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Abstract

The equational theory generated by all algebras of binary relations with operations of union, compo-
sition, converse and reflexive transitive closure was studied by Bernátsky, Bloom, Ésik and Stefanescu in
1995. In particular, they obtained its decidability by using a particular automata construction.

We show that deciding this equational theory is PSpace-complete, by providing a PSpace algorithm
(the problem is easily shown to be PSpace-hard). We obtain other algorithms that are time-efficient in
practice, despite not being PSpace.

Our results use an alternative automata construction, inspired by the one from Bloom, Ésik and
Stefanescu. We relate those two constructions by exhibiting a bisimulation between the resulting deter-
ministic automata, and by showing how our construction results in more sharing between states, thus
producing smaller automata.

1 Introduction

In many contexts in computer science and mathematics operations of union, sequence or product and iteration
appear naturally. Kleene Algebra, introduced by John H. Conway under the name regular algebra [2], provide
an algebraic framework allowing to express properties of these operators, by studying the equivalence of
expressions built with these connectives. It is well known that the corresponding equational theory is
decidable [3], and that it is complete for both language and relation models.

As expressive as it may be, one may wish to integrate other usual operations in such a setting. Theories
obtained this way, by addition of a finite set of equations to the axioms of Kleene Algebra, are called
Extensions of Kleene Algebra. We shall focus here on one of these extensions, where an operation of converse
is added to Kleene Algebra. The converse of a word is its mirror image (the word obtained by reversing the
order of the letters), and the converse R∨ of a relation R is its reciprocal (x R∨ y , y R x). This natural
operation can be expressed simply as a set of equations that we add to Kleene Algebra’s axioms.

The question that arises once this theory is defined is its decidability: given two formal expressions built
with the connectives product, sum, iteration and converse, can one decide automatically if they are equivalent,
meaning that their equality can be proven using the axioms of the theory? Bloom, Ésik, Stefanescu and
Bernátsky gave an affirmative answer to that question in two articles, [4] and [5], in 1995.

However, although the algorithm they define proves the decidability result, it is too complicated to be
used in concrete applications. In this paper, beside some simplifications of the proofs given in [4], we give a
new and more efficient algorithm to decide this problem, which we place in the complexity class PSpace.

The equational theory of Kleene algebra cannot be finitely axiomatised [6]. Krob presented the first
purely axiomatic (but infinite) presentation [7]. Several finite quasi-equational characterisations have been
proposed [8, 9, 7, 10, 11]; here we follow the one from Kozen [10].

∗Extended version of the abstract presented at RAMiCS ’2014 [1].
†Work partially funded by the french projects PiCoq (ANR-09-BLAN-0169-01) and PACE (ANR-12IS02001).
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A Kleene Algebra is an algebraic structure 〈K,+, ·,⋆ , 0, 1〉 such that 〈K,+, ·, 0, 1〉 is an idempotent
semi-ring, and the operation ⋆ satisfies the following axioms.

1 + aa⋆ 6 a⋆ (1a)

1 + a⋆a 6 a⋆ (1b)

b+ ax 6 x⇒ a⋆b 6 x (1c)

b+ xa 6 x⇒ ba⋆ 6 x (1d)

(Here a 6 b is a shorthand for a+ b = b.)
The quasi-variety KA consists in the axioms of an idempotent semi-ring together with axioms and im-

plications (1a) to (1d). Kleene Algebras are thus models of KA. We shall call regular expressions over X,
written RegX , the expressions built from letters of X, the binary connectives + and ·, the unary connective
⋆ and the two constants 0 and 1.

Two families of such algebras are of particular interest: languages (sets of finite words over a finite
alphabet, with union as sum and concatenation as product) and relations (binary relations over an arbitrary
set with union and composition). KA is complete for both these models [7, 10], meaning that for any
e, f ∈ RegX , KA ⊢ e = f if and only if e and f coincide under any language (resp. relational) interpretation.
This last property will be written e ≡Lang f (resp. e ≡Rel f).

More remarkably, if we denote by JeK the language denoted by an expression e, we have that for any
e, f ∈ RegX , KA ⊢ e = f if and only if JeK = JfK. By Kleene’s theorem (see [3]) the equality of two regular
languages can be reduced to the equivalence of two finite automata, which is easy to compute. Hence, the
theory KA is decidable.

Now let us add a unary operation of converse to regular expressions. We shall denote by Reg∨X the set
of regular expressions with converse over a finite alphabet X. While doing so, several questions arise:

1. Can the converse on languages and on relations be encoded in the same theory?

2. What axioms do we need to add to KA to model these operations?

3. Are the resulting theories complete for languages and relations?

4. Are these theories decidable?

There is a simple answer to the first question: no. Indeed the equation a 6 a · a∨ · a is valid for any
relation a (because if (x, y) ∈ a, then (x, y) ∈ a, (y, x) ∈ a∨, and (x, y) ∈ a, so that (x, y) ∈ a ◦ a∨ ◦ a). But
this equation is not satisfied for all languages a (for instance, with the language a = {x}, a · a∨ · a = {xxx}
and x /∈ {xxx}). This means that there are two distinct theories corresponding to these two families of
models. Let us begin by considering the case of languages.

Theorem 1 (Completeness of KAC− [4]). A complete axiomatisation of the variety Lang∨ of languages

generated by concatenation, union, star, and converse consists of the axioms of KA together with axioms (2a)
to (2d).

(a+ b)
∨
= a∨ + b∨ (2a)

(a · b)∨ = b∨ · a∨ (2b)

(a⋆)
∨
= (a∨)⋆ (2c)

a∨
∨
= a (2d)

We call this theory KAC−; it is decidable.

As for relations, we write e ≡Lang∨ f if e and f have the same language interpretations (for a formal
definition, see the “Notation” subsection below). To prove this result, one first associates to any expression
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e ∈ Reg∨X an expression e ∈ RegX, where X is an alphabet obtained by adding to X a disjoint copy of itself.
Then, one proves that the following implications hold.

e ≡Lang∨ f ⇒ JeK = JfK (3)

JeK = JfK ⇒ KAC− ⊢ e = f (4)

(That KAC− ⊢ e = f entails e ≡Lang∨ f is obvious; decidability comes from that of regular languages
equivalence.) We reformulate Bloom et al.’s proofs of these implications in elementary terms in Section 2.1.

As stated before, the equation a 6 a · a∨ · a provides a difference between languages with converse and
relations with converse. It turns out that it is the only difference, in the sense that the following theorem
holds:

Theorem 2 (Completeness of KAC [4, 5]). A complete axiomatisation of the variety Rel∨ of relations

generated by composition, union, star, and converse consists of the axioms of KAC− together with the

axiom (5).
a 6 a · a∨ · a (5)

We call this theory KAC; it is decidable.

The proof of this result also relies on a translation into regular languages. Ésik et al. define a notion of
closure, written cl (), for languages over X, and they prove the following implications:

e ≡Rel∨ f ⇒ cl (JeK) = cl (JfK) (6)

cl (JeK) = cl (JfK) ⇒ KAC ⊢ e = f (7)

(Again, that KAC ⊢ e = f entails e ≡Rel∨ f is obvious.) The first implication (6) was proven in [4]; we
give a new formulation of this proof in Section 2.2. The second implication (7) was proven in [5]. We show
in Section 2.3 how to relate the above notion of closure with a more general notion used independently by
Freyd and Scedrov [12] and Andreka and Bredikhin [13].

The last consideration is the decidability of KAC. To this end, Bloom et al. propose a construction to
obtain an automaton recognising cl (L), when given an automaton recognising L. Decidability follows: to
decide whether KAC ⊢ e = f one can build two automata recognising cl (JeK) and cl (JfK) and check if they
are equivalent. Unfortunately, their construction tends to produce huge automata, which makes it useless
for practical applications. We propose a new and simpler construction in Section 4, which we analyse in
Section 5:

• we compare it to Bloom et al.’s construction by exhibiting a bisimulation relation and by showing how
our construction makes it possible to share more states (Section 5.1);

• we give a simple bound on the size of the produced automata (Section 5.2);

• we use this bound to provide a PSpace algorithm, resulting in a proof that the problem of equivalence
in KAC is PSpace-complete (Section 5.3);

• we finally provide algorithms that are not PSpace but time-efficient in practice, using “up to tech-
niques” for bisimulations (Section 5.4).

Notation

For any word w, |w| is the size of w, meaning its number of letters; for any 1 6 i 6 |w|, we write w(i) for the
ith letter of w and w|i , w(1)w(2) · · ·w(i) for its prefix of size i. Also, suffixes(w) , {v | ∃u : uv = w} is
the set of all suffixes of w. A deterministic automaton is a tuple 〈Q,Σ, q0,T , δ〉; with Q a set of states, Σ an
alphabet, q0 ∈ Q an initial state, T ⊆ Q a set of final states and δ : Q×Σ→ Q a transition function. A non-
deterministic automaton is a tuple 〈Q,Σ, I,T ,∆〉; with Q, Σ and T same as before, I ⊆ Q a set of initial
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states and ∆ ⊆ Q×Σ×Q a set of transitions. We write L (A ) for the language recognised by the automaton

A . For any a ∈ Σ, we write ∆(a) for the relation induced on Q by a, defined as: {(p, q) | (p, a, q) ∈ ∆}.

