above characterisation breaks.
Instead, we give a characterisation in terms of languages of
directed and labelled graphs. We then design a finite automata
model allowing to recognise such graphs, by taking inspiration
from Petri nets.

This model allows us to obtain decidability of identity-free
relational Kleene lattices, i.e., the equational theory generated
by binary relations on the signature of regular expressions with
intersection, but where one forbids unit. This restriction is used to
ensure that the corresponding graphs are acyclic. The decidability
of graph-language equivalence in the full model remains open.

I. INTRODUCTION

We consider binary relations and the operations of
union (∪), intersection (∩), composition (⋅), converse (⋅⌣),
transitive closure (⋅+), reflexive-transitive closure (⋅⋆), and the
constants identity (1) and empty relation (0). This model gives
rise to an (in)equational theory: a pair of terms e, f made
from those operations and some variables a, b, . . . is a valid
equation, denoted Rel ⊧ e = f , if the corresponding equality
holds universally. Similarly, an inequation Rel ⊧ e ≤ f is valid
when the corresponding containment holds universally. Here
are valid equations and inequations: they hold whatever the
relations we assign to variables a, b, and c.

Rel ⊧ (a ∪ b)⋆ ⋅ b ⋅ (a ∪ b)⋆ = (a⋆ ⋅ b ⋅ a⋆)+ (1)
Rel ⊧ a⋆ ≤ 1 ∪ a ⋅ a⌣ ⋅ a+ (2)
Rel ⊧ a ⋅ b ∩ c ≤ a ⋅ (b ∩ a⌣ ⋅ c) (3)
Rel ⊧ a+ ∩ 1 ≤ (a ⋅ a)+ (4)

Various fragments of this theory have been studied in the
literature:

● Kleene algebra [6], where one removes intersection and
converse, so that terms are plain regular expressions. The
theory is decidable by Kleene’s work [10], and actually
PSPACE-complete [13], [14]. Equation (1) lies in this
fragment, and one can notice that the two expressions
recognise the same language.

● Kleene algebra with converse, where one only removes
intersection, is also a decidable fragment [3]. It remains
PSPACE [4]. Inequation (2) belongs to this fragment.

● (representable, distributive) allegories [7], sometimes
called positive relation algebras, where transitive and

reflexive-transitive closures are not allowed. They are
decidable [7, page 208]; Inequation (3) is known as the
modularity law in this setting.

To the best of our knowledge, the decidability of the whole
theory, Kleene allegories, is open. Here we obtain several
important steps towards the resolution of this problem:

1) we give a characterisation of the full (in)equational theory
in terms of graph languages;

2) we design an automata model inspired by Petri nets, that
makes it possible to recognise such graphs;

3) we show how to associate such a graph automaton to any
term of Kleene allegories;

4) using these graph automata, we give a decision proce-
dure for the fragment where converse and identity are
forbidden.

The latter fragment was studied recently by Andréka et
al. [1]; its decidability was open as far as we know. The
restriction to this fragment allows us to exploit simplifying
assumptions about the produced automata, and to obtain a
coinductive algorithm for language inclusion (Section V). We
actually show that language inclusion for these automata is
EXPSPACE, language inclusion for arbitrary Petri automata
being EXPSPACE-hard (Section VI).

The next step, which we miss here, consists in obtaining the
decidability of language inclusion in the full automata model:
together with the presented results, this would entail decid-
ability of Kleene allegories. We actually show that language
inclusion for these automata is EXPSPACE-hard (Section VI).
We outline some of the difficulties arising with converse or
unit in presence of intersection in Section V-D.

We continue this introductory section by an informal de-
scription of the graph language characterisation and our au-
tomata model.

A. Languages

In the simple case of Kleene algebra, i.e., without converse
and intersection, the (in)equational theory generated by rela-
tions can be characterised using regular languages. Write JeK
for the language denoted by a regular expression e; for any
two regular expressions e, f , we have

Rel ⊧ e ≤ f if and only if JeK ⊆ JfK . (5)

(This result is easy and folklore; proving that this is also
equivalent to provability using Kleene algebra axioms [11],
[12] is much harder.)

{paul.brunet,damien.pous}@ens-lyon.fr

G(a): a

G ((a ⋅ (b ∩ c)) ∩ d):

a

d

b

c

G ((a ⋅ b) ∩ (a ⋅ c)):
a

a

b

c

G ((a ∩ b ⋅ c) ⋅ d):
a

b c

d

G (a ⋅ b ∩ 1): a b

Figure 1: Graphs associated to some ground terms.

While regular languages are closed under intersection and
converse, the above characterisation does not extend to those
operations. For intersection, consider two distinct variables a
and b. The extended regular expressions a ∩ b and 0 both
recognise the empty language, while Rel /⊧ a ∩ b = 0: one
can interpret a and b with intersecting relations. For converse,
the extended regular expressions a and a⌣ both recognise the
singleton language consisting of the single-letter word a. Yet
Rel /⊧ a = a⌣, as there are non-symmetric relations.

B. Graphs

Freyd and Scedrov’ decision procedure for representable
allegories [7, page 208] relies on a notion of directed, labelled,
2-pointed graph. The same notion was proposed independently
by Andréka and Bredikhin [2], in a more comprehensive way.

Call ground terms the terms in the syntax of allegories
(composition, intersection, converse, and unit). A ground term
u can be represented as a labelled directed graph G(u) with
two distinguished vertices called the input and the output. We
give some examples in Figure 1, see Definition 1 for a precise
definition.

These graphs can be endowed with a preorder relation: we
write G ◂ F when there exists a graph homomorphism from
F to G preserving labels, inputs, and outputs. For instance
the graph corresponding to (a ⋅ (b ∩ c)) ∩ d is smaller than
the graph of (a ⋅ b) ∩ (a ⋅ c), thanks to the homomorphism
depicted in Figure 2 using dotted arrows. Notice that the
homomorphism needs not be injective or surjective, so that
this preorder has nothing to do with the respective sizes of
the graphs: a graph may very well be smaller than another in
the sense of ◂, while having more vertices or edges (and vice
versa).

The key result from Freyd and Scedrov [7, page 208], or
Andréka and Bredikhin [2, Theorem 1], is that for any two
ground terms u, v, we have

Rel ⊧ u ≤ v if and only if G(u) ◂G(v) . (6)

The graphs are finite so that one can search exhaustively for
a homomorphism, whence the decidability result.

C. Graph languages

To extend the above graph-theoretical characterisation to
Kleene allegories, we need to handle union and (reflexive-)
transitive closures. It suffices for that to consider sets of
graphs: to each expression e, we associate a set of graphs
G (e). This set is most often infinite when the expression e
contains (reflexive-)transitive closures.

Writing ◂X for the downward closure of a set of graphs
X by the preorder ◂ on graphs, we obtain the following
generalisation of both (5) and (6): for any two expressions
e and f ,

Rel ⊧ e ≤ f if and only if ◂
G (e) ⊆ ◂

G (f) . (7)

This is Theorem 6 in the sequel, and this result is almost
there in the work by Andréka et al. [1], [2]. To the best of our
knowledge this explicit formulation is new, as well as its use
towards decidability results.

When e and f are ground terms, we recover the charac-
terisation (6) for representable allegories: G (e) and G (f) are
singleton sets in this case. For plain regular expressions, the
graphs are just words and the preorder ◂ reduces to isomor-
phism. We thus recover the characterisation (5) for Kleene
algebra. This result also generalises the characterisation pro-
vided by Ésik et al. [3] for Kleene algebra with converse:
graphs of expressions without intersection are just words over
a duplicated alphabet, and the corresponding restriction of the
preorder ◂ precisely corresponds to the word rewriting system
they use (see Remark 7).

D. Petri automata

In order to exploit the above characterisation and obtain
decidability results, one has first to represent graph languages
in a finitary way. We propose for that a new finite automata
model, largely based on Petri nets [15]–[17]. We describe this
model below, ignoring converse and unit for the sake of clarity.

Recall that a Petri net consists of
● a finite set of places, denoted with circles;
● a set of transitions, denoted with rectangles;
● for each transition, a set of input places and a set of output

places, denoted with arrows;
● an initial place, denoted by an entrant arrow;
● a set of final markings, denoted by dotted boxes (a

marking, or configuration, being a set of places).
The execution model is the following: start by putting a token
on the initial place; choose a transition whose input places all
contain a token, remove those tokens and put new tokens in
the output places of the transition; repeat this process until a
final marking is reached. The obtained sequence of transitions
is called an accepting run. (We actually restrict ourselves to
safe Petri nets, to ensure that there is always at most one token
in a given place when playing this game.)

A Petri automaton is just a safe Petri net with variables la-
belling the outputs of each transition. The automaton depicted

2

G :

▲

4

5

6

a

d

b

c

F : 0

1

2

3

a

a

b

c

Figure 2: A graph homomorphism.

below is the automaton we will construct the ground term
a⋅b ∩ a⋅c. Any run must start by firing the left-most transition,
reaching the marking {B,C}; then we have the choice of firing
the top-most transition first, reaching the marking {D,C}, or
the lowest one, reaching the marking {B,E}. In both cases
we reach the final marking {D,E} by firing the remaining
transition.

A

B

C

D

E

a

a

b

c

To read a graph in such an automaton, we try to find an
accepting run that matches the graph up to homomorphism
(Definitions 10 and 11). We do that by using an evolving
function from the tokens to the vertices of the graph. We
start with the function mapping the unique token, in the initial
place, to the input vertex of the graph. To fire a transition, we
must check that all its input tokens are mapped to the same
vertex in the graph, and that this vertex has several outgoing
edges, labelled according to the outputs of the transition. If
this is the case, we update the function by removing the
mappings corresponding to the deleted tokens, and by adding
new mappings for each of the created tokens (using the target
vertices of the aforementioned outgoing edges, according to
the labels). The graph is accepted by the Petri automaton if
we can reach a final marking of the Petri automaton, with all
tokens mapped to the output vertex of the graph.

For instance, the previous automaton accepts the graph of
a ⋅ b ∩ a ⋅ c (F in Figure 2). We start with the function
{A↦ 0}. We can fire the first transition, updating the function
into {B ↦ 1, C ↦ 2} (We could also choose to update the
function into {B ↦ 2, C ↦ 1}, or {B,C ↦ 1}, or {B,C ↦ 2}
but this would lead to a dead-end). Then we can fire the top-
most transition, evolving the function into {D ↦ 3, C ↦ 2},
and we finish by firing the remaining transition, obtaining the
function {D,E ↦ 3}.

We call language of A the set of graphs L (A) accepted
by a Petri automaton A . This language is downward-closed:
L (A) = ◂

L (A). For instance, the previous automaton also
accepts the graph G from Figure 2, which is smaller than
F . Indeed, when we fire the first transition, we can associate
the two newly created tokens (in places B and C) to the

same vertex (5). This actually corresponds to composing the
functions used to accept F with the homomorphism depicted
with dotted arrows.