We also use the compact notation p
w
−−→A q to denote that there is in the automaton A a path labelled

by w from the state p to the state q. For a set E ⊆ Q and a relation R over Q, we write E · R for the set
{y | ∃x ∈ E, x R y }.

Given a map σ from a set X to the languages on an alphabet Σ (resp. the relations on a set S), there
is a unique extension of σ into a homomorphism from RegX to LangΣ (resp. RelS), which we denote by σ̂.
The same extensions exist for regular expressions with converse, and we will use the same notation for them.
We finally denote by ≡V the equality in a variety V (Lang, Rel, Lang∨ or Rel∨): e ≡V f , ∀K, ∀σ : X →
VK , σ̂(e) = σ̂(f).

2 Preliminary material

2.1 Languages with converse: theory KAC−

We consider regular expressions with converse over a finite alphabet X. The alphabet X is defined as X∪X ′,
where X ′ , {x′ | x ∈ X } is a disjoint copy of X. As a shorthand, we use ′ as an internal operation on X

going from X to X ′ and from X ′ to X such that if x ∈ X, x′ , x′ ∈ X ′ and (x′)′ , x ∈ X. An important
operation in the following is the translation of an expression e ∈ Reg∨X to an expression e ∈ RegX. We
proceed to its definition in two steps.

Let τ(e) denote the normal form of an expression e ∈ Reg∨X in the following convergent term rewriting
system:

(a+ b)
∨ → a∨ + b∨ 0

∨ → 0 (a⋆)
∨ → (a∨)⋆

(a · b)∨ → b∨ · a∨ 1
∨ → 1 a∨

∨
→ a

The corresponding equations being derivable in KAC−, one easily obtains that:

∀e ∈ Reg∨X , KAC− ⊢ τ(e) = e (8)

We finally denote by e the expression obtained by further applying the substitution ν , [x∨ 7→ x′, (∀x ∈ X)],
i.e., e , ν(τ(e)). (Note that e ∈ RegX: it is regular, all occurrences of the converse operation having been
eliminated.)

As explained in the introduction, Bloom et al.’s proof [4] amounts to proving the implications (3) and (4).
We include a syntactic and elementary presentation of this proof, for the sake of completeness.

Lemma 3. For all e, f ∈ Reg∨X , e ≡Lang∨ f entails JeK = JfK.

Proof. Let us write X• , X ⊎ {•} and consider the following interpretations (which appear in [4, proof of
Proposition 4.3]):

µ : X −→ P (X⋆
• ) η : X −→ P (X⋆

• )

x 7−→ {x · •} x ∈ X 7−→ {x · •}

x′ ∈ X ′ 7−→ {• · x}

One can check that η̂ is injective modulo equality of denoted languages (see A), in the sense that for any
expression e ∈ RegX, we have

η̂(e) = η̂(f) implies that JeK = JfK . (9)

By a simple induction on e, we get µ̂(τ(e)) = η̂(ν(τ(e))) = η̂(e). Using (8), we further obtain that τ(e) ≡Lang∨

e. We thus deduce that µ̂(e) = η̂(e). All in all, we obtain: e ≡Lang∨ f ⇒ µ̂(e) = µ̂(f) ⇒ η̂(e) = η̂(f) ⇒
JeK = JfK.
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The second implication is even more immediate, using the completeness of KA with respect to language
equivalence.

Lemma 4. For all e, f ∈ Reg∨X , if JeK = JfK then KAC− ⊢ e = f .

Proof. By completeness of KA [7, 10], if JeK = JfK, then we know that there is a proof π1 : KA ⊢ e = f . As
KA is contained in KAC−, the same proof can be seen as π1 : KAC− ⊢ e = f . By substituting x′ by (x∨)
everywhere in this proof, we get a new proof π2 : KAC− ⊢ τ(e) = τ(f). By (8) and transitivity we thus get
KAC− ⊢ e = f .

We finally deduce that e ≡Lang∨ f ⇔ JeK = JfK ⇔ KAC− ⊢ e = f . Since the regular expressions e and
f can be easily computed from e and f , the problem of equivalence in KAC− thus reduces to an equality of
regular languages, which makes it decidable.

2.2 Relations with converse: theory KAC

We now move to the equational theory generated by relational models. It turns out that this theory is
characterised using “closed” languages on the extended alphabet X. To define this closure operation, we
first define a mirror operation w on words over X, such that ǫ , ǫ and for any x ∈ X and w ∈ X⋆, wx , x′w.
Accordingly with the axiom (5) of KAC we define a reduction relation on words overX, using the following
word rewriting rule

www  w (10)

We call www a pattern of root w. The last two thirds of the pattern are ww. Following [4, 5], we extend this
relation into a closure operation on languages.

Definition 5. The closure of a language L ⊆ X⋆ is the smallest language containing L that is downward-
closed with respect to  :

cl (L) , {v | ∃u ∈ L : u ⋆ v } .

Example 6. If X = {a, b, c, d}, then X = {a, b, c, d, a′, b′, c′, d′}, and ab′ = ba′. We have the reduction
cab′ba′ab′d′  cab′d′, by triggering a pattern of root ab′. For L = {aa′a, b, cab′ba′ab′d′}, we have cl (L) =
L ∪ {a, cab′d′}.

Now we define a family of languages which play a prominent role in the sequel.

Definition 7. For any word w ∈ X⋆, we define a regular language Γ(w) by:

Γ(ǫ) , {ǫ}

∀x ∈ X, ∀w ∈ X⋆, Γ(wx) , (x′Γ(w)x)
⋆

.

An equivalent operator called G is used in [4]: we actually have Γ(w) = G(w), and our recursive definition
directly corresponds to [4, Proposition 5.11.(2)]. By using such a simple recursive definition, we avoid the
need for the notion of admissible maps, which is extensively used in [4].

Instead, we just have the following property to establish, which illustrates why these languages are of
interest: words in Γ(w) reduce into the last two thirds of a pattern compatible with w. Therefore, in the
context of recognition by an automaton, Γ(w) contains all the words that could potentially be skipped after
reading w, in a closure automaton.

Proposition 8. For all words u and v, u ∈ Γ(v)⇔ ∃t ∈ suffixes(v) : u ⋆ tt.

Proof. The proof of the implication from left to right is routine but a bit lengthy, we put it in B.
For the converse implication, we first define the following language: Γ′(v) ,

{
tt | t ∈ suffixes(v)

}
. We

thus have to show that the upward closure of Γ′(v) is contained in Γ(v). We first check that this language
satisfies Γ′(ǫ) = ǫ and Γ′(vx) = ǫ+x′Γ′(v)x, which allows us to deduce that Γ′(v) ⊆ Γ(v) by a straightforward
induction.
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//
0

v(n)′
//

oo 1
v(n−1)′

//

v(n)
oo 2

v(n−2)′
//

v(n−1)
oo · · ·

v(1)′
//

v(n−2)
oo n

v(1)
oo

Figure 1: Automaton G (v) recognising Γ(v), with |v| = n.

// 0
u(1)

//
1

u(2)
//

u(1)′
oo 2

u(3)
//

u(2)′
oo · · ·

u(n)
//

u(3)′
oo n

u(n)′
oo

//

Figure 2: Automaton Φ(u), with |u| = n.

It thus suffices to show that Γ(v) is upward-closed with respect to  . For this, we introduce the family
of automata G (v) depicted in Figure 1. One can check that G (v) recognises Γ(v) by a simple induction on

v. One can moreover notice that in this automaton, if p
x
−−→G (v) q, then q

x′

−−→G (v) p. More generally, for

any word u, if p
u
−−→G (v) q, then q

u
−−→G (v) p. So if u1wu2 ∈ Γ(v), then by definition of the automaton we

have 0
u1−−−→G (v) q1

w
−−→G (v) q2

u2−−−→G (v) 0 , and thus, by the previous remark:

0
u1

G (v)
// q1

w

G (v)
// q2

w

G (v)
// q1

w

G (v)
// q2

u2

G (v)
// 0 ,

i.e., u1wwwu2 ∈ Γ(v). In other words, for any words v and w and any u ∈ Γ(v), if w  u then w is also in
Γ(v), meaning exactly that Γ(v) is upward-closed with respect to  .

Since Γ′(v) ⊆ Γ(v), we deduce that Γ(v) contains the upward closure of Γ′(v), as expected.

We now have enough material to embark in the proof of the implication (6) from the introduction,
stating that if two expressions e, f ∈ Reg∨X are equal for all interpretations in all relational models, then
cl (JeK) = cl (JfK).

Proof. Bloom et al. [4] consider specific relational interpretations: for any word u ∈ X⋆ and for any letter
x ∈ X, they define

φu(x) , {(i− 1, i) | u(i) = x} ∪ {(i, i− 1) | u(i) = x′ } ⊆ {0, . . . , n}2 ,

where n , |u|. The key property of those interpretations is the following:

(0, n) ∈ φ̂u(v)⇔ v  ⋆ u . (11)

We give a new proof of this property, by using the automaton Φ(u) depicted in Figure 2. By definition of
Φ(u) and φu, we have that

(i, j) ∈ φu(x)⇔ i
x
−−→Φ(u) j .

Therefore, proving (11) amounts to proving

v ∈ L(Φ(u))⇔ v  ⋆ u . (12)

First notice that i
x
−−→Φ(u) j ⇔ j

x′

−−→Φ(u) i. We extend this to paths (as in the proof of Proposition 8) and

then prove that if s t and i
t
−−→Φ(u) j then i

s
−−→Φ(u) j. As u is clearly in L(Φ(u)), any v such that v  ⋆ u

is also in L(Φ(u)).

6



// 0
x //

x
((

1′
u(1)

//

x′

oo 2′
u(2)

//

u(1)′
oo · · ·

u(n)
//

u(2)′
oo n′

u(n)′
oo

1
u(1)

//
2

u(2)
//

u(1)′
oo · · ·

u(n)
//

u(2)′
oo n

u(n)′
oo

//

Figure 3: Automaton Φ′(xu), with |u| = n, language equivalent to Φ(xu).

We proceed by induction on u for the other implication. The case u = ǫ being trivial, we consider
v ∈ L(Φ(xu)). We introduce a second automaton Φ′(xu) given in Figure 3, that recognises the same
language as Φ(xu). The upper part of this automaton is actually the automaton G (xu) (as given in Figure 1),
recognising the language Γ(xu). Moreover, the lower part starting from state 1 is the automaton Φ(u). This
allows us to obtain that L(Φ(xu)) = Γ(xu)xL(Φ(u)). Hence, for any v ∈ L(Φ(xu)), there are v1 ∈ Γ(xu)
and v2 ∈ L(Φ(u)) such that v = v1xv2. By induction, we get v2  

⋆ u, and by Proposition 8 we know that
v1  

⋆ ww, with w ∈ suffixes(xu). That means that xu = tw, for some word t, so xu = tw = w t. If we put
everything back together:

v = v1xv2  
⋆ v1xu 

⋆ wwxu = www t w t = xu .

This concludes the proof of (12), and thus (11).
We follow Bloom et al.’s proof [4] to deduce that the implication (6) from the introduction holds: we

first prove that for all e ∈ RegX, we have

u ∈ cl (JeK)⇔ ∃v ∈ JeK, v  ⋆ u (by definition)

⇔ ∃v ∈ JeK, (0, n) ∈ φ̂u(v) (by (11))

⇔ (0, n) ∈ φ̂u(e) .

(For the last line, we use the fact that for any relational interpretation φ, we have φ̂(e) =
⋃

v∈JeK φ̂(v).)

Furthermore, as φu(x
′) = φu(x)

∨
, we can prove that φ̂u(e) = φ̂u(e). Therefore, for all expressions e, f ∈

Reg∨X such that e ≡Rel∨ f , we have φ̂u(e) = φ̂u(e) = φ̂u(f) = φ̂u(f), and we deduce that cl (JeK) = cl (JfK)
thanks to the above characterisation.

2.3 A connection with subpositive relation algebra

The above notion of reduction ( ⋆) can be characterised as an instance of a more general notion which
appear in the (apparently independent) works of Freyd and Scedrov [12] and Andreka and Bredikhin [13]
on subpositive algebras of relations. Although we do not need it in the sequel, we describe this connection
here, to sched some light on the relationships between those works and Bloom et al.’s results.

Subpositive algebras, that correspond to representable allegories in Freyd and Scedrov’s terminology, are
relations algebras over the restricted signature (·,∩, ∨, 1): composition, intersection, converse, and identity.
Terms over this signature and with variables in X can be represented by 2-pointed directed graphs, whose
edges are labelled in X. For instance, the expression a ∩ (b∨ · c) can be represented by the following graph,
where the two special nodes are respectively marked with an ingoing and an outgoing unlabelled arrow:

•b

��

c

��
// •

a

44 • //
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Homomorphisms between such graphs are defined as directed labelled graph homomorphisms that preserve
the two pointed nodes. Let us write G ⊳ G′ when there exists such an homomorphism from a graph G′ to a
graph G.

An important result is that the corresponding equational theory is decidable: denote by G(u) the graph
associated to a term u, and by u ⊆Rel v the inclusion of two terms u, v under all relational interpretations,
we have:

Theorem 9 (Theorem 1 from [13], or page 208 in [12]). For all terms u, v of subpositive algebras, we have

u ⊆Rel v if and only if G(u) ⊳ G(v).

The key step to prove the above theorem consists in relating relational interpretations to graphs. For an
interpretation σ from the variables in X into relations on a given set I, denote by 〈G(σ), i, j〉 the graph with
set of vertices I, labelled edges {(i, x, j) | (i, j) ∈ σ(x)}, and pointed elements i and j.

Lemma 10 (Lemma 3 from [13], or page 208 in [12]). Let u be a term with variables in X, and σ : X →
P (I × I) a relational interpretation, we have (i, j) ∈ σ̂(u) if and only if 〈G(σ), i, j〉 ⊳ G(u).

Now let us restrict to terms without intersection. The associated graphs are isomorphic to words over
X. Using (11) and Lemma 10, and noticing that 〈G(φu), 0, n〉 = G(u), we thus obtain that for all words
u, v ∈ X⋆,

v  ⋆ u ⇔ G(u) ⊳ G(v) . (13)

This is consistent with [4]: homomorphisms between such linear graphs are precisely what Bloom et al.
define as the set of admissible functions γ from the prefixes of the word v to the prefixes of u such that
γ(v) = u and they show that v  ∗ u if and only if there exists such a map [4, Proposition 5.13].

3 Confluence of the reduction relation

When considering  as a rewriting relation, we wondered whether it is confluent or not. It turns out that
it is confluent. This property is not required for the proofs to come, but we include the result here for the
sake of completeness. This section can safely be skipped.

First, notice that the irreflexive part of this relation is terminating: either |uwwwv| > |uwv|, or w = ǫ
and the two words are equal. By Newman’s lemma [14], it thus suffices to establish local confluence:

Lemma 11 (Local confluence). Let m,m1,m2 ∈ X⋆ such that m m1 and m m2. There exists n ∈ X⋆

such that m1  
⋆ n and m2  

⋆ n.

As we were trying to prove this lemma, it became obvious that the proof would be long and repetitive:
the only strategy we could find was an exhaustive study of all critical pairs, and there are many of them.
We thus used the proof assistant Coq to help us in that task:

• the statement of the lemma is short and involves very few notions, so that the encoding of the problem
in Coq was immediate;

• this allowed us to get assurance that no critical pair was overlooked, something difficult to achieve
with a pen-and-paper case analysis: there are thirty-five key cases, and this disjunction is not trivial
to establish;

• we were able to mechanise a significant part of the proof, using the tactic language of Coq to implement
pattern recognition and automatic reduction. For instance, in a case like





m = u1w1w1w1v1
w1 = xw2w2w2y
m1 = u1xw2w2w2yv1
m2 = u1w1w1xw2yu1,

one only needs to recognise the patterns in m1 and m2 and reduce them as much as possible using
relation  to get n = u1xw2yv1.

8



Then the proof is just an exploration of the possible sub-cases, with the automatic tactic dealing swiftly
with the administrative cases, and leaving only the subtle cases to be explicitly proven. Over the thirty-five
cases that arise naturally, seventeen are ruled-out by using size considerations, and twelve are mere questions
of rewriting that were solved automatically. All in all, we only had to solve six sub-cases by hand, by using
appropriate pumping lemmas.

By intrumenting the proof script to keep track of the uses of the relation  , we were actually able to
establish a slightly stronger result: four steps suffice to join all critical pairs.

Lemma 12. Let m,m1,m2 ∈ X⋆ such that m  m1 and m  m2. There exists n ∈ X∗ and k1, k2 6 4
such that m1  

k1 n and m2  
k2 n.

Corollary 13 (Confluence). Let m,m1,m2 ∈ X⋆ such that m ⋆ m1 and m ⋆ m2. There exists n ∈ X∗

such that m1  
⋆ n and m2  

⋆ n.

The Coq proof is available online [15]; note that the converse of the reduction relation is also confluent,
albeit not terminating; this is much easier to prove.

4 Closure of an automaton

The problem here is the following: given two regular expressions e, f ∈ Reg∨X , how to decide cl (JeK) = cl (JfK)?
We follow the approach proposed by Bloom et al.: given an automaton recognising a language L, we show
how to construct an automaton recognising cl (L). To solve the initial problem, it then suffices to build two
automata recognising JeK and JfK, to apply a construction to obtain two automata for cl (JeK) and cl (JfK),
and to check those for language equivalence.

As a starting point, we first recall the construction proposed in [4].

4.1 Original construction

This construction uses the transition monoid of the input automaton:

Definition 14 (Transition monoid). Let A = 〈Q,Σ, q0,T , δ〉 be a deterministic automaton. Each word
u ∈ Σ⋆ induces a function uA : Q → Q which associates to a state p the state q obtained by following the
unique path from p labelled by u. The transition monoid of A , written MA , is the set of functions Q→ Q
induced by words of Σ⋆, equipped with the composition of functions and the identity function.

This monoid is finite, and its subsets form a Kleene Algebra. Bloom et al. then proceed to define the
closure automaton in the following way:

Theorem 15 (Closure automaton of [4]). Let L ⊆ X⋆ be a regular language, recognised by the deterministic

automaton A = 〈Q,X, q0, Qf , δ〉. Let MA be the transition monoid of A . Then the following deterministic

automaton recognises cl (L):

B , 〈P (MA )× P (MA ) ,X, ({ǫA } , {ǫA }) ,T , δ1〉

with T , {(F,G) | ∃uA ∈ F : uA (q0) ∈ Qf } ,

and δ1((F,G), x) ,
(
F · {xA } ·

(
({x′

A } ·G · {xA })
⋆)

, ({x′
A } ·G · {xA })

⋆)
.