This automata model is expressive enough for Kleene
allegories: for any expression e, we can construct a Petri
automaton A (e) such that L (A (e)) = ◂

G (e) (Section IV).
We give a three other examples of Petri automata to give more
intuition on their behaviour.

The first transition in the previous Petri automaton splits the
initial token into two tokens, which are moved concurrently in
the remainder of the run. This corresponds to an intersection
in the considered expression. This is to be contrasted with the
behaviour of the following automaton, which we would con-
struct for the non-ground expression a⋅b ∪ a⋅c. This automaton
has two accepting runs: {A} ,{B} ,{D} and {A} ,{C} ,{E},
which can be used to accept the (graphs of the) ground terms
a ⋅ b and a ⋅ c.

A

B

C

D

E

a

a

b

c

In a sense, two transitions competing for the same tokens
represent a non-deterministic choice, i.e., a union in the
starting expression.

Still in the first example, the two tokens created by the first
transition are later collected in the final marking. Tokens may
also be collected and merged by a transition. Consider for
instance the following automaton for (a ∩ b ⋅ c) ⋅d. It has only
one accepting run, {A} ,{B,C} ,{B,D} ,{E}, and this run
can be used to read the fourth graph from Figure 1.

A

B

C D

E

a

b c

d

As a last example, consider the following automaton for
the expression a ∩ b+ ⋅ c. The top-most transition introduces a
loop, so that there are infinitely many accepting runs. For any
n > 0, the graph of the ground term a ∩ bn ⋅ c is accepted by
this automaton.

A

B C

D

b

a

b

c

According to characterisation (7), the next step is to decide
whether the containment L (A) ⊆ L (B) holds, for two
given Petri automata A and B. Several difficulties arise,
that do not appear with classical word automata. Our solution
nevertheless uses a standard coinductive approach, where we
define an appropriate notion of simulation (Section V-C).

3

G(1) ∶=

G(a) ∶= a

G(w⌣) ∶= G(w)

G(u ⋅ v) ∶= G(u) G(v)

G(u ∩ v) ∶=
G(u)

G(v)

Figure 3: Inductive construction of the graph of a ground term.

Standard notations. For any sets A,B, we write P (S) ∶=
{P ∣ P ⊆ A} for the set of subsets of A, A → B for the
set of functions from A to B, and A⇢ B for the set of partial
maps from A to B. The domain of a partial map f is denoted
by dom (f).

II. GRAPH-THEORETICAL CHARACTERISATION

We consider the signature ⟨∩,∪, ⋅, ⋅+, ⋅⌣,0,1⟩ of Kleene
allegories, where e⋆ is an abbreviation for 1∪e+. We fix a set
X of variables, and we denote by Reg⌣∩X the set of expressions
e, f . . . built from variables in X with these connectives.
Ground terms are the expressions u, v,w . . . built from X only
with the sub-signature ⟨∩, ⋅, ⋅⌣,1⟩. If σ ∶ X → P (S × S) is an
interpretation of the alphabet X into some space of relations,
we write σ̂ for the unique homomorphism extending σ into
a function from Reg⌣∩X to P (S × S). An inequation between
two expressions e and f is valid, written Rel ⊧ e ≤ f , if for
any relational interpretation σ we have σ̂(e) ⊆ σ̂(f).

We let G range over 2-pointed labelled directed graphs,
which we simply call graphs in the sequel. Those are tuples
⟨V,E, ι, o⟩ with V a finite set of vertices, E ⊆ V ×X ×V a set
of edges labelled with X , and ι, o ∈ V the two distinguished
vertices, respectively called input and output.

Definition 1 (Graph of a ground term: G(w))
To each ground term w, we associate a graph G(w), by
induction on w. The graph of a ∈X has one edge labelled by
a linking its input to its output. The graph for 1 has only one
vertex, both input and output. The composition of two graphs
with disjoint sets of vertices can be performed by identifying
the output of the first graph and the input of the second one.
The intersection on graphs consists in merging their inputs
and merging their outputs. The converse consists simply in
exchanging the input and the output of a graph. ∗

See Figure 3 for a graphical description of this construction.
Those graphs were introduced independently by Freyd and
Scedrov [7, page 208], and Andréka and Bredikhin [2].

Definition 2 (Graph homomorphism, preorders ◂ and ⊲)
A graph homomorphism from ⟨V1,E1, ι1, o1⟩ to
⟨V2,E2, ι2, o2⟩ is a map ϕ ∶ V1 → V2 such that ϕ(ι1) = ι2,
ϕ(o1) = o2, and (p, x, q) ∈ E1 entails (ϕ(p), x,ϕ(q)) ∈ E2.
We denote by ◂ the relation on graphs defined by G ◂ G′

if there exists a graph homomorphism from G′ to G. This

relation gives rise to a preorder on ground terms, written ⊲
and defined by u ⊲ v if G(u) ◂G(v). ∗

Given a set S of graphs, we write ◂S for its downward
closure: ◂S ∶= {G ∣ G ◂G′,G′ ∈ S }. Similarly, we write ⊲S
for the downward closure of a set of ground terms w.r.t. ⊲.

As explained in the introduction, the above preorder on
ground terms precisely characterises inclusion under arbitrary
relational interpretations:

Theorem 3 ([2, Theorem 1], or [7, page 208]). For all ground
terms u, v, we have Rel ⊧ u ≤ v⇔ u ⊲ v .

To extend this result to Kleene allegories, we introduce
the following generalisation of the language of a regular
expression. Sets of words become sets of ground terms.

Definition 4 (Terms and graphs of an expression)
The set of terms of an expression e ∈ Reg⌣∩X , written JeK, is
the set of ground terms defined inductively as follows:

J1K ∶= {1} J0K ∶= ∅ JxK ∶= {x}
Je ⋅ fK ∶= {w ⋅w′ ∣ w ∈ JeK and w′ ∈ JfK}

Je ∩ fK ∶= {w ∩w′ ∣ w ∈ JeK and w′ ∈ JfK}
Je ∪ fK ∶= JeK ∪ JfK

Je⋆K ∶= ⋃n∈N {w1 ⋅ ⋯ ⋅wn ∣ ∀i,wi ∈ JeK}
Je⌣K ∶= {w⌣ ∣ w ∈ JeK} .

The set of graphs produced by an expression e, denoted by
G (e) is the set of graphs associated to the ground terms in
JeK:

G (e) ∶= {G(w) ∣ w ∈ JeK} . ∗

To obtain the characterisation announced in the introduction,
we need a slight refinement of a lemma established by
Andréka, Mikulás, and Németi [1]:

Lemma 5. For all expression e ∈ Reg⌣∩X X , and all relational
interpretations σ ∶X → P (S × S), we have

σ̂(e) = ⋃
w∈JeK

σ̂(w) = ⋃
w∈⊲JeK

σ̂(w) .

Proof. The first equality is exactly [1, Lemma 2.1]; for the
second one, we use the fact that σ̂(w) ⊆ σ̂(u) whenever w ⊲ u,
thanks to Theorem 3 (i.e., [2, Theorem 1]).

Theorem 6. The following properties are equivalent, for all
expressions e, f ∈ Reg⌣∩X :

(i) Rel ⊧ e ≤ f ,
(ii) JeK ⊆ ⊲JfK,

(iii) G (e) ⊆ ◂
G (f).

Proof. We give a detailed proof in Appendix A. The implica-
tion (ii) ⇒ (i) follows easily from Lemma 5, and (iii) ⇒ (ii)
is a matter of unfolding definitions. For (i)⇒ (iii), we mainly
use [2, Lemma 3].

(The exact characterisation announced in the introduction (7)
follows: for any sets X,Y , we have ◂X ⊆ ◂Y iff X ⊆ ◂Y .)

4

A

B

C D

E

F

G

H I

b

a

c

b

a

c
b

d

a b

Figure 4: A Petri automaton. The initial place is A, and the
final configurations are {I} and {F,G}.

Also notice that while G (f) only contains graphs emanat-
ing from ground terms, this is not the case for its closure
◂
G (f). For instance, ◂G ((a ⋅ b) ∩ (c ⋅ d)) contains the follow-

ing graph, which is not the graph of any ground term.

a

c

b

d

e

Remark 7. The graphs associated to ground terms without in-
tersection are isomorphic to words over a duplicated alphabet.
A graph homomorphism between two such graphs is precisely
what Ésik et al. call an admissible map [3]. Theorem 6 can
thus be seen as a generalisation of [3, Theorem 5.3].

III. PETRI AUTOMATA

We extend the set X of variables into a set X̄ of labels:X̄ ∶=
X∪{x⌣ ∣ x ∈X }∪{1}. A Petri automaton is a Petri net whose
transition’s outputs are labelled by X̄ .

Definition 8 (Petri Automaton)
A Petri automaton A over the alphabet X is a tuple
⟨P,T , ι,F ⟩ where:

● P is a finite set of places,
● T ⊆ P (P) ×P (X̄ × P) is a set of transitions,
● ι ∈ P is the initial place of the automaton,
● F ⊆ P (P) is a set of final configurations, a configuration

being a set of places.
For each transition t = (t, t) ∈ T , t and t are assumed to be
non-empty; t ⊆ P is the input of t; and t ⊆ X̄ ×P is the output
of t. ∗

We use the graphical notation from the introduction to
represent Petri automata; the Petri automaton from Figure 4
will be used as a running example.

From a configuration ξ ⊆ P , a transition t = (t, t) ∈ T
is enabled if t ⊆ ξ. If so, one may fire t, which produces a
new configuration ξ′ = ξ∖t∪{p ∈ P ∣ ∃x ∈ X̄ ∶ (x, p) ∈ t}. We

write ξ
tÐ→A ξ′ in this case.

A set of transitions T ⊆ T is statically compatible (or just
compatible) if their inputs are pairwise disjoint. If furthermore
all transitions in T are enabled in a configuration ξ, one can
observe that the configuration ξ′ reached after firing them
successively does not depend on the order in which they are
fired. In that case we write ξ

TÐ→A ξ′.

A
B

G

C

E
G

D

E
G

C

E
G

D

E
G

F

G

t0

t1

t2
t3

t4
t5

b

a

c

b

a
c

b

a
d

Figure 5: An accepting run in the automaton from Figure 4.

In the sequel, we assume all considered Petri automata to be
safe. (I.e., in Petri nets terminology, such that any reachable
marking has at most one token in each place [15]). Formally,
with our definitions: a Petri automaton ⟨P,T , ι,F ⟩ is safe if
for all configuration ξ ⊆ P reachable from {ι} by firing any
number of transitions, if (t, t) ∈ T is enabled from ξ, p ∈ ξ,
and (x, p) ∈ t, then p ∈ s.

Now we explain how to use Petri automata to define
languages of graphs. We first define the runs of an automaton.