An important idea in this construction, which leads to the presented one, is the transition rule for the
second component above. Let us write δ2(G, x) for the expression ({x′

A
} ·G · {xA })

⋆
, so that the definition

of δ1 can be reformulated as

δ1((F,G), x) = (F · {xA } · δ2(G, x), δ2(G, x)).

With that in mind, one can see the second component as some kind of history, that runs on its own, and
is used at each step to enrich the first component. At this point, it might be interesting to notice that the
formula for δ2(G, x) closely resembles the one for Γ(wx) = (x′Γ(w)x)

⋆
, which we defined in Section 2.2.
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4.2 Intuitions

Let us forget the above construction, and try to build a closure automaton. One way would be to simply
add transitions to the initial automaton. This idea comes naturally when one realises that if u ⋆ v, then v
is obtained by erasing some subwords from u: at each reduction step u1wwwu2  u1wu2 we just erase ww.
To “erase” such subwords using an automaton, it suffices to allow one to jump along certain paths.

Suppose for instance that we start from the following automaton:

// q0
a // q1

b // q2
b′ // q3

a′

// q4
a // q5

b // q6 //

We can detect the pattern ababab, and allow one to “jump” over it when reading the last letter of the root
of the pattern, in this case the b in second position. The automaton thus becomes:

// q0
a // q1

b //

b

;;
q2

b′ // q3
a′

// q4
a // q5

b // q6 //

However, this approach is too naive, and it quickly leads to errors. If for instance we slightly modify the above
example by adding a transition labelled by b′ between q0 and q1, the same method leads to the following
automaton, by detecting the patterns b′bb′ between q0 and q3 and abb′a′ab between q0 and q6.

// q0
a //

b′
//

b′

��

q1
b //

b

;;
q2

b′ // q3
a′

// q4
a // q5

b // q6 //

The problem is that the word b′b is now wrongly recognised in the produced automaton. What happens here
is that we can use the jump from q1 to q6, even though we did not read the prerequisite for doing so, in this
case the a constituting the beginning of the root ab of pattern ababab. (Note that the dual idea, consisting
in enabling a jump when reading the first letter of the root of the pattern, would lead to similar problems.)

A way to prevent that, which was implicitly introduced in the original construction, consists in using a
notion of history. The states of the closure automaton will be pairs of a state in the initial automaton and a
history. That will allow us to distinguish between the state q1 after reading a and the state q1 after reading
b′, and to specify which jumps are possible considering what has been previously read. In the construction
given in [4], the history is given by an element of P (MA ), in the second component of the states (the “G”
part). We will define a history as a relation over states containing the jumps we are allowed to make after
having read some word w, using Γ(w).

4.3 New construction

We have shown in Section 2.2 that ∀u ∈ Γ(w), ∃v ∈ suffixes(w) : u ⋆ vv, so we do have a characterisation
of the words “we are allowed to jump over” after having read some word w. The problem is that we
want a finite number of possible histories, and there are infinitely many Γ(w) (for instance, all the Γ(an)
are different). To get that, we will project Γ(w) on the automaton. Let us consider a non-deterministic
automaton A = 〈Q,X, I,T ,∆〉 recognising a language L.

Definition 16. Let G(Q) be the set of reflexive transitive binary relations over states of A . Given a letter
x ∈ X, we denote by hx the following increasing function on binary relations between states of A .

hx : G(Q)→ G(Q)

R 7→ (∆(x′) ◦R ◦∆(x))
⋆

For any word w ∈ X⋆ we call history of the word w the relation [w] defined inductively by [ǫ] , IdQ and

[wx] , hx([w]) .
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One can notice right away the strong relationship between [·] and Γ:

Proposition 17. ∀w, q1, q2, (q1, q2) ∈ [w] ⇔ ∃u ∈ Γ(w) : q1
u
−−→A q2.

This result is straightforward once one realises that [w] = σ̂ (Γ(w)) with σ(x) = ∆(x). By composing

Propositions 8 and 17 we eventually obtain that (q1, q2) ∈ [w] iff ∃u : q1
u
−−→A q2 and u  ⋆ vv, with v a

suffix of w.
We now have all the tools required to define an automaton for the closure of A :

Theorem 18 (Closure Automaton). The closure of the language L is recognised by the automaton

A
′ , 〈Q× G(Q),X, I × {IdQ} ,T × G(Q),∆′〉 ,

where ∆′ , {((q1, R), x, (q2, hx(R))) | (q1, q2) ∈ ∆(x) ◦ hx(R)} .

We shall write L′ for the language recognised by A ′. One can read the set of transitions as “from
a state q1 with an history R, perform a step x in the automaton A , and then a jump compatible with
hx(R), which becomes the new history”. An example of this construction is given in Section 4.4. It is
useful to notice at this point that if (p,R) is an accessible state in A ′, then there is some word u such that

(i, IdQ) = (i, [ǫ])
u
−−→A ′ (p,R), from which we can deduce by induction on u that R = [u]. One can see, from

the definition of ∆′ and Proposition 17 that:

∃(q2, v) ∈ Q× Γ(ux) : q1
x
−−→A q2

v
−−→A q3 ⇔ (q1, [u])

x
−−→A ′ (q3, [ux]). (14)

Now we prove the correctness of this construction. First recall the notion of simulation [16]:

Definition 19 (Simulation). A relation S between the states of two automata A and B is a simulation if

for all p S q we have (a) if p
x
−−→A p′, then there exists q′ such that q

x
−−→B q′ and p′ S q′, and (b) if p ∈ TA

then q ∈ TB. We say that A is simulated by B if there is a simulation S such that for any p0 ∈ IA , there
is q0 ∈ IB such that p0 S q0.

The following property of [·] is proved by exhibiting such a simulation:

Proposition 20. For all words u, v ∈ X⋆ such that u v, we have [u] ⊆ [v].

Proof. First, notice that Γ(u) ⊆ Γ(v) ⇒ [u] ⊆ [v], using Proposition 17. It thus suffices to prove u  
v ⇒ Γ(u) ⊆ Γ(v), which can be rewritten as Γ(u1wwwu2) ⊆ Γ(u1wu2). We can drop u2 (it is clear
that Γ(w1) ⊆ Γ(w2) ⇒ ∀x ∈ X,Γ(w1x) ⊆ Γ(w2x), from the definition of Γ): we now have to prove that
Γ(u1www) ⊆ Γ(u1w). The proof of this inclusion relies on the fact that the automaton G (u1www) is
simulated by the automaton G (u1w).

First, we give in Figure 4 an abstract view of the automata recognising Γ(uwww) and Γ(uw) defined as
before. With the notations of this figure, now define a relation 6 as follows (this relation is also represented
in dashed lines in Figure 4):

ai 6 bi for all i ≤ n+m ,

an+m+i 6 bn+m−i for all i ≤ n ,

a2n+m+i 6 bm+i for all i ≤ n ;

One easily checks that this relation is a simulation, thus establishing in particular that the language
recognised by the left-hand side automaton (for Γ(uwww)) is contained in that of the right-hand side (for
Γ(uw)).

We define an order relation 4 on the states of the produced automaton (Q × G(Q)), by (p,R) 4 (q, S)
when p = q and R ⊆ S.

Proposition 21. The relation 4 is a simulation for the automaton A ′.
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a3n+m

OO

w

��

...

��

a2n+m

w

OO

w

��

...

...�� ��

an+m

w

OO

w

��

��

bn+m

OO

w
��

...
��

��

am

w

OO

u

��

...

bm

w

OO

u
��

OO

a0

u

OO

b0

u

OO

Figure 4: Automata G (uwww) and G (uw), with |u| = m and |w| = n

Proof. Suppose that (p,R) 4 (q, S) and (p,R)
x
−−→A ′ (p′, hx(R)), i.e., (p, p′) ∈ ∆(x) ◦hx(R). We have p = q

and R ⊆ S, hence hx(R) ⊆ hx(S), and thus (p, p′) ∈ ∆(x) ◦ hx(S) meaning that (p, S)
x
−−→A ′ (p′, hx(S)). It

remains to check that (p′, hx(R)) 4 (p′, hx(S)), i.e., hx(R) ⊆ hx(S), which we just proved.

We may now prove that L′ = cl (L).

Lemma 22. L′ ⊆ cl (L)

Proof. We prove by induction on u that for all q0, q such that (q0, [ǫ])
u
−−→A ′ (q, [u]), there exists v such that

v  ⋆ u and q0
v
−−→A q. The case u = ǫ is trivial.

If (q0, [ǫ])
u
−−→A ′ (q1, [u])

x
−−→A ′ (q, [ux]), by induction one can find v1 such that q0

v1−−→A q1 and
v1  

⋆ u. We also know (by (14) and Proposition 8) that there are some q2, v2 and v3 ∈ suffixes(ux) such

that q1
x
−−→A q2, v2  

⋆ v3v3 and q2
v2−−→A q. We thus get

q0
v1−−→A q1

x
−−→A q2

v2−−→A q and v1xv2  
⋆ uxv2  

⋆ uxv3v3  ux.

By choosing q ∈ T , we obtain the desired result.