Definition 9 (Run, accepting run, parallel run)
A run is a sequence ξ = ⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ of config-
urations and transitions, such that ξk ⊆ P , tk ∈ T and
∀k < n, ξk

tkÐ→ ξk+1. When ξ0 = {ι} and ξn ∈ F , we call
ξ an accepting run.

A parallel run is defined similarly, as a sequence Ξ =
⟨(Ξk)0⩽k⩽n , (Tk)0⩽k<n⟩, where the Tk ⊆ T are compatible

sets of transitions such that Ξk
TkÐ→ Ξk+1. ∗

(Note that a run ξ is uniquely determined by ξ0 and the
sequence (tk): all subsequent configurations can be computed
deterministically.)

Consider the following sequence of transitions from the
automaton in Figure 4:

ξ = ⟨(ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) , (t0, t1, t2, t3, t4, t5)⟩,
with

ξ0={A} ,
ξ1={B,G} ,

ξ2 = ξ4={C,E,G} ,
ξ3 = ξ5={D,E,G} ,

ξ6={F,G} .

t0=({A} ,{(b,B), (a,G)}) ,
t1=({B} ,{(c,C), (b,E)}) ,

t2 = t4=({C} ,{(a,D)}) ,
t3=({D,E} ,{(c,C), (b,E)}) ,
t5=({D,E} ,{(d,F)}) .

We have

{A} t0 // {B,G} t1 // {C,E,G}
t2,t4 // {D,E,G}
t3
oo

t5 // {F,G} ,

and since {A} is the initial configuration and {F,G} ∈ F , this
sequence is an accepting run. It can be represented graphically
as in Figure 5.

As for standard finite state automata, we now need to
specify how to read a graph in an automaton. As explained
in the introduction, this is done by linking the intermediate
configurations of a run to vertices in the graph, and by
imposing conditions to match transitions with labelled edges
of the graph.

Definition 10 (Reading, parallel reading, language of a run)
A reading of G = ⟨V,E, ι, o⟩ along a run ξ =

5

0
1

2
3

4
5

6

b

a

c

b

a c

b

a
d

Figure 6: Graph produced by the run depicted in Figure 5.

⟨(ξk)0⩽k⩽n , (tk, tk)0⩽k<n⟩ is a sequence (ρk)0⩽k⩽n such that
for all k, ρk is a map from ξk to V , ρ0(ξ0) = {ι}, ρn(ξn) =
{o}, and ∀k < n, the following holds:

● all tokens in the input of the transition are mapped to the
same vertex in the graph: ∀p, q ∈ tk, ρk(p) = ρk(q);

● the images of tokens in ξk that are not in the input of the
transition are unchanged: ∀p ∈ ξk ∖ tk, ρk(p) = ρk+1(p);

● each pair in the output of the transition can be “validated”
by the graph: ∀p ∈ tk,∀(x, q) ∈ tk,

x ∈X ⇒(ρk(p), x, ρk+1(q)) ∈ E,
x = y⌣ and y ∈X ⇒(ρk+1(q), y, ρk(p)) ∈ E,

x = 1⇒ρk(p) = ρk+1(q).

Similarly, we define a parallel reading ρ along some parallel
run Ξ = ⟨(Ξk)0⩽k⩽n , (Tk)0⩽k<n⟩ by requiring that: ρ0(Ξ0) =
{ι}, ρn(Ξn) = {o}, and ∀k < n the following holds:

● ∀p ∈ Ξk ∖⋃(t,t)∈Tk
t, ρk+1(p) = ρk(p);

● ∀(t, t) ∈ Tk,∀p, q ∈ t, ρk(p) = ρk(q);
● ∀(t, t) ∈ Tk,∀p ∈ t,∀(x, q) ∈ t,

x ∈X ⇒(ρk(p), x, ρk+1(q)) ∈ E,
x = y⌣ and y ∈X ⇒(ρk+1(q), y, ρk(p)) ∈ E,

x = 1⇒ρk(p) = ρk+1(q).

The language of a run ξ, denoted by L (ξ) is the set of graphs
that can be read along ξ. ∗

The language of a Petri automaton is finally obtained by
considering all accepting runs.

Definition 11 (Language recognised by a Petri automaton)
The language recognised by A , written L (A), is the fol-
lowing set of graphs:

L (A) ∶= ⋃
ξ accepting in A

L (ξ) . ∗

The language of a run ξ can be characterised using a single
graph which we call the graph produced by ξ: graphs are
accepted by ξ exactly when they are smaller than the graph
produced by ξ according to ◂ (Lemma 14 below). For instance,
the run presented in Figure 5 produces the graph depicted
in Figure 6.

This graph is obtained in two steps, by first considering a
notion of trace, which is a graph labelled with X̄ rather than
X , and which actually corresponds to the notion of pomset-
trace from standard Petri nets (see Section VII for more details
on this correspondence).

The trace is constructed by creating a vertex k for each
transition tk = (tk, tk) of the run, plus a final vertex n. We

add an edge (k, x, l) whenever there is some place q such that
(x, q) ∈ tk, and tl is the first transition after tk in the run with
q among its inputs, or l = n if there is no such transition in
the run.

Definition 12 (Trace of a run)
Let ξ = ⟨(ξk)0⩽k⩽n , (tk, tk)0⩽k<n⟩ be run. For an index k ⩽ n
and a place q, let ν(k, q) be either the smallest index l such
that k ⩽ l and q ∈ tl, or n if there is no such index.

The trace of ξ is the graph JξK ∶= ⟨{0, . . . , n} ,Eξ,0, n⟩ with
Eξ ∶= {(k, x, ν(k + 1, q)) ∣ (x, q) ∈ tk }. ∗

To get the final graph, which is labelled by X , one identifies
nodes linked by edges labelled by 1, and one replaces each
edge of the form (i, x⌣, j) by (j, x, i). Formally:

Definition 13 (Graph produced by a run)
Let ξ = ⟨(ξk)0⩽k⩽n , (tk, tk)0⩽k<n⟩ be run. Let ≡ξ be the
smallest equivalence relation on {0, . . . , n} containing all pairs
(i, j) such that (i,1, j) ∈ Eξ.

The graph produced by ξ, is the graph G (ξ) defined by

G (ξ) ∶= ⟨{[i]ξ ∣ 0 ⩽ i ⩽ n} ,E′
ξ, [0]ξ, [n]ξ⟩

[i]ξ ∶= {k ∈ {0, . . . , n} ∣ i ≡ξ k }

E′
ξ ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

([i]ξ, x, [j]ξ)

RRRRRRRRRRRRRRRRRR

x ∈X and
∃k ∈ [i]ξ, l ∈ [j]ξ ∶

(k, x, l) ∈ Eξ or
(l, x⌣, k) ∈ Eξ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ ∗

We write G (A) for the set of graphs produced by accepting
runs of a Petri automaton A . To avoid confusions with the
language L (A) of A , we write “G is produced by A ” when
G ∈ G (A), reserving language theoretic terminology like “G
is accepted by A ” or “A recognises G” to cases where we
mean G ∈ L (A).

The graph produced by the run presented in Figure 5
happens to be equal to its trace, since it is labelled in X only.
A more involved example is given in Figures 7 to 9. Notice
that although the trace of a run is acyclic and can be endowed
with a partial order structure (simply check that ∀p, ν(_, p)
is increasing), it is not necessarily the case for its produced
graph.

Lemma 14. For any accepting run ξ, we have G ∈ L (ξ) if
and only if G ◂ G (ξ).

Proof. Suppose there exists a graph homomorphism ϕ from
G (ξ) to G. Then we can build a reading by defining ρk(p) =
ϕ([ν(k, p)]ξ) for 0 ⩽ k ⩽ n and p ∈ ξk. On the other
hand, if we have a reading (ρk)0⩽k⩽n of G, we can build
a homomorphism ϕ by letting ϕ([k]ξ) = ρk(p) for any p ∈ tk.
As (ρk)k is a reading, ϕ is well defined. The details of this
proof can be found in Appendix B.

As an immediate corollary, we obtain the following charac-
terisation of the language of a Petri automaton.

Corollary 15. L (A) = ◂
G (A).

6

A

B

G G G G

C

D D

E

F

0

1

2

3a

1

b

1

c

d⌣

Figure 7: A run ξ.

0
1

2

3
4

a

1

b

1

c

d⌣

Figure 8: The trace of ξ.

0

1

2

a

b c

d

Figure 9: The graph
produced by ξ.

The left-hand side language is defined through readings
along accepting runs, which is a local and incremental notion
and which allows us to define simulations in Section V-C.
By contrast, the right-hand side language is defined globally,
which eases the following construction of an automaton recog-
nising the language of an expression.

IV. FROM EXPRESSIONS TO AUTOMATA

We now show how to associate to any expression e ∈ Reg⌣∩X
an automaton A (e) that recognises the language ◂

G (e). In
fact the automaton we obtain has an even stronger connection
with e: the graphs in G (e) are exactly those produced by
accepting runs in A (e). To make the construction simpler,
we first modify the expression so that the operator ⋅⌣ is only
applied to variables, by using the following rewriting system:

(a ∪ b)⌣ → a⌣ ∪ b⌣ 0⌣ → 0 (a+)⌣ → (a⌣)+

(a ⋅ b)⌣ → b⌣ ⋅ a⌣ 1⌣ → 1 a⌣⌣ → a

(a ∩ b)⌣ → a⌣ ∩ b⌣.

(These rules preserve the set of graphs of the expression; also
recall that e⋆ is a shorthand for e++1, so that we do not need
to handle it explicitly.)

The formal construction is inductive; it is given in Defi-
nition 16 below. We describe it first in informal terms. For
the case of x ∈ X̄ , we simply build an automaton with a
single transition labelled by x, going from the initial place
to a distinct final place1. The union consists in putting both
automata side by side, and merging their initial places. For
the composition of A1 and A2 on the other hand we put one
automaton in front of the other:

● the initial place of the resulting automaton is that of A1;
● the final configurations are those of A2;
● for each final configuration f of A1, and for each initial

transition (ι2, t) coming out of the initial place of A2,
we add a transition with input f and output t. This last
step amounts to adding epsilon transitions from the final

1Note that this covers uniformly the case of the unit, of variables, and of
conversed variables.

configurations of A1 to the initial place of A2, and then
apply some epsilon-elimination procedure.

We also put the two automata side by side for the intersection,
but we merge their initial places, their initial transitions, and
their final configurations:

● for any pair of initial transitions of the two automata
({ι1} , t1), ({ι2} , t2), we put in the intersection automa-
ton the transition ({ι[1]} , t1 ∪ t2);

● a final configuration of this automaton is the union of a
final configuration from A1 and a final configuration of
A2.

For the transitive closure (⋅+), we use the ideas for union and
composition, adding loops from the final configurations using
the initial transitions of the automaton.

Definition 16
To each expression e ∈ Reg⌣∩X , we associate a Petri automaton
A (e) defined inductively as follows:

● x ∈ X̄,A (x) ∶= ⟨{0,1} ,{({0} ,{(x,1)})} ,0,{{1}}⟩
● A (0) ∶= ⟨{0} ,∅,0,∅⟩
● A (e1 ∪ e2) ∶= ⟨P1 ∪ P2,T , ι1,F1 ∪F2⟩ with

T ∶= T1 ∪T2 ∪ {({ι1} , t) ∣ ({ι2} , t) ∈ T2 }.
● A (e1 ⋅ e2) ∶= ⟨P1 ∪ P2,T , ι1,F2⟩ with

T ∶= T1 ∪T2 ∪ {(f, t) ∣ f ∈ F1 and ({ι2} , t) ∈ T2 }.
● A (e+1) ∶= ⟨P1,T , ι1,F1⟩ with

T ∶= T1 ∪ {(f, t) ∣ f ∈ F1 and ({ι1} , t) ∈ T1 }.
● A (e1 ∩ e2) ∶= ⟨P1 ∪ P2,T , ι1,F ⟩ with

F ∶={f1 ∪ f2 ∣ f1 ∈ F1, f2 ∈ F2 } and

T ∶={(t, t) ∣ ∃i ∈ {1,2} ∶ (t, t) ∈ Ti, ιi ∉ t}∪
{({ι1} , t1 ∪ t2) ∣ ∀i ∈ {1,2} , ({ιi} , ti) ∈ Ti } .

(In the inductive cases, we assume A (ei) = ⟨Pi,Ti, ιi,Fi⟩
for i ∈ {1,2}, with P1 ∩ P2 = ∅.) ∗

We prove by induction on e that A (e) is indeed a safe Petri
automaton; for the safety requirement, we add to the induction
hypothesis the fact that for any configuration ξ accessible
in A (e), if there is a final configuration f ∈ F such that
f ⊆ ξ, then f = ξ. Another invariant is that the initial place
never appears in a final configuration, nor in the output of
any transition. Note that the place ι2 becomes unreachable
by construction in the cases for union, composition and
intersection, so that it could safely be removed, together with
the associated transitions.

Theorem 17 (Correctness). For all expression e ∈ Reg⌣∩X ,
L (A (e)) = ◂

G (e).

Proof. We prove a stronger result: G (A (e)) = G (e) (up
to graph isomorphisms—see Appendix C). This allows us to
conclude thanks to Corollary 15.

Corollary 18. The (in)equational theory of Kleene allegories
is co-recursively enumerable.

Proof. Construct Petri automata for the two expressions and
enumerate all potential counter-examples, i.e., graphs. A graph

7

is a counter-example if it can be read in one automaton but
not in the other, which is a decidable property.

Remark 19. If e is an expression without intersection, converse
or 1, it can be shown that the transitions in A (e) are all of the
form ({p} ,{(x, q)}), with only one input, one output and a
label in X . As a consequence, the accessible configurations
are singletons, and the resulting Petri automaton has the
structure of a non-deterministic finite-state automaton (NFA).
Actually, in that case, the construction we described above is
just a variation on Thompson’s construction [19], with inlined
epsilon transition elimination.

V. COMPARING AUTOMATA

A. Simple automata

The above results hold for the whole syntax of regular
expressions with converse and intersection. However, in the
remainder of the paper, we have to focus on expressions
without converse or identity. This is because in combination
with intersection, these two operations introduce cycles in the
graphs associated to ground terms. Consider for instance the
graphs for a ∩ 1 and a ∩ b⌣:

G(a ∩ 1) =

a

G(a ∩ b⌣) =
a

b

.

Since reflexive-transitive closure (⋅⋆) implicitly contains an
occurrence of the identity, we also have to replace this operator
with transitive closure (⋅+). We thus work with expressions
from Reg∩−X , defined with the following syntax:

e, f ∈ Reg∩−X ∶∶= x ∈X ∣ e ∩ f ∣ e ∪ f ∣ e ⋅ f ∣ e+ ∣ 0.

Accordingly, ground terms are restricted to the following
syntax: u, v,w ∶∶= x ∈X ∣ w ⋅w ∣ w ∩w.

Automata built using Definition 16 from expressions with-
out converse or unit only have transitions labelled with X .
This corresponds to the notion of simple automata.

Definition 20 (Simple Petri automaton)
A Petri automaton A = ⟨P,T , ι,F ⟩ is called simple if
∀(t, t) ∈ T ,∀(x, p) ∈ t, x ∈X . ∗

For all e ∈ Reg∩−X , A (e) is simple. Moreover for any run ξ
of a simple Petri automaton, JξK = G (ξ) (up to isomorphism);
in particular, a simple automaton only produces acyclic graphs.

B. Intuitions

In this section, we show how the notion of simulation
relation, that allows to compare NFA, can be adapted to
handle simple Petri automata. Consider two automata A1 =
⟨P1,T1, ι1,F1⟩ and A2 = ⟨P2,T2, ι2,F2⟩, we try to show
that for any graph G accepted by A1, G is recognised by A2.
By Lemma 14, this amounts to proving that for any accepting
run ξ in A1, G (ξ) is recognised by some accepting run ξ′ in
A2. Leaving non-determinism apart, the first idea that comes
to mind is to find a relation between the configurations in A1

and the configurations in A2, that satisfy some conditions on
the initial and final configurations, and such that if ξk ≼ ξ′k and
ξk

tÐ→A1 ξk+1, then there is a configuration ξ′k+1 in A2 such

that ξk+1 ≼ ξ′k+1, ξ′k
t′Ð→A2 ξ

′
k+1, and these transition steps are

compatible in some sense. However, such a definition will not
give us the result we are looking for. Consider these two runs:

A

B B

C D

1

2

a

b
c

W

Y Y

X Z

1′
2′

b

a
c

The graphs produced by the first and the second runs corre-
spond respectively to the ground terms a∩(b ⋅c) and (a ⋅c)∩b.
These two terms are incomparable, but the relation ≼ depicted
below satisfies the previously stated conditions.

{A}
1

// {B,C}
2

// {B,D}

{W}
≼

1’
// {X,Y }

≼
2’

// {Y,Z}
≼

The problem here is that in Petri automata, runs are token
firing games. To adequately compare two runs, we need to
closely track the tokens. For this reason, we will relate a
configuration ξk in A1 not only to a configuration ξ′k in A2,
but to a map ηk from ξ′k to ξk. This will enable us to associate
with each token situated on some place in P2 another token
placed on A1.

We want to find a reading of G (ξ) in A2, i.e. a run in A2

together with a sequence of maps associating places in A2

to positions in G (ξ). Consider the picture below. Since we
already have a reading of G (ξ) along ξ (by defining ρk(p) =
ν(k, p), as in the proof of Lemma 14), it suffices to find maps
from the places in A2 to the places in A1 (the maps ηk): the
reading of G (ξ) in A2 will be obtained by composing ηk with
ρk.

G (ξ)

ξ0 t0
// ξ1 t1

// ⋯
tn−1

// ξn tn
// ξn+1

ξ′0

η0

OO

t′0

// ξ′1
t′1

//

η1

OO

⋯
t′n−1

// ξ′n

ηn

OO

t′n

// ξ′n+1

ηn+1

OO

ρ0

77

ρ1

==

ρn

ZZ

ρn+1

ee

We need to impose some constraints on the maps (ηk) to
ensure that (ρk ○ ηk)0⩽k⩽n is indeed a correct reading in A2.
First, we need to ascertain that a transition t′k in A2 may be
fired from the reading state ρk ○ ηk to reach the reading state
ρk+1 ○ ηk+1. Furthermore, as for NFA, we want transitions tk

8

and t′k to be related: specifically, we require t′k to be included
(via the homomorphisms ηk and ηk+1) in the transition tk.
This is meaningful because transition tk contains a lot of
information about the vertex k of G (ξ) and about ρ: the labels
of the outgoing edges from k are the labels on the output of
tk, and the only places that will ever be mapped to k in the
reading ρ are exactly the places in the input of tk.

A

B

C

0

a

b

X

Y

Z

0′

a

a

This already shows an important dif-
ference between the simulations for NFA
and Petri automata. For NFA, we re-
late a transition p

aÐ→ p′ to a transi-
tion q

aÐ→ q′ with the same label a.
Here the transitions ξk

tkÐ→A1 ξk+1 and

ξ′k
t′kÐ→A2 ξ

′
k+1 may have different labels.

Consider the step represented on the
right, corresponding to a square in the above diagram. The
output of 0 has a label b that does not appear in 0’ , and
0’ has two outputs labelled by a. Nevertheless this satisfies

the conditions informally stated above, indeed, a ∩ b ⩽ a ∩ a
holds.

However this definition is not yet satisfactory. Consider the
two runs below:

A B

C

D

0 1
a

b

c

X

Y

Z Z

T T

U

0′
1′

2′a

a
b

c

Their produced graphs correspond respectively to the ground
terms a ⋅ (b ∩ c) and (a ⋅ b) ∩ (a ⋅ c). The problem is that
a ⋅ (b ∩ c) ⩽ (a ⋅ b) ∩ (a ⋅ c), but with the previous definition,
we cannot relate these runs: they do not have the same length.
The solution here consists in grouping the transitions 1’ and
2’ together, and consider these two steps as a single step

in a parallel run. This last modification gives us a notion of
simulation that suits our needs.

C. Simulations

Definition 21 (Simulation)
A relation ≼ ⊆ P (P1) × P (P2 ⇢ P1) between the configura-
tions of A1 and the partial maps from the places of A2 to the
places of A1 is called a simulation between A1 and A2 if:

● {ι1} ≼ {[ι2 ↦ ι1]};

● if ξ ≼ E and ξ
(t,t)
ÐÐ→A1 ξ

′, then ξ′ ≼ E′ where E′ is the set
of all η′ such that there is some η ∈ E and a compatible
set of transitions T ⊆ T2 such that:

– dom (η) TÐ→A2 dom (η′);
– ∀(t′, t′) ∈ T, η(t′) ⊆ t and ∀(x, q) ∈ t′,(x, η′(q)) ∈ t;
– ∀p ∈ dom (η) , (∀(t′, t′) ∈ T, p ∉ t′)⇒ η(p) = η′(p).

● if ξ ≼ E and ξ ∈ F1, then there must be some η ∈ E such
that dom (η) ∈ F2. ∗

A
B

G

C

E
G

D

E
G

C

E
G

D

E
G

F

G

b

a

c

b

a
c

b

a
d

α
β

γ

δ

ε

ζ

ε

η

θ

η

ι
κ

b

b

c

b

a b

c a
d

Figure 10: Embedding of a parallel run into the run from Fig-
ure 5.

We will now prove that the language of A1 is contained in
the language of A2 if and only if there exists such a simulation.
We first introduce the following notion of embedding.