Lemma 23. L ⊆ L′

Proof. First notice that for allR ∈ G(Q), hx(R) is a reflexive relation, hence q1
x
−−→A q2 entails ∀R, (q1, R)

x
−−→A ′

(q2, hx(R)). This means that the relation S defined by p S (q,R) ⇔ p = q is a simulation between A and
A ′, and thus L = L(A ) ⊆ L(A ′) = L′.

Lemma 24. L′ is downward-closed for  .

A technical lemma is required to establish this closure property:

Lemma 25. If (q1, [uw])
x
−−→A ′ (q2, [uwx])

wx wx
−−−−−−→A ′ (q3, [uwx wx wx]), then (q1, [uw])

x
−−→A ′ (q3, [uwx]).
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Proof. If |w| = n and |u| = m, the premise can be equivalently stated:

(q1, [(uw)|m+n−1])
w(n)
−−−−→A ′ (q2, [uw])

ww
−−−→A ′ (q3, [uwww]).

(Recall that u|i denotes the prefix of length i of a word u.) Let us write Γi = Γ ((uwww)|m+n+i) =
Γ (uw(ww)|i) and xi = (uwww)(n+m+ i) for 0 6 i 6 2n. By Proposition 17 and the definition of A ′, we
can show that there are vi ∈ Γi such that the execution above can be lifted into an execution in A :

q1
x0v0x1v1···xivi···x2nv2n−−−−−−−−−−−−−−−−−→A q3.

Then one can prove using Proposition 8 that:

∀i, ∃ti ∈ Γ(uw) : (ww)|ivi  
⋆ ti(ww)|i. (15)

As vi is in Γ (uw(ww)|i), we know that there is some suffix t of uw(ww)|i such that vi  
⋆ tt. We will do a

case analysis on the size of t:

• if n+i 6 |t|, then there is a suffix s of u such that t = sw(ww)|i, so (ww)|ivi  
⋆ (ww)|i(ww)|iw ssw(ww)|i.

– If i < n then there is a word p such that w = (ww)|ip so

(ww)|ivi  
⋆ (ww)|i(ww)|i(ww)|ipssw(ww)|i

 (ww)|ipssw(ww)|i = swsw(ww)|i.

– Otherwise we can write (ww)|i = ww1 and w = w1w2, so

(ww)|ivi  
⋆ ww1ww1w ssw(ww)|i = w2 w1w1w1ww ssw(ww)|i

 w2 w1ww ssw(ww)|i = www ssw(ww)|i

 swsw(ww)|i.

As s ∈ suffixes(u) we know that sw ∈ suffixes(uw), hence swsw ∈ Γ(uw).

• If i 6 |t| < n+ i then w = w1w2 and t = w2(ww)|i so

(ww)|ivi  
⋆ (ww)|i(ww)|iw2w2(ww)|i

– If i < n then there is a word p such that w = (ww)|ip. As w = w2 w1, we can also compare
(ww)|i with w2:

∗ If (ww)|i = w2w3 then

(ww)|ivi  
⋆ w2w3w3w2w2w2(ww)|i

 w2w3w3w2(ww)|i = (ww)|i(ww)|i(ww)|i

= (ww)|i (ww)|i(ww)|i

And as w = (ww)|ip, w = p(ww)|i so (ww)|i ∈ suffixes(w) ⊆ suffixes(uw), hence (ww)|i (ww)|i ∈
Γ(uw).

∗ If on the other hand w2 = (ww)|iw3, we have

(ww)|ivi  
⋆ (ww)|i(ww)|i(ww)|iw3w3(ww)|i(ww)|i

 (ww)|iw3w3(ww)|i(ww)|i = w2w2(ww)|i

w2 ∈ suffixes(w) ⊆ suffixes(uw) so w2w2 ∈ Γ(uw).
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– Otherwise we can write (ww)|i = ww3 and w = w3w4, so

(ww)|ivi  
⋆ ww3w3w3w4w2w2(ww)|i

 ww3w4w2w2(ww)|i = ww1w2w2w2(ww)|i

 ww1w2(ww)|i = ww(ww)|i

And obviously ww ∈ Γ(uw).

• If |t| < i then (ww)|i = st. In this case we have (ww)|ivi  
⋆ sttt st = ǫǫ(ww)|i, and ǫ ∈ suffixes(uw)

so ǫǫ ∈ Γ(uw).

In all cases, we have shown that (ww)ivi  
⋆ ti(ww)|i with ti ∈ Γ(uw).

We deduce that v0x1v1 · · ·xivi · · ·x2nv2n  
⋆ t0t1 · · · t2nww ∈ Γ(uw)2n+2 ⊆ Γ(uw). By Proposition 8, this

means that v0x1v1 · · ·xivi · · ·x2nv2n is in Γ(uw), so that (q1, q3) ∈ ∆(w(n))◦[uw], and (q1, [uw|n−1])
w(n)
−−−−→A ′

(q2, [uw]).

With this intermediate lemma, one can obtain a succinct proof of Lemma 24:

Proof. The statement of the lemma is equivalent to saying that if u  v with u ∈ L′ then v is also in L′.
Consider u = u1w ·w ·wu2 and v = u1wu2 with |w| = n > 1 (the case where w = ǫ does not hold any interest
since it implies that u = v). By combining Lemma 25, Proposition 20 and Proposition 21 we can build the
following diagram:

(q0, [ǫ])
u1w|n−1

// (q1, [u1w|n−1])
w(n)

//

w(n)

Lem. 25
''

(q2, [u1w])
ww // (q3, [u1www])

u2 // (qf , [u])

(q3, [u1w])
u2

Prop. 21
//

4

Prop. 20

(qf , [v])

4

Lemmas 23 and 24 tell us that L′ is closed and contains L, so by definition of the closure of a language,
we get cl (L) ⊆ L′. Lemma 22 gives us the other inclusion, thus proving Theorem 18.

4.4 Example

Let us illustrate this construction on a simple example: consider the automaton depicted in Figure 5. It
recognises the language J(a+ b′)b(b′a′)⋆abK, which is not closed. Informally, we observe that

• when starting with an a, and by firing the starred expression only once, a pattern of root ab appears,
so that the word ab should belong to the closure. Such a behaviour is no longer possible if we fire the
starred expression more than once;

• when starting with a b, and by firing the starred expression at least once, a pattern of root b′ appears,
so that the language Jb′a′(b′a′)⋆abK is contained in the closure.

Now the first step to build the closure automaton consists in computing the values of [·]; they are
summarized in Figure 6. We can then build the closure automaton as described in Theorem 18. The
resulting non-deterministic automaton is drawn in Figure 7. Due to the history component, the states B
and C are duplicated; moreover, “jumps” have been used to obtain the two red transitions, from (A, [ǫ])
to (D, [b′]), and from (B, [a]) to (F, [ab]). Using those transitions, one can notice that the word ab is now
accepted, as well as all words from Jb′a′(b′a′)⋆abK.

The determinised version of this automaton is finally given in Figure 8
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D

a′

��
// A

a
))

b′

55 B
b // C

a //

b′

HH

E
b // F //

Figure 5: Initial automaton.

[ ǫ ] = IdQ (= [a′] = [aa′] = [ba′] = [aba′] )
[ a ] = IdQ ∪ {(D,E)} (= [aa] = [b′a] = [ba] = [aba] )
[ b ] = IdQ ∪ {(A,C)} (= [bb] = [b′b] = [b′a′] = [abb] )
[b′ ] = IdQ ∪ {(B,D)} (= [ab′] = [bb′] = [b′b′] = [abb′])
[ab] = IdQ ∪ {(A,C), (C,F ), (A,F )}

Figure 6: Computation of [·].

B, a
b //

b

��

C, ab

a

��

b′

��
// A, ǫ

b′ //

a

AA

b′
��

D, b′

a′

		

E, a
b // F, ab //

B, b′
b
// C, b

b′

II

a

AA

Figure 7: Closure automaton.

B, a

b

��

{C,F} , ab

a

��

b′

��
// A, ǫ

a

==

b′
!!

D, b′

a′

		

E, a
b // F, ab //

{B,D} , b′

b

55

a′

))

C, b

b′

II

a

AA

b // //

Figure 8: Determinised version.

5 Analysis and consequences

5.1 Relationship with [4]’s construction

As suggested by an anonymous referee, one can also formally relate our construction to the one from [4]:
we give below an explicit and rather natural bisimulation relation between the automata produced by both
these methods. This results in an alternative correctness proof of the proposed construction, by reducing it
to the correctness of the one from [4].

We first make the two constructions comparable: the original construction, because it considers the
transition monoid, takes as input a deterministic automaton. It returns a deterministic automaton. Instead,
our construction does not require determinism in its input, but produces a non-deterministic automaton.
We thus have to ask of both methods to accept as their input a non-deterministic automaton, and to return
a deterministic automaton.

For our construction, the straightforward thing to do would be to determinise the automaton afterwards.
We can actually do better, by noticing that from a state (p, [u]), reading some letter x, there may be a lot
of accessible states, but all of their histories (second components) will be equal to [ux]. So in order to get a
deterministic automaton, one only has to perform the power-set construction on the first component of the
automaton. This way, we get an automaton A1 with states in P (Q)× G(Q) and a transition function

δ1((P,R), x) = (P · (∆(x) ◦ hx(R)) , hx(R)) .