Definition 22 (Embedding)
Let ξ = ⟨(ξk)0⩽k⩽n, (tk)0⩽i<n⟩ be a run in A1, and Ξ =
⟨(Ξk)0⩽k⩽n , (Ti)0⩽i<n⟩ a parallel run in A2. An embedding
of Ξ into ξ is a sequence (ηi)0⩽i⩽n of maps such that for any
i < n, we have:

● ηi is a map from Ξi to ξi;
● the image of Ti by ηi is included in ti, meaning that

for any (t, t) ∈ Ti, for any p ∈ t and (x, q) ∈ t, ηi(p)
is contained in the input of ti and (x, ηi+1(q)) is in the
output of ti;

● the image of the tokens in Ξi that do not appear in the
input of Ti are preserved (ηi(p) = ηi+1(p)) and their
image is not in the input of ti.

ξi
ti // ξi+1

Ξi

ηi
OO

Ti

// Ξi+1

ηi+1
OO

∗
Figure 10 illustrates the embedding of some parallel run,

producing G (((b ⋅ c ⋅ a ⋅ b) ∩ (b ⋅ b ⋅ c ⋅ a)) ⋅ d), into the run pre-
sented in Figure 5. Notice that is it necessary to have a parallel
run instead of a simple one: to find something that matches the
second transition in the top run, we need to fire two transitions
in parallel in the bottom run .

There is a close relationship between simulations and em-
beddings:

Lemma 23. Let A1 and A2 be two Petri automata, the
following are equivalent:

1) there exists a simulation ≼ between A1 and A2;
2) for any accepting run ξ in A1, there is an accepting

parallel run Ξ in A2 that can be embedded into ξ.

Proof. If we have a simulation ≼, let ξ =
⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ be an accepting run in A1. By
the definition of simulation, we can find a sequence of
sets of maps (Ek)0⩽k⩽n such that E0 = {[ι2 ↦ ι1]} and
∀k, ξk ≼ Ek. Furthermore, we can extract from this a
sequence of maps (ηk)0⩽k⩽n and a sequence of parallel
transitions (Tk)0⩽k<n such that (ηk) is an embedding of
⟨(dom (ηk))0⩽k⩽n , (Tk)0⩽k<n⟩ (which is accepting) into ξ.

9

This follows directly from the definitions of embedding and
simulation.

On the other hand, if we have property 2., then we can
define a relation ≼ by saying that ξ ≼ E if there is an accepting
run ξ′ = ⟨(ξ′k)0⩽k⩽n , (tk)0⩽k<n⟩ in A1 such that there is an
index k0: ξ = ξ′k0 ; and the following holds: η ∈ E if there
is an accepting parallel run Ξ = ⟨(Ξk)0⩽k⩽n , (Tk)0⩽k<n⟩ and
(η′k)0⩽k⩽n an embedding of Ξ into ξ such that η = η′k0 . It is
then immediate to check that ≼ is indeed a simulation.

If η is an embedding of Ξ into ξ, we can easily check
that (ρi ○ ηi)0⩽i⩽n is a parallel reading of G (ξ) along Ξ
in A2. Thus, it is clear that once we have such a run Ξ
with the sequence of maps η, we have that G (ξ) is indeed
in the language of A2. The more difficult question is the
completeness of this approach: if G (ξ) is recognised by
A2, is it always the case that we can find a run Ξ that
may be embedded into ξ? The answer is affirmative, thanks
to Lemma 24 below. If (ρj)0⩽j⩽n is a reading of G along
ξ = ⟨(ξk)0⩽k⩽n , (tk, tk)0⩽k<n⟩, we write active(j) for the
only position in ρj(tj)2. We call ⩿ a consistent ordering on
G = ⟨V,E, ι, o⟩ if ⟨V,⩿⟩ is a linear order and (p, x, q) ∈ E
entails p ⩿ q.

Lemma 24. Let G ∈ L (A2) and ⩿ be any consistent ordering
on G. Then there exists a run ξ and a reading (ρj)0⩽j⩽n of
G along ξ such that ∀k, active(k) ⩿ active(k + 1).

Proof. The proof of this result is achieved by taking any
run ξ accepting G, and then exchanging transitions in ξ
according to ⩿, while preserving the existence of a reading.
The details of this proof being a bit technical, we moved them
to Appendix D.

(Notice that if G contains cycles, this lemma cannot apply
because of the lack of consistent ordering.) Lemma 24 enables
us to build an embedding from any reading of G (ξ) in A2.

Lemma 25. Let ξ a accepting run of A1. Then G (ξ) is in
L (A2) if and only if there is an accepting parallel run in
A2 that can be embedded into ξ.

Proof. The detailed proof of this result can be found in Ap-
pendix E.

For the if direction, we build a parallel reading from the
embedding, as explained above. For the other direction, we
consider a reading of G (ξ) in A2 along some run ξ′. Notice
that the natural ordering on N is consistent for G (ξ); we may
thus change the order of the transitions in ξ′ (using Lemma 24)
and group them adequately to obtain a parallel reading Ξ that
embeds in ξ.

So we know that the existence of embeddings is equivalent
to the inclusion of languages, and we previously established
that it is also equivalent to the existence of a simulation
relation. Hence, the following characterisation holds:

2Recall that if (ρj)0⩽j⩽n is a reading along ξ then for any p, q ∈ tj , we
have ρj(p) = ρj(q).

A

B C D

E

a

1

b
b

c

Figure 11: A Petri automaton for 1 ∩ a ⋅ b+ ⋅ c.

Theorem 26. Let A1 and A2 be two simple Petri automata.
L (A1) ⊆ L (A2) if and only if there exists a simulation
relation ≼ between A1 and A2.

Proof. By Lemmas 14, 23 and 25.

As Petri automata are finite, there are finitely many relations
in P (P (P1) ×P (P2 ⇢ P1)). The existence of a simulation
thus is decidable, allowing us to prove the main result:

Theorem 27. Given two expressions e, f ∈ Reg∩−X , testing
whether Rel ⊧ e = f is decidable.

Proof. By Theorems 6, 17 and 26, and reasoning by double
inclusion.

In practice, we can build the simulation on-the-fly, starting
from the pair ({ι1} ,{[ι2 ↦ ι1]}) and progressing from there.
We have implemented this algorithm in OCAML [5]. Even
though its theoretical worst case time complexity is huge3,
we get a result almost instantaneously on simple one-line
examples.

D. The problems with converse or unit

The previous algorithm is not complete in presence of
converse or unit. More precisely, Lemma 25 does not
hold for general automata. Indeed, it is not possible to
compare two runs just by relating the tokens at each step,
and checking each transition independently. Consider the
automaton from Figure 11. This automaton has in particular
an accepting run recognising 1 ∩ abc. Let us try to test
if this is smaller than the following runs from another
automaton (we represent the transitions simply as arrows,
because they only have a single input and a single output):

x0 x1 x2 x3 x4 x5 x6
a b c a b c

y0 y1 y2 y3 y4 y5 y6 y7
a b c a b b c

It stands to reason that we would reach a point where for the
first run:

{D,E} ≼ {[x3 ↦D]}

and for the second run:

{D,E} ≼ {[y3 ↦D]} .

So if it were possible to relate the end of the runs just with
this information, they should both be bigger than 1 ∩ abc
or both smaller or incomparable. But in fact the first run

3A quick analysis gives a O (2n+(n+1)
m
) complexity bound, where n and

m are the numbers of places of the automata.

10

(recognising abcabc) is bigger than 1 ∩ abc but the second
(recognising abcabbc) is not. This highlights the need for
having some memory of previously fired transition when trying
to compare runs of general Petri automata, thus preventing our
local approach to bear fruits. The same kind of example could
be found with the converse operation instead of 1.

VI. COMPLEXITY

The previous notion of simulation actually allows us to
decide language inclusion of simple automata in EXPSPACE.
We actually obtain that the problem is EXPSPACE-complete.

Lemma 28. Comparing simple Petri automata is EXPSPACE-
easy.

Proof. Our measure for the size of an automaton here is
its number of places (the number of transitions is at most
exponential in this number). Here is a non-deterministic semi-
algorithm that tries to refute the existence of a simulation
relation between A1 and A2.
1: start with ξ ∶= {ι1} and E ∶= {[ι2 ↦ ι1]};
2: if ξ ∈ F1, check if there is some η ∈ E such that dom (η) ∈

F2, if not return FALSE;
3: choose non-deterministically a transition (t, t) ∈ T1 such

that t ⊆ ξ;
4: fire (t, t), which means that

ξ ∶= ξ ∖ t ∪ {p ∈ P1 ∣ ∃x ∈X ∶ (x, p) ∈ t} ;

5: have E progress along (t, t) as well, according to the
conditions from Definition 21.

6: go to step 2.
All these computations can be done in exponential space. In
particular as ξ is a set of places in P1, it can be stored in space
∣P1∣ × log(∣P1∣). Similarly, E, being a set of partial functions
from P2 to P1, each of which of size ∣P2∣× log(∣P1∣+ 1), can
be stored in space ∣P1 + 1∣∣P2∣ × ∣P2∣× log(∣P1∣+ 1). This non-
deterministic EXPSPACE semi-algorithm can then be turned
into an EXPSPACE algorithm by Savitch’ theorem [18].

One can check that the number of places in A (e) is linear in
the size of e. (The exponential upper-bound on the number of
transitions is asymptotically reached, consider for instance the
automaton for (x1 ∪ y1) ∩ (x2 ∪ y2) ∩ ⋅ ⋅ ⋅ ∩ (xn ∪ yn).) There-
fore, the previous Lemma gives us a EXPSPACE algorithm for
deciding the (in)equational theory of identity-free relational
Kleene lattices.

Theorem 29. Comparing simple Petri automata is
EXPSPACE-complete.

Proof. By Lemma 28, it suffices to show hardness. We per-
form a reduction from the equality of languages denoted by
regular expressions with squaring (e2 ∶= e ⋅e), an EXPSPACE-
complete problem [13]. To avoid confusion, the regular lan-
guage denoted by the expression e will be written LeM. Any
word u can be see uniquely as a linear graph λ(u). By
extension, the set of graphs of words from LeM will be denoted
by λLeM.

ι1 fn1e1

ι

○ ●

fn

1

1
1

1

1

X X

Figure 12: Squaring of the automaton for e1.

First, notice that if u and v are just words over X ,
λ(u) ◂ λ(v) is equivalent to u = v. Because of this, it is
straightforward to check that for any e, f ∈ Reg2X the following
holds

◂(λLeM) = ◂(λLfM)⇔ LeM = LfM. (8)

Given an expression e on this signature, we can build in lin-
ear time a Petri automaton A , with a linear number of places
and transitions. The closure of the language denoted by e is be
exactly the language recognised by A . This automaton is not
simple: some outgoing arcs are labelled with 1; therefore, this
reduction only ensures that the equivalence of arbitrary Petri
automata is EXPSPACE-hard. To get EXPSPACE-hardness for
simple Petri automata, we need to refine the construction so
that 1 is interpreted as a standard letter. (More details are given
in Appendix F.)

The automata we produce here only have one final con-
figuration, consisting in a singleton. The construction is a
straightforward adaptation of Thompson’s algorithm for NFA
[19]. The only interesting case is for computing an automaton
for e = (e1)2. We represent it graphically in Figure 12.
The transitions labelled by X are a shorthand for a set of
transitions, containing for each letter x in X a transition with
one output, labelled by x. This construction is linear: the
automaton for e1 is not copied. Furthermore, a run in this
automaton will start by sending one token in ○ and one in ι1,
the initial state of the automaton for e1. Then it will perform
an run in this automaton until a single token reaches the final
state for e1, fn1. At this point the tokens from ○ and fn1 will
be sent to ● and ι1, starting a new run of e1. When a token is
finally sent to fn1, it can be consumed together with the one
in ●, to reach the final configuration.

This proof does not allow us to deduce that also the
(in)equational theory of Kleene allegories is EXPSPACE-hard:
the Petri automata we construct are not associated to some
expressions of polynomial size, a priori.

VII. RELATIONSHIP WITH STANDARD PETRI NET NOTIONS

Our notion of Petri automaton is really close to the standard
notion of labelled (safe) Petri net, where the transitions them-
selves are labelled, rather than their outputs. We motivate this
design choice, and we relate some of the notions we introduced
to the standard ones [15].

Any Petri automaton can be translated into a safe Petri net
whose transitions are labelled by X̄ ⊎{τ}, the additional label

11

τ standing for silent actions. For each automaton transition
({p1, . . . , pn} ,{(x1, q1), . . . , (xm, qm)}) with m > 1, we
introduce m fresh places r1, . . . , rm and m + 1 transitions:

● a silent transition t0 with preset {p1, . . . , pn} and postset
{r1, . . . , rm};

● and for each 1 ⩽ k ⩽ m a transition tk labelled by xk,
with preset {rk} and postset {qk}.

The inductive construction from Section IV is actually simpler
to write using labelled Petri nets, as one can freely use τ -
labelled transitions to assemble automata into larger ones, one
does not need to perform the τ -elimination steps on the fly.

On the other side, we could not define an appropriate notion
of simulation for Petri nets: we need to fire several transitions
at once in the small net, to provide enough information for the
larger net to answer; delimiting which transitions to group and
which to separate is non-trivial; similarly, defining a notion
of parallel step is delicate in presence of τ -transitions. By
switching to our notion of Petri automata, we impose strong
constraints about how those τ -transitions should be used,
resulting in a more fitted model.

To describe a run in a Petri net N , one may use a process
p ∶ K → N , where K is an occurrence net (a partially
ordered Petri net) [8]. The graphical representation (Figures 5,
7 and 10) we used to describe runs in an automaton are in fact
a mere adaptation of this notion to our setting (with labels on
arcs rather than on transitions).

Our notion JξK of trace of a run actually corresponds
to the standard notion of pomset-trace, via dualisation (see
Appendix H). Jategaonkar and Meyer showed that the pomset-
trace equivalence problem for safe Petri nets is EXPSPACE-
complete [9]. However this equivalence is too strong and does
not coincide with the one discussed in the present paper, even
for simple Petri automata. The graph produced by a run is its
trace in this case, so that pomset-trace equivalence for Petri
nets corresponds to equivalence of the sets of graphs produced
by Petri automata (G (A) = G (B), up to graph isomor-
phism). However, for the equational theory we consider, we
need to compare the languages, which are downward-closed
sets of graphs, (◂G (A) = ◂

G (B), i.e., L (A) = L (B))
rather than the sets of graphs themselves.

Also note that the class of sets of graphs produced by Petri
automata ({G (A) ∣ A a Petri automaton}) is not closed
under downward closure. Intuitively, the width of any graph
in G (A) is bounded by the number number of places of A ,
but ◂

G (A) usually contains graphs of arbitrary width. As a
consequence, one cannot easily reduce our problem to pomset-
trace equivalence of safe Petri nets.

VIII. DIRECTIONS FOR FUTURE WORK

The automata model we introduced to recognise downward-
closed graph languages allowed us to obtain the decidability
of identity-free relational Kleene lattices, an (in)equational
theory studied recently by Andréka et al. [1]. Thanks to
this model, we also obtained that the (in)equational theory

of Kleene allegories is co-recursively enumerable. We leave
several questions open.

First, is the (in)equational theory of Kleene allegories de-
cidable? Two approaches could provide an affirmative answer:
finding an algorithm for comparing arbitrary Petri automata, or
finding a complete and recursively enumerable axiomatisation.

Second, can we obtain a Kleene-like theorem for Petri
automata: is the language of any Petri automaton also the
language of a Kleene allegory term? This question can be
restricted to simple Petri automata; if one of the answers
is negative, is there an algebraic way of representing these
automata? Which are the missing operators?

REFERENCES

[1] H. Andréka, S. Mikulás, and I. Németi. The equational theory of Kleene
lattices. Theoretical Computer Science, 412(52):7099–7108, 2011.

[2] H. Andréka and D. Bredikhin. The equational theory of union-free
algebras of relations. Algebra Universalis, 33(4):516–532, 1995.

[3] S. L. Bloom, Z. Ésik, and G. Stefanescu. Notes on equational theories
of relations. Algebra Universalis, 33(1):98–126, 1995.

[4] P. Brunet and D. Pous. Kleene algebra with converse. In Proc. RAMiCS,
volume 8428 of Lecture Notes in Computer Science, pages 101–118.
Springer Verlag, 2014.

[5] P. Brunet and D. Pous. Web appendix to this abstract, 2014.
http://perso.ens-lyon.fr/paul.brunet/rklm.html.

[6] J. H. Conway. Regular algebra and finite machines. Chapman and Hall
Mathematics Series, 1971.

[7] P. J. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.
[8] U. Goltz and W. Reisig. The non-sequential behaviour of petri nets.

Information and Control, 57(2):125–147, 1983.
[9] L. Jategaonkar and A. R. Meyer. Deciding true concurrency equivalences

on safe, finite nets. Theoretical Computer Science, 154(1):107 – 143,
1996. Twentieth International Colloquium on Automata, Languages and
Programming.

[10] S. C. Kleene. Representation of Events in Nerve Nets and Finite
Automata. Memorandum. Rand Corporation, 1951.

[11] D. Kozen. A completeness theorem for Kleene Algebras and the algebra
of regular events. In Proc. LICS, pages 214–225. IEEE Computer
Society, 1991.

[12] D. Krob. A Complete System of B-Rational Identities. In Proc.
ICALP, volume 443 of Lecture Notes in Computer Science, pages 60–73.
Springer Verlag, 1990.

[13] A. Meyer and L. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Switching
and Automata Theory, 1972., IEEE Conference Record of 13th Annual
Symposium on, pages 125–129. IEEE, 1972.

[14] A. Meyer and L. J. Stockmeyer. Word problems requiring exponential
time. In Proc. ACM symposium on Theory of computing, pages 1–9.
ACM, 1973.

[15] T. Murata. Petri nets: Properties, analysis and applications. Proc. of the
IEEE, 77(4):541–580, Apr 1989.

[16] C. A. Petri. Fundamentals of a theory of asynchronous information flow.
In IFIP Congress, pages 386–390, 1962.

[17] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt
Univ. of Tech., 1962.

[18] W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of computer and system sciences, 4(2):177–
192, 1970.

[19] K. Thompson. Regular expression search algorithm. C. of the ACM,
11:419–422, 1968.

12

http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1007/BF01190768
http://dx.doi.org/10.1007/BF01190768
http://dx.doi.org/10.1007/978-3-319-06251-8_7
http://perso.ens-lyon.fr/paul.brunet/rklm.html
http://store.doverpublications.com/0486485838.html
http://store.elsevier.com/Categories-Allegories/P_J_-Freyd/isbn-9780444703682/
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(95)00132-8
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(95)00132-8
http://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
http://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
http://dx.doi.org/10.1109/LICS.1991.151646
http://dx.doi.org/10.1109/LICS.1991.151646
http://dx.doi.org/10.1007/BFb0032022
http://doi.acm.org/10.1145/800125.804029
http://doi.acm.org/10.1145/800125.804029
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1145/363347.363387

APPENDIX

A. Omitted proof: Theorem 6

We denote by WX the set of ground terms. We want to
establish that for any regular expressions with intersection and
converse e and f , the following are equivalent:

(i) Rel ⊧ e ≤ f ,
(ii) JeK ⊆ ⊲JfK,

(iii) G (e) ⊆ ◂
G (f).

a) (iii)⇒(ii): Suppose G (e) ⊆ ◂
G (f), let u ∈ JeK be a

ground term. Necessarily there is some graph G ∈ G (f) such
that G(u) ◂ G. By definition of G (f), there is some term
v ∈ JfK such that G = G(v). This means that u ⊲ v, thus
proving that u ∈ ⊲JfK.

b) (ii)⇒(i): Let e, f ∈ Reg⌣∩X two expressions such
that JeK ⊆ ⊲JfK, and σ ∶ X → P (S × S) some relational
interpretation.

σ̂(e) = ⋃
w∈JeK

σ̂(w) (Lemma 5)

⊆ ⋃
w∈⊲JfK

σ̂(w) (JeK ⊆ ⊲JfK)

= σ̂(f) (Lemma 5)

c) (i)⇒(iii): In order to prove this last implication, we
need the following lemma, which is due to Andréka and
Bredikhin.

Lemma 30 ([2, Lemma 3]). Let S be a base set, i, j ∈ S,
v ∈WX , G(v) = ⟨Vv,Ev, ιv, ov⟩ and σ ∶ X → P (S × S). The
following are equivalent:

1) (i, j) ∈ σ̂(v);
2) ∃ϕ ∶ Vv → S such that ϕ(ιv) = i; ϕ(ov) = j and

(p, a, q) ∈ Ev ⇒ (ϕ(p), ϕ(q)) ∈ σ(a).

Let e, f ∈ Reg⌣∩X two expressions such that Rel ⊧ e ≤ f ,
and u ∈ JeK such that G(u) = ⟨Vu,Eu, ιu, ou⟩; we can build
an interpretation σ ∶X → P (Vu × Vu) by specifying:

σ(a) ∶= {(p, q) ∣ (p, a, q) ∈ Eu } .

It is quite simple to check that σ̂(u) = {(ιu, ou)}. By Lemma 5
and Rel ⊧ e ≤ f , we know that

σ̂(u) ⊆ σ̂(f) = ⋃
v∈JfK

σ̂(v).

Thus there is some v ∈ JfK such that (ιu, ou) ∈ σ̂(v). By
Lemma 30 we get that there is a map ϕ ∶ Vv → Vu such that
ϕ(ιv) = ιu; ϕ(ov) = ou and

(p, a, q) ∈ Ev ⇒ (ϕ(p), ϕ(q)) ∈ σ(a).