The original construction can also be adjusted quite easily: first build a deterministic automaton D with the
usual powerset construction, then apply the construction as described in Theorem 15 to get an automaton
which we call A2. An important thing here is to understand the shape of the resulting transition monoid
MD : its elements are functions over sets of states (because of the power-set construction) induced by words;
more precisely, they are sup-semilattice homomorphisms, and they are in bijection with binary relations on
states induced by words. (The relation induced by u is the set of pairs (p, q) such that p

u
−→ q.)

Define the following KA-homomorphism from P (MD) to P
(
Q2

)
:

i(F ) = {(p, q) | ∃uD ∈ F : q ∈ uD({p})} .

(That i is a KA-homomorphism comes from the fact that the elements of MD are themselves sup-semilattice
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homomorphisms on P (Q).) We can check that for all x ∈ X, we have

i ({xD}) = {(p, q) | q ∈ xD({p})} = {(p, q) | q ∈ δ({p} , x)}

=
{
(p, q)

∣∣∣ p x
−−→A q

}
= ∆(x) ,

It follows that the following relation is a bisimulation between A1 and A2.

{((I · i(F ), i(G)), (F,G)) | ∀F,G}

We give a detailed proof in C.
This tight relationship between both constructions may lead to believe the automata built by both

constructions are isomorphic. However, it is not the case: the construction presented in this paper produces
a smaller automaton than the one given in [4]. Indeed, by unfolding the above bisimulation, one can find a
surjective morphism from A2 to A1. But such a morphism cannot be found in general in the other direction.
This is illustrated in Example 26 below.

Intuitively, a major difference comes from the difference between the determinised automaton and the
automaton induced by the right Cayley graph of the transition monoid. In a deterministic automaton, we
can define an equivalence relation u ∼ v, that holds if reading u and reading v in the automaton lead to the
same state. In an automaton obtained by a power-set contruction, u ∼ v is equivalent to saying that for any
state p in the original automaton, p can be reached from the initial state by reading u if and only if it can
be reached by reading v. In an automaton built by the monoid construction, u ∼ v corresponds to saying
that for any pair of states p, q in the original automaton, there is a path from p to q labelled by u if and only
if there is a path from p to q labelled by v. This second equivalence relation strictly contains the first one.

Example 26. Consider the following deterministic automaton D over the alphabet {a, b, a′, b′}:

C
a

%%
// A

a
**

b

44 B

a′
99

b′ %%

E //

D
b

99

By applying the determinized version of our construction, we build the following automaton:

{C} , [aa′]
a

))
// {A} , [ǫ]

a
..

b

00 {B,E} , [a]

a′
55

b′ ))
��

{E} , [aa′a] //

{D} , [ab′]
b

55

However, the use of the method from [4] give rise to this automaton:

{aD ,aa
′aD ,0D},{ǫD ,a

′aD ,0D}

OO

{aa′

D
,0D},{ǫD ,a

′aD ,0D}

{ǫD},{ǫD} {aa′aD ,0D},{ǫD ,a
′aD ,0D}

{bD ,aa
′aD ,0D},{ǫD ,a

′aD ,0D}

��

{ab′D ,0D},{ǫD ,a
′aD ,0D}

//

a
44

b **

a′

//

a′

66

b′

((

b′
//

a

**

b

44

//
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Notice that this automaton is just like the previous one, except that state 〈{B,E} , [a]〉 has been du-
plicated. This happens because aD = ∆(a) = {(A,B), (C,E)} 6= {(A,B), (D,E)} = ∆(b) = bD . Thus the
monoid will differentiate the state we get after reading a and the state we get after reading b.

Another important difference is the fact that the construction in [4] uses sets of relations when we simply
use relations. This is particularly visible when looking at the histories. Consider the following automaton
A :

1 a

$$

3 a′

$$

5 a

$$
// 0

a ::

a
// 2

a′ ::

a′

// 4

a ::

a
// 6 //

The history induced by a in this automaton is [a] = (∆(a′) ◦∆(a))
⋆
= IdQ ∪ {(2, 6); (2, 5); (3, 5)}; and the

one induced by aa is [aa] = (∆(a′) ◦ [a] ◦∆(a))
⋆
= IdQ ∪ {(2, 6); (2, 5); (3, 5)} = [a]. However, if we do

this with the monoid approach, we can see that a′aA = {(2, 6); (2, 5); (3, 5)} 6= {(2, 6)} = a′a′aaA . Thus
the history we get after a is {ǫA ; a′aA ; 0A } which is a different set that the one we get after aa which
is {ǫA ; a′aA ; a′a′aaA ; 0A }. This will induce some duplication in the closure automaton. Indeed on this
example, our deterministic closure automaton will have 7 states, whereas [4]’s construction produces an
automaton with 11 states.

5.2 Complexity

Because we are speaking about algorithms rather than actual programs, it is a bit difficult to give accu-
rate complexity bounds, considering the many possible data structures appearing during the computation.
However, one may think that a relevant complexity measure of the final algorithm (for deciding equality in
KAC) could be the size of the produced automata. In the following the size of an automaton is its number
of states. In order to give a fair comparison, we will consider the generic algorithms given in the previous
subsection, taking as their input a non-deterministic automaton, and returning a deterministic automaton.

Let us begin by evaluating the size of the automaton produced by the method in [4], given a non-
deterministic automaton of size n. As explained above, the states of the constructed transition monoid
(MD) are in bijection with some binary relations on Q. There are thus at most 2n

2

elements in this monoid.

We deduce that the final automaton, whose states are pairs of subsets of MD has at most 22
n2

× 22
n2

=

22
n2+1

states.
Now with the deterministic version of our construction, the states are in the set P (Q) × G(Q). Since

G(Q) is the set of reflexive (transitive) relations on Q, we know that G(Q) has less than 2n×(n−1) elements.

Hence we have |P (Q)× G(Q)| 6 2n × 2n×(n−1) = 2n
2

, which is significantly smaller than the 22
n2+1

states
we get with the other construction.

5.3 A polynomial-space algorithm

The above upper-bound on the number of states of the automata produced by the presented construction
allows us to show that the problem of equivalence in KAC is in PSpace (the problem was already known to
be PSpace-hard since KAC is conservative over KA, which is PSpace-complete [17]).

Recall that the equivalence of two deterministic automata A and B is in LogSpace. The algorithm to
show that relies on the fact that A and B are different if and only if there is a word w in the difference of
L(A ) and L(B) such that |w| 6 |A | × |B|. With that in mind, we can give a non-deterministic algorithm,
by simulating a computation in both automata with a letter chosen non-deterministically at each step, with
a counter to stop us at size |A | × |B|. The resulting algorithm will only have to store the counter of size
log(|A | × |B|) and the two current states.

For deciding KAC, the first step is to compute e and f from the regular expressions with converse e and
f . It is obvious that such a transformation can be done in linear time and space, by a single sweep of both
e and f . Then we have to build automata for e and f . Once again this is a very light operation: if one
considers for instance the position automaton (also called Glushkov’s construction [18]), we obtain automata
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input : Two regular expressions with converse e, f ∈ Reg∨X
output: A Boolean, saying whether or not KAC ⊢ e = f .

1 A1 = 〈Q1,X, I1,T1,∆1〉 ← Glushkov’s automaton recognising JeK;
2 A2 = 〈Q2,X, I2,T2,∆2〉 ← Glushkov’s automaton recognising JfK;

3 N ← (2(|e|+1)2 × 2(|f |+1)2); /* N gets a value > |cl (A1)| · |cl (A2)| */
4 ((P1, R1), (P2, R2))← ((I1, IdQ1

), (I2, IdQ1
));

5 while N > 0 do

6 N ← N − 1; /* N bounds the recursion depth */

7 f1 ← is empty(P1 ∩T1);
8 f2 ← is empty(P2 ∩T2);
9 if f1 = f2 then

10 x←random(X); /* Non-deterministic choice */

11 (R1, R2)← (hx(R1), hx(R2));
12 (P1, P2)← (P1 ·∆1(x) ◦R1, P2 ·∆2(x) ◦R2);

13 else

14 return false; /* A difference appeared for some word, e 6= f */

15 end

16 end

17 return true; /* There was no difference, KAC ⊢ e = f */

Algorithm 1: A PSpace algorithm for KAC

of respective sizes n = |e|+ 1 = |e|+ 1 and m = |f |+ 1 = |f |+ 1, where | · | denotes the number of variable
leaves of a regular expression (possibly with converse).

Our construction then produces closed automata of size at most 2n
2

and 2m
2

, so that the non-deterministic
algorithm to check their equivalence needs to scan all words of size smaller than by 2n

2

×2m
2

= 2n
2+m2

. The
counter used to bound the recursion depth can thus be stored in polynomial space (n2 + m2). It is worth

mentionning here that with the automata constructed in [4], the counter would have size 2n
2+1 + 2m

2+1

which is not a polynomial.
Now the last two important things to worry about are the representation of the states of the closure

automata, in particular their “history” component, and the way to compute their transition function. Let
us focus on the automaton for e and let Q be the set of states of the Glushkov automaton built out of it.

• States are pairs of a set of states in Q and a binary relation (set of pairs) over Q. Such a pair can be
stored in polynomial space (recall that |Q| = n = |e|+ 1).