Using the definition of σ, we rewrite this last condition as

(p, a, q) ∈ Ev ⇒ (ϕ(p), a,ϕ(q)) ∈ Eu.

Thus ϕ is a graph homomorphism from G(v) to G(u), proving
that G(u) ◂G(v), hence G(u) ∈ ◂G(f).

B. Omitted proof: Lemma 14

Let G = ⟨V,E, ι, o⟩, JξK = ⟨{0, . . . , n} ,Eξ,0, n⟩,
and G (ξ) = ⟨{[i]ξ ∣ 0 ⩽ i ⩽ j } ,E′

ξ, [0]ξ, [n]ξ⟩. Suppose
there exists a graph homomorphism ϕ from G (ξ) to G.
We build a reading (ρk)k of G along ξ by letting ρk(p) ∶=
ϕ([ν(k, p)]ξ) for 0 ⩽ k ⩽ n and p ∈ ξk. We now have to check
that ρ is truly a reading of G in A :

● for the initialisation and conclusion of the reading:

ρ0(ιA) = ϕ([ν(0, ιA)]ξ) (by definition)
= ϕ([0]ξ) = {ι} (ϕ is a homomorphism)

p ∈ ξn, ρn(p) = ϕ([ν(n, p)]ξ)
= ϕ([n]ξ) (∀k, p, k ⩽ ν(k, p) ⩽ n)
= {o} . (ϕ is a homomorphism)

● for all p ∈ tk, ρk(p) = ϕ([ν(k, p)]ξ) = ϕ([k]ξ) which
does not depend on p.

● for all p ∈ ξk ∖ tk, we have ν(k, p) = ν(k + 1, p) (since
p ∉ tk). Hence

ρk(p) = ϕ([ν(k, p)]ξ) = ϕ([ν(k + 1, p)]ξ)
= ρk+1(p).

● for all p ∈ tk and (x, q) ∈ tk, we know that ρk(p) =
ϕ([k]ξ) and that (k, x, ν(k + 1, q)) ∈ Eξ.

– If x ∈X , we also have ([k]ξ, x, [ν(k + 1, q)]ξ) ∈ E′
ξ.

Because ϕ is a homomorphism we can deduce that:

(ϕ([k]ξ), x,ϕ([ν(k + 1, q)]ξ)) ∈ E,

which can be rewritten (ρk(p), x, ρk+1(q)) ∈ E.
– If x = y⌣, y ∈ X , we also have

([ν(k + 1, q)]ξ, y, [k]ξ) ∈ E′
ξ. Because ϕ

is a homomorphism we can get like before
(ρk+1(q), y, ρk(p)) ∈ E.

– If finally x = 1, then we know that k ≡ξ ν(k + 1, q),
thus proving that

ρk(p) = ϕ([k]ξ) = ϕ([ν(k + 1, q)]ξ) = ρk+1(q).

If on the other hand we have a reading (ρk)0⩽k⩽n of G, we
define ϕ ∶ {0, . . . , n}→ V by ϕ([k]ξ) ∶= ρk(p) for any p ∈ tk.
As (ρk)k is a reading, ϕ is well defined4. Let us check that
ϕ is a homomorphism from G (ξ) to G:

● ϕ([0]ξ) = ρ0(ιA) = ι;
● ϕ([n]ξ) = ρn(p) with p ∈ ξn, and since (ρk)k is a reading
ρn(p) = o.

● if ([k]ξ, x, [l]ξ) ∈ E′
ξ is an edge of G (ξ), then it was

produced from some edge (i, y, j) ∈ Eξ, with either x = y
and i, j ∈ [k]ξ × [l]ξ or y = x⌣ and i, j ∈ [l]ξ × [k]ξ.
There is some p ∈ ti and q such that (y, q) ∈ tj and
j = ν(i + 1, q).
By definition of ν we know that ∀i + 1 ⩽m < j, q ∉ tm.
Thus, because (ρk)k is a reading, ρi+1(q) = ρj(q) and
either (ρi(p), x, ρi+1(q)) ∈ E or (ρi+1(q), x, ρi(p)) ∈ E,
and thus (ϕ([k]ξ), x,ϕ([l]ξ)) ∈ E.

4It is not difficult to check that k ≡ξ l⇒ ∀p, q ∈ tk × tl, ρk(p) = ρl(q).

13

C. Omitted proof: Lemma 17

We have to prove that G (A (e)) ≡ G (e), where ≡ denotes
equality of sets of graphs, up to graph isomorphisms. We
proceed by induction on e ∈ Reg⌣∩X (with the restrictions
introduced in Section IV: ⋅+ ∪1 instead of ⋅⋆ and the converse
only on variables); we recall the inductive definition of A (e)
(Definition 16), giving the arguments for the correctness for
each inductive case.

● A (x) ∶= ⟨{0,1} ,{({0} ,{(x,1)})} ,0,{{1}}⟩

// 0
x // 1

Proof. The only accepting run here is

ξ = ({0} ({0},{(x,1)})ÐÐÐÐÐÐÐÐ→ {1}),

. If x ∈ X , then G (ξ) = → ● xÐÐÐÐ→ ● →. If x = y⌣

then G (ξ) = → ● y←ÐÐÐÐ ● → . If finally x = 1 then
G (ξ) =→ ●→. In every case this is the graph of the only
ground term in JxK.

● A (0) ∶= ⟨{0} ,∅,0,∅⟩

Proof. As there are no final configuration, no run is
accepting in this automaton. Hence G (A (0)) = ∅ =
G (0).

● A (e1 ∪ e2) ∶= ⟨P1 ∪ P2,T , ι1,F1 ∪F2⟩ with
T = T1 ∪T2 ∪ {({ι1} , t) ∣ ({ι2} , t) ∈ T2 }.

Proof. If ξ = ⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ is an accepting
run in A (e1 ∪ e2), then ξ0 = {ι1} and either ∀k, tk ∈
T1 and ξ is accepting in A1, or t0 = ({ι1} , t) and
⟨({ι2} , ξ1,⋯, ξn), (({ι2} , t), t1,⋯, tn−1)⟩ is an accept-
ing run in A2. Hence

G (A (e1 ∪ e2)) = G (A (e1)) ∪ G (A (e2)) ,

thus proving that:

G (e1 ∪ e2) = G (e1) ∪ G (e2)
≡ G (A (e1)) ∪ G (A (e2))
≡ G (A (e1 ∪ e2))

● A (e ⋅ f) ∶= ⟨P1 ∪ P2,T , ι1,F2⟩ with
T = T1 ∪T2 ∪ {(f, t) ∣ f ∈ F1 and ({ι2} , t) ∈ T2 }.

Proof. If ξ = ⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ is an accepting run
in A (e1 ⋅ e2), then ξ0 = {ι1}. There must also be some
m such that:

– ξ1 = ⟨(ξk)0⩽k⩽m , (tk)0⩽k<m⟩ is accepting in A (e1),
in particular ξm ∈ F1;

– tm = (ξm, t), with ({ι2} , t) ∈ T2;
– the run ξ2 = ⟨ ({ι2} , ξm+1,⋯, ξn),

(({ι2} , t), tm+1,⋯, tn−1) ⟩
is accepting in A (e2).

Furthermore, it can be shown that G (ξ) ≡ G (ξ1)⋅G (ξ2).
The isomorphism is:

π ∶ G (ξ) → G (ξ1) ⋅ G (ξ2)
[k]ξ ↦ [k]ξ1 ∈ Vξ1 if k <m
[k]ξ ↦ [k −m]ξ2 ∈ Vξ2 if k ⩾m

Thus we can deduce that:

G (e1 ⋅ e2) = G (e1) ⋅ G (e2)
≡ G (A (e1)) ⋅ G (A (e2))
≡ G (A (e1 ⋅ e2))

● A (e+1) ∶= ⟨P1,T , ι1,F1⟩ with
T = T1 ∪ {(f, t) ∣ f ∈ F1 and ({ι1} , t) ∈ T1 }.

Proof. The proof is extremely similar to the case of
e1 ⋅ e2, simply with multiple accepting runs separated by
transitions in (f, t) with f final and ({ι1} , t) ∈ T1. Note
that the construction does not add any transitions ending
in ι1.

● A (e1 ∩ e2) ∶= ⟨P1 ∪ P2,T , ι1,F ⟩ with
F ∶= {f1 ∪ f2 ∣ f1 ∈ F1, f2 ∈ F2 } and

T ∶={(t, t) ∣ i ∈ {1,2} , (t, t) ∈ Ti, ιi ∉ t}
∪ {({ι1} , t1 ∪ t2) ∣ ({ιi} , ti) ∈ Ti,∀i ∈ {1,2}}

Proof. Let ξ = ⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ be an accepting
run in A (e1 ∩ e2), then (ξk)0⩽k⩽n = {ι1} and
t0 = ({ι1} , t1 ∪ t2) with ({ιi} , ti) ∈ Ti, i ∈ {1,2}.
For i ∈ {1,2}, define πi(ξ) ∶= ξ ∖P2−i, and δi(t) ∶= {t} if
t ∈ Ti, and ∅ otherwise.
We check that the parallel run ξi defined by the se-
quence of configurations ({ιi} , πi(ξ1),⋯πi(ξn)) and the
sequence of transitions (({ιi} , ti), δi(t1),⋯, δi(tn−1)) is
an accepting parallel run in A (ei), and that

G (ξ) ≡ G (ξ1) ∩ G (ξ2) ,

which allows us to conclude.
(Although we did not properly introduce the graph pro-
duced by a parallel run, this does not hold any dif-
ficulty. As stated when we introduced the notion of
parallel transition, such a transition may be unfolded
by sequentially firing the underlying transitions, in any
order. Accordingly, all of the unfoldings of a parallel run
produce the same graph (up to isomorphisms). We may
thus take for the graph produced by a parallel run any of
those graphs.)

D. Omitted proof: Lemma 24

In the following, let A = ⟨P,T , ι,F ⟩ be a Petri automaton,
and ξ = ⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ a run of A with tk = (tk, tk)
for every k.

Definition 31 (Exchangeable transitions)
Two transitions tk and tk+1 are exchangeable in ξ if for all
p ∈ ξk, p is in tk+1 implies that there is no x ∈ X such that
(x, p) ∈ tk. ∗

14

Lemma 32. Suppose tk and tk+1 are exchangeable for some
0 ⩽ k < n−1. We write C ′ = ξk∖tk+1∪{p ∣ ∃x ∶ (x, p) ∈ tk+1 }
Then ξk

tk+1ÐÐ→A C ′ and C ′ tkÐ→A ξk+2. Furthermore, for any
graph G, if G ∈ L (ξ), then G ∈ L (ξ[k↔ k + 1]), where:

ξ[k↔ k + 1] ∶= ⟨ (ξ0, ξ1,⋯, ξk,C ′, ξk+2⋯, ξn) ,
(t0, t1,⋯, tk+1, tk,⋯, tn−1)⟩

Proof. The fact that ξk
tk+1ÐÐ→A C ′ and C ′ tkÐ→A ξk+2 is trivial

to check, with the definition of exchangeable.
Let (ρj)0⩽j⩽n be a reading of G along ξ. If (ρ′j)0⩽j⩽n is

defined by:

ρ′j(p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρj(p) if j ≠ k + 1,

ρk+2(p) if j = k + 1 and (x, p) ∈ tk+1 for some x,
ρk(p) otherwise.

Then (ρ′j)0⩽j⩽n is a reading of G along ξ[k↔ k + 1].

Recall that if (ρj)0⩽j⩽n is a reading of G along ξ we write
active(j) for the only position in ρj(tj).

Lemma 33. Let ⩿ be any consistent ordering (a linear
ordering compatible with the directed edges of the graph)
on G. If (ρj)0⩽j⩽n is a reading of G along ξ, and if
active(k + 1) ⩿ active(k) for some k, then tk and tk+1 are
exchangeable.

Proof. Let G = ⟨V,E, ι, o⟩. As (ρi)0⩽j⩽n is a reading, for any
(x, p) ∈ tk, (active(k), x, ρk+1(p)) ∈ E, thus

active(k) ⋖ ρk+1(p).

We know that active(k + 1) ⩿ active(k), meaning by transi-
tivity that active(k + 1) ⋖ ρk+1(p). Hence

active(k + 1) ≠ ρk+1(p)

and because (ρi)0⩽j⩽n is a reading we can infer that p ∉ tk+1,
thus proving that tk and tk+1 are exchangeable.

Proof of Lemma 24. Because G is in L (A), we can find a
reading ρ′ along some run ξ. If that reading is not in the correct
order, then by Lemma 33 we can exchange two transitions and
Lemma 32 ensures that we can find a corresponding reading.
We repeat this process until we get a reading in the correct
order.

E. Omitted proof: Lemma 25

Let ξ = ⟨(ξk)0⩽k⩽n , (tk)0⩽k<n⟩ be a run, with tk = (tk, tk)
for all k. Define ρ1k(p) ∶= ν(k, p) for all index k place p ∈ ξk.
We have that (ρ1k)0⩽k⩽n is a reading of G (ξ) along ξ.

● Assume an embedding (ηk)0⩽k⩽n of an accepting parallel
run Ξ into ξ. We define a parallel reading (ρ2k) of G (ξ)
in A2 by letting ρ2k(p) ∶= ρ1k(ηk(p)).

● On the other hand, notice that the natural ordering on N
is consistent for G (ξ), and that ∀0 ⩽ k < n,
ρ1k(tk) = {k}. By Lemma 24 we gather that G (ξ) is in
L (A2) if and only if there exists a reading (ρ2j)0⩽j⩽n′ of
G (ξ) along some run ξ′ = ⟨(ξ′j)0⩽j⩽n′ , (t

′
j)0⩽j<n′⟩ such

that ∀j, active(j) ⩽ active(j + 1) (with active(j) the
only position in ρ2j(tj)).
Now, suppose we have such a reading; we can build an
embedding (ηk)0⩽k⩽n as follows. For k < n, define
Tk ∶= {(t′j , t′j) ∣ active(j) = k} . We describe the con-
struction incrementally:

– η0 = [ι2 ↦ ι1].
– For all p ∈ dom (ηk) ∖ ⋃(t,t)∈Tk

t we simply set
ηk(p) = ηk−1(p).

– Otherwise, ∀(t′j , t′j) ∈ Tk, let q ∈ t′j . Then, for

all (x, p) in t′j , because ρ2 is a reading and by
construction of G (ξ) we also know that there is
some p′ ∈ ξk+1 that satisfies (x, p′) ∈ tk and
ρ1k+1(p′) = ρ2j+1(p). That p′ is a good choice for p,
hence we define ηk(p) = p′.

It is then administrative to check that (ηk)0⩽k⩽n is indeed
an embedding.

F. Omitted proof: Lemma 29

We define the automaton of a regular expression with
squaring with a single final state. We describe this construction
graphically.

● 1: 0 1
1

● x: ι f
x

● e1 ∪ e2:
ι1 fn1e1

ι2 fn2e2

ι fn

1

1

1

1

● e1 ⋅ e2: ι1 fn1 = ι2e1 fn2e2

● e⋆1:

ι1 fn1e1ι fn
1 1

1

1

● e21:

ι1 fn1e1

ι fn

○ ●

1

1

1

1

1

X X

This construction can be performed in linear time and space.
By further analysing this construction, one can prove that

1) λLeM ⊆ L (A (e));
2) for every G ∈ G (A (e)), there is a word w ∈ LeM such

that G ◂ λ(w).

15

By combining Items 1 and 2 we establish that

L (A (e)) = ◂
λLeM.

Thus by Equation (8), we get that LeM = LfM is equivalent
to L (A (e)) = L (A (f)). This gives us the EXPSPACE-
hardness of the equivalence of Petri automata.

G. Comparing simple automata is EXPSPACE-hard
We perform a reduction from the problem RSQ(X): decid-

ing whether a regular expressions with squaring e (e2 ∶= e ⋅ e)
denotes the universal language X⋆. This problem was shown
in [13] to be EXPSPACE-complete. The proof will follow the
method used in [9] to obtain a complexity lower bound on
the trace equivalence of finite nets without hidden transitions.
To avoid confusion, the regular language denoted by the
expression e will be written LeM. Any word u can be see
uniquely as a linear graph λ(u). By extension, the set of
graphs of words from LeM will be denoted by λLeM.

First, notice that if u and v are just words over X ,
λ(u) ◂ λ(v) is equivalent to u = v. Because of this, it is
straightforward to check that for any e, f ∈ Reg2

X the following
holds

◂(λLeM) = ◂(λLfM)⇔ LeM = LfM. (9)

We first reduce to the containment of Petri automata with 1.

Lemma 34. The problem of deciding whether the language of
a regular expression with squaring is X⋆ is polynomial-time
reducible to the containment of languages recognised by Petri
automata.

Proof. Given an expression e on this signature, we can build
in linear time a Petri automaton A , with a linear number of
places and transitions. The closure of the language denoted by
e is be exactly the language recognised by A .

The automata we produce here only have one final configu-
ration, consisting in a singleton. The construction is a straight
forward adaptation of Thompson’s algorithm for NFA [19].
We describe this construction graphically.

● 1: 0 1
1

● x: ι f
x

● e1 ∪ e2:
ι1 fn1e1

ι2 fn2e2

ι fn

1

1

1

1

● e1 ⋅ e2: ι1 fn1e1 ι2 fn2e2
1

● e⋆1:

ι1 fn1e1ι fn
1 1

1

1

● e21:

ι1 fn1e1

ι fn

○ ●

1

1

1

1

1

X X

The automaton for e has at most 4 × ∣e∣ places, and at most
(2 × ∣X ∣ + 4) × ∣e∣ transitions. It is quite obvious that this
construction can be performed in linear time and space. By
further analysing this construction, one can prove that

1) λLeM ⊆ L (A (e));
2) for every G ∈ G (A (e)), there is a word w ∈ LeM such

that G ◂ λ(w).
By combining Items 1 and 2 we establish that

L (A (e)) = ◂
λLeM.

Thus by Equation (9), we get that LeM = LfM is equivalent to
L (A (e)) = L (A (f)). Hence L (A (X⋆)) ⊆ L (A (e))
is equivalent to LeM =X⋆.

The previous automata are not simple, as they use 1 as a
label. We can now get rid of this label, to obtain EXPSPACE-
hardness for simple Petri automata.

Lemma 35. The problem of deciding whether the language
of a regular expression with squaring is X⋆ is polynomial-
time reducible to the containment of languages recognised by
simple Petri automata.

Proof. We use a similar trick as in [9]: we reuse the previous
automaton A (e) by considering it as a simple automaton over
the alphabet X ∪{1} (thus forgetting about the special seman-
tics of 1, and seeing it simply as a standard letter). Notice that
w ∈ LeM is equivalent to the existence of a word u ∈ (X ∪ 1)⋆
such that λ(u) ∈ L (A (e)) and w can be obtained by erasing
from u the occurences of the letter 1. By carefully analysing
the automaton A (e), we may actually impose that u does
not contain more that ne ∶= (2 × ∣X ∣ + 4) × ∣e∣ consecutive
1. By adding to each place of A (e) a transition looping
on that place and labelled by 1, one obtains an automaton
A ′(e) such that w ∈ LeM iff the the word w′ ∈ (1neX)⋆1ne

obtained from w by inserting 1s as necessary is accepted by
A ′(e). As a consequence LeM =X⋆ iff L (B) ⊆ L (A ′(e)),
where B is a simple Petri automaton recognising the regular
language (1neX)⋆1ne (there are automata of linear size for
this language).

H. Traces as pomsets

Let ξ be a run in a simple Petri automaton, and let ξ′ be
the corresponding run in the corresponding labelled Petri net.
Let G (ξ) = ⟨V,E, ι, o⟩. It is not difficult to check that the
pomset-trace of ξ′ is isomorphic to ⟨E,<E⟩, where <E is the

16

transitive closure of the relation < defined on E by ∀x, y, z ∈
V, a, b ∈X, (x, a, y) < (y, b, z).

The correspondence is even stronger: two graphs produced
by accepting runs in (possibly different) automata G (ξ1) =
⟨V1,E1, ι1, o1⟩ and G (ξ2) = ⟨V2,E2, ι2, o2⟩ are isomorphic if
and only if their pomset-traces (E1,<E1) and (E2,<E2) are
isomorphic. The proof of this relies on the fact that accepting
runs produce graphs satisfying the following properties:

∀(x, a, y) ∈ E, x ≠ ι⇔ (∃z, b ∈ V ×X ∶ (z, b, x) ∈ E) ,

∀(x, a, y) ∈ E, y ≠ o⇔ (∃z, b ∈ V ×X ∶ (y, b, z) ∈ E) .

Hence, pomset-trace language equivalence corresponds exactly
to equivalence of the sets of produced graphs in our setting
(up to isomorphism).

17

	Introduction
	Languages
	Graphs
	Graph languages
	Petri automata

	Graph-theoretical characterisation
	Petri Automata
	From expressions to automata
	Comparing automata
	Simple automata
	Intuitions
	Simulations
	The problems with converse or unit

	Complexity
	Relationship with standard Petri net notions
	Directions for future work
	References
	Appendix
	Omitted proof: Theorem 6
	Omitted proof: Lemma 14
	Omitted proof: Lemma 17
	Omitted proof: Lemma 24
	Omitted proof: Lemma 25
	Omitted proof: Lemma 29
	Comparing simple automata is EXPSPACE-hard
	Traces as pomsets