• For computing the transition function, the image of a pair ({q1, · · · , qk} , R) (with R ⊆ Q2) by a letter
x ∈ X is done in two steps: first the relation becomes R′ = hx(R) , (∆(x′) ◦R ◦∆(x))

⋆
, then the set

of states becomes {q | ∃i, 1 6 i 6 k : (qi, q) ∈ ∆(x) ◦R′ }. Those computations take place in PSpace.
(The composition of two relations on Q can be performed in space O

(
|Q|2

)
, and the same holds for

the reflexive and transitive closure of a relation R by building the powers (R+ IdQ)
2k

and keeping a
copy of the previous iteration to stop when the fixed-point is reached.)

Summing up, we obtain Algorithm 1, which is PSpace.

5.4 Time-efficient algorithms

While the previous algorithm matches the theoretical complexity of the problem, it cannot be used in practice.
Indeed, it systematically requires exponential time (except when there exists a small counter-example to the
starting equation). This is similar to the case of regular expressions without converse (i.e., Kleene algebra),
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where one usually implements algorithms that are not PSpace but that require less than exponential time
in most cases.

Such algorithms include the standard algorithm by Hopcroft and Karp [19], antichain-based algorithms [20,
21, 22], and more recent algorithms relying on “bisimulations up to congruence” [23]. We show how to exploit
the latter technique with the automata produced by the presented construction.

To apply this technique, one needs to work with a single non-deterministic automaton, to be determinised
by the powerset construction. The global decision procedure for deciding KAC ⊢ e = f still starts by
constructing two automata recognising the languages JeK and JfK (as in the first two lines in Algorithm 1).
Then one can either

1. consider the disjoint union of their closures,

2. or take their union and build the closure afterwards.

The first approach makes it possible to use the algorithms from [23] out of the shelve. A drawback is that
depending on the constructions used to build the automata for JeK and JfK, it might be natural that they
share some states (e.g., when using Antimirov’ partial derivatives [24]), and we loose this sharing when
computing their closures.

Here we describe the second approach: this enables some additional optimisations, and the above draw-
back disappears as one can always take an overlapping union. (Note however that if the automata were
actually disjoint, taking the closure after the union potentially results in bigger automata: the history
part—G(Q)—being shared, parts of one of the underlying automata can be duplicated just because of the
history related to the other automaton.) We thus assume a non-deterministic automaton (Q,X,T ,∆) with
two sets of initial states Ie, If such that JeK = L ((Q,X, Ie,T ,∆)) and JfK = L ((Q,X, If ,T ,∆)).

We thus need an algorithm for checking whether (Ie, IdQ) and (If , IdQ) are equivalent in the closure of
(Q,X,T ,∆). Due to the shape of the determinisation of this automaton, we consider stratified relations,
i.e., relations indexed by histories.

Definition 27. A stratified relation R is a function from histories in G(Q) to relations on sets of states:

R : G(Q)→ P (P (Q)× P (Q))

We write P RR P ′ for (P, P ′) ∈ R(R).

One can then define an appropriate notion of (stratified) bisimulation:

Definition 28 (Progression, Bisimulation). Given two stratified relations R,R′, we say that R progresses

to R′, denoted R֌ R′, if whenever P RR P ′ then

1. P ∩T = ∅ iff P ′ ∩T = ∅ and

2. for all x ∈ X, P ·∆(x) ◦ hx(R)R′
hx(R) P

′ ·∆(x) ◦ hx(R).

A bisimulation is a stratified relation R such that R֌ R.

Proposition 29 (Coinduction). The languages cl (JeK) and cl (JfK) are equivalent iff there exists a bisimu-

lation R such that Ie RIdQ
If .

Proof. Simple adaptation of the same result in [23], to work with stratified relations.

Accordingly, we obtain Algorithm 2 (where we assume g to be the identity function, for now). This
algorithm works as follows: the variable R contains a relation which is a bisimulation candidate and the
variable L contains a queue of triples (R,P,Q) that remain to be processed (R being a history, and P,Q
being sets of states). To process such a pair, one first checks whether it already belongs to the bisimulation
candidate: in that case, the pair can be skipped since it was already processed. Otherwise, one checks
that both sets are either accepting or non-accepting (line 8), and one adds all derivatives of the pair to L

19



input : Two regular expressions with converse e, f ∈ Reg∨X
output: A Boolean, saying whether or not KAC ⊢ e = f .

1 〈Q,X, Ie, If ,T ,∆〉 ← Antimirov’ automaton recognising JeK and JfK;
2 L← {(IdQ, Ie, If )} ; /* Set of elements to be processed */

3 R ← ( 7→ ∅) ; /* Stratified relation meant to become a bisimulation */

4 while L 6= ∅ do
5 // R֌ g(R) ∪ L
6 Pick (R,P, P ′) from L;
7 if (P, P ′) 6∈ g(R)(R) then
8 if is empty(P ∩T ) = is empty(P ′ ∩T ) then

9 foreach x ∈ X do Add (hx(R), P ·∆(x) ◦ hx(R), P ′ ·∆(x) ◦ hx(R)) to L ;
10 Add (P, P ′) to R(R);

11 else

12 return false ; /* A difference appeared for some word, e 6= f */

13 end

14 return true ; /* There was no difference, R is a bisimulation up to g, KAC ⊢ e = f */

Algorithm 2: Time-efficient algorithms for KAC, g may range over various up-to techniques.

(line 9). The triple (R,P,Q) is finally added to the bisimulation candidate (line 10), and we proceed with
the remainder of the queue. When the queue L becomes empty, then R is a bisimulation thanks to the main
loop invariant (line 5—recall that for now, g is the identity function), so that the starting expression are
equivalent.

This algorithm can be enhanced by exploiting up-to techniques [25, 26]: an up-to technique is a function
g on (stratified) relations such that any relation R satisfying R ֌ g(R) is contained in a bisimulation.
Intuitively, such relations, that are not necessarily bisimulations, are constrained enough to contain only
language equivalent pairs.

Examples of such up-to techniques include:

1. equivalence closure (in the present context of stratified relations, the function e associating to a stratified
relation R the stratified relation e(R) mapping any history R to the smallest equivalence relation that
contains R(R)). This technique is implicitely used in the algorithm by Hopcroft and Karp [19], via a
disjoint-set forest data structure: we get their algorithm by chosing g = e in Algorithm 2.

2. congruence closure: the function c mapping any history R to the smallest equivalence relation S that
contains R(R) and that satisfies the following rule.

Pi S P ′
i , i = 1, 2

(P1 ∪ P2) S (P ′
1 ∪ P ′

2)

This is the key up-to technique introduced in [23]; it allows one to avoid exploring large parts of the
automaton, and to stop much earlier than with other algorithms (some sets of states that are accessibles
through the power-set construction need not be visited at all.)

Proposition 30. The above functions e and c are valid up-to techniques in the present setting.

Proof. Following the same arguments as in [23]. In particular, it holds that R ֌ e(R) (resp. R ֌ c(R))
entails e(R)֌ e(R) (resp. c(R)֌ c(R)).

The resulting algorithms (Algorithm 2 with g instantiated with either e or c) require exponential time
(and space) in worst case, as the final bisimulation candidate, R, can be exponentially large. However in
practice, like in the simpler case of Kleene algebra without converse, those worst cases are hard to reach, so
that such algorithms can usually cope with expressions with up to a thousand of nodes [23].
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6 Conclusion

Building on the work of Bernátsky, Bloom, Ésik and Stefanescu, we gave new and more efficient algorithms
to decide the theory KAC. These algorithms rely on a more compact construction for the closure of an
automaton. The first one (Algorithm 1) is PSpace, which allowed us to show that the equational theory of
KAC is PSpace-complete. The other ones (the two main instances of Algorithm 2) are not PSpace, but
they work well in practice; they are variants of the standard Hopcroft and Karp’s algorithm [19], and of its
recent optimisation using bisimulations up to congruence [23].

To prove the correctness of the main automata construction, we used the family of regular languages
Γ(w) (corresponding to G(w∨) in [4]). We established the main properties of this family using a proper finite
automata characterisation. Moreover, this family allowed us to reformulate the proof of the completeness of
the reduction from equality in Rel∨ to equivalence of closed automata (implication (6) from the introduction).

As an exercise, we have implemented and tested the various constructions and algorithms in an OCaml

program which is available online [15].
To continue this work, we would like to implement one of the presented algorithms in the proof assistant

Coq, as a tactic to automatically prove the equalities in KAC—as it has already been done for the theories
KA [27] and KAT [28]. The simplifications we propose in this paper give us hope that such a task is feasible.
The main difficulty certainly lies in the formalisation of the completeness proof of KAC (implication (7)
from the introduction), whose key step consists in proving that for all expression e ∈ RegX, there exists a
proof of e = cl (e) in KAC (where cl (e) is a regular expression for the regular language cl (JeK)). This is
established in [5], but the proof uses yet another automaton construction for the closure, which is even more
complicated than the one used in [4], and which seems quite difficult to formalise in Coq. We hope to find
an alternative completeness proof, by exploiting our simpler construction.

Acknowledgements. We are grateful to the anonymous referees of RAMiCS’14, who helped us to improve
this paper and who suggested us the alternative proof of correctness which we provide in Section 5.1.
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A Proof of Equation (9)

We will show here that η̂(e) = η̂(f) implies that JeK = JfK, for e and f regular expressions over X.
It is well known that for any expression e ∈ RegX, for any σ : X −→ P (Σ⋆),

σ̂(e) =
⋃

w∈JeK

σ̂(w).

Consider the following partial function:

i : X⋆
• −→ X⋆

ǫ 7−→ ǫ

x•w 7−→ x · i(w)

•xw 7−→ x′ · i(w) .

We will write î the function [W 7→ {i(w) | w ∈W}]. We will show by induction on w ∈ X⋆ that î ◦ η̂(w) =
{w}:

• î ◦ η̂(ǫ) = î ({ǫ}) = {ǫ};

• if x ∈ X, then

î ◦ η̂(xw) = î(η(x) · η̂(w)) (η̂ is a morphism)

= î({x•} · η̂(w)) (definition of η)

= {x} · (̂i ◦ η̂(w)) (definition of i)

= {xw}; (induction hypothesis)

• and similarly if x′ ∈ X ′, then î ◦ η̂(x′w) = î({•x} · η̂(w)) = {x′} · (̂i ◦ η̂(w)) = {x′w}.

Thus, we get that:

JeK =
⋃

w∈JeK

{w} =
⋃

w∈JeK

î ◦ η̂(w) = î


 ⋃

w∈JeK

η̂(w)


 = î(η̂(e)).

Thus we get JeK = î(η̂(e)) = î(η̂(f)) = JfK.

B Proof of Proposition 8

Let us prove the first implication of Proposition 8:

∀w ∈ X⋆, ∀u ∈ Γ(w), ∃v ∈ suffixes(w) : u ⋆ vv.

We will proceed by induction on w:

1. If w = ǫ, then u ∈ Γ(ǫ) = {ǫ}. So u = ǫ 0 ǫǫ and obviously ǫ ∈ suffixes(ǫ).

2. Otherwise w = wx, and u ∈ Γ(wx) = (x′Γ(w)x)
⋆
. Thus we know that for some n ∈ ◆, u ∈ (x′Γ(w)x)

n
.

We now will prove by recurrence on n that u ∈ (x′Γ(w)x)
n ⇒ ∃v ∈ suffixes(wx) : u ⋆ vv:

(a) If n = 0 then u = ǫ 0 ǫǫ and ǫ ∈ suffixes(wx).

(b) If n = m+ 1 then we can introduce u1 ∈ Γ(w) and u2 ∈ (x′Γ(w)x)m such that u = x′u1xu2.

i. By induction hypothesis, ∃v1 ∈ suffixes(w) such that u1  
⋆ v1v1.
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ii. By reccurence hypothesis, ∃v2 ∈ suffixes(wx) such that u2  
⋆ v2v2.

Thus we know that u = x′u1xu2  
⋆ x′v1v1xv2v2. We will now do a case analysis on the length

of v2.

i. If |v2| = 0, then v2 = ǫ so u ⋆ x′v1v1x = v1xv1x.

ii. If |v2| > 0, as v2 ∈ suffixes(wx), we can write v2 = v3x with v3 ∈ suffixes(w). We will now
compare the sizes of v1 and v3, both being suffixes of w.

A. If |v1| 6 |v3|, then v3 = v4v1. Thus we have:

u ⋆ x′v1v1xv3xv3x = x′v1v1xx
′v1 v4v4v1x

= v1xv1xv1x v4v4v1x

 v1x v4v4v1x = v2v2

B. Otherwise we can write v1 = v5v3 and thus:

u ⋆ x′v5v3v5v3xv3xv3x

 v3v5xv5v3x = v1xv1x

So we have shown that either u  ⋆ v1xv1x or u  ⋆ v2v2, and as we know that both v1x and v2
are suffixes of wx, we have finished.

C Bisimulation relating the two constructions

Let us be more precise: starting from a non-deterministic automaton A = 〈Q,X, I, Qf ,∆〉, its determinised
is D = 〈P (Q) ,X, I,T , δ〉 with

T = {P | P ∩Qf 6= ∅} and δ(P, x) = P ·∆(x).

We can build two automata recognising its closure. The first one, derived from our construction, is

A1 = 〈P (Q)× G(Q),X, (I, IdQ),T1, δ1〉

where G(Q) is the set reflexive transitive relations over Q,

T1 , {(P,R) | P ∩Qf 6= ∅, R ∈ G(Q)},

and δ1((P,R), x) = (P · hx(R), hx(R)) .

The second one, given by the original construction, is

A2 = 〈P (MD)× P (MD) ,X, (ǫ, ǫ),T2, δ2〉

where MD is the transition monoid of D, a set of endomorphisms of P (Q) induced by words, w , {wD} is
a singleton containing the interpretation of a word w in MD , T2 , {(F,G) | ∃qf ∈ Qf , ∃f ∈ F : qf ∈ f(I)},
and the transition function is

δ2((F,G), x) = (F ⊙ x⊙ (x′ ⊙G⊙ x)⋆, (x′ ⊙G⊙ x)⋆).

(A ⊙ B , {g ◦ f | f ∈ A ∧ g ∈ B}.) The fact that the elements of MD are semilattice-homomorphisms can

be easily checked, as uD(P ) is the only state of D (i.e. a set of states of A ) such that P
u
−−→D uD(P ). Then

is is straightforward that:

uD(P1 ∪ P2) = {q ∈ Q | ∃p ∈ P1 ∪ P2 : p
u
−−→A q}

= {q ∈ Q | ∃p ∈ P1 : p
u
−−→A q} ∪ {q ∈ Q | ∃p ∈ P2 : p

u
−−→A q}

= uD(P1) ∪ uD(P2).
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Now, to give the bisimulation we need the following morphism i from P (MD) to P
(
Q2

)
defined by

i(F ) , {(p, q) | ∃f ∈ F : q ∈ f({p})}.

Note that i is a KA-homomorphism because the elements of the transition monoid of the determinised
automaton are semilattice-homomorphisms from P (Q) to P (Q). Let’s check that:

ǫD = IdP(Q), meaning that i(ǫ) = IdQ;

i(F1 ∪ F2) = {(p, q) | ∃f ∈ F1 ∪ F2 : q ∈ f({p})}

= {(p, q) | ∃f ∈ F1 : q ∈ f({p})} ∪ {(p, q) | ∃f ∈ F2 : q ∈ f({p})}

= i(F1) ∪ i(F2);

i(F1 ⊙ F2) = {(p, q) | ∃f ∈ F1 ⊙ F2 : q ∈ f({p})}

= {(p, q) | ∃f, g ∈ F1 × F2 : q ∈ g ◦ f({p})}

= {(p, q) | ∃f ∈ F1 : ∃p′ ∈ f({p}) : ∃g ∈ F2 : q ∈ g({p′})} (g is a semilattice homomorphism)

= {(p, q) | ∃p′ : (p, p′) ∈ i(F1) ∧ (p′, q) ∈ i(F2)}

= i(F1) ◦ i(F2)

For the ⋆ operation, recall that

∀F ∈ P (MD) , ∃n1(F ) ∈ ◆ : ∀n1(F ) 6 m,F ⋆ = (F ∪ ǫ)m;

and that
∀R ∈ P (Q)

2
, ∃n2(R) ∈ ◆ : ∀n2(R) 6 m,R⋆ = (R ∪ IdQ)

m.

Then, if we write m = max(n1(F ), n2(uD(F ))),

i(F ⋆) = i((F ∪ ǫ)m)

= (i(F ) ∪ i(ǫ))m

= (i(F ))⋆

We can also check that, for any x ∈ X:

i (x) = {(p, q) | q ∈ xD({p})}

= {(p, q) | q ∈ δ({p}, x)}

= {(p, q) | p
x
−−→A q}

= ∆(x).

The bisimulation ∼ can thus be expressed:

∼ , {((I · i(F ), i(G)), (F,G))}

where (F,G) are states of A2. We now prove that it is indeed a bisimulation.

1. We need the inital states to be related. This is obvious as ǫD = IdP(Q), meaning that i(ǫ) = IdQ.
Furthermore, [ǫ] = IdQ and I = I · IdQ. That means (I, [ǫ]) ∼ (ǫ, ǫ).

2. For the final states, it isn’t much more complicated:

(F,G) ∈ T2 ⇔ ∃qf ∈ Qf : ∃f ∈ F : qf ∈ f(I)

⇔ ∃qf ∈ Qf : qf ∈ I · i(F )

⇔ I · i(F ) ∩Qf 6= ∅

⇔ (I · i(F ), i(G)) ∈ T1.
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3. What remains to be shown is that this relation is stable under transitions from both sides. Suppose
that (Q,R) ∼ (F,G), and consider x ∈ X. After reading x we get in A2 (F ⊙ x ⊙ G′, G′), with
G′ = (x′ ⊙G⊙ x)⋆, and in A1 (Q · (∆(x) ◦ hx(R)), hx(R)). We will prove that they are still related in
two steps, first by looking at the second component, and then dealing with the first one.

(a) We know that R = i(G), and that i(x) = ∆(x).

hx(R) = (∆(x′) ◦R ◦∆(x))⋆

= (i(x′) ◦ i(G) ◦ i(x))⋆

= i(G′) (i is a morphism)

(b) Now the first component comes quite easily:

Q · (∆(x) ◦ hx(R)) = (I · i(F )) · (i(x) ◦ i(G′))

= I · (i(F ) ◦ i(x) ◦ i(G′))

= I · i(F ⊙ x⊙G′).
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