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Abstract

In line with the trend towards continuous miniaturization and price reduction, it is crucial to analyze the impact

of uncertainties on the performance of electrical circuits. Performance is evaluated for the worst-case scenario and

in the frequency domain, by computing upper and lower bounds. The purpose is not only to propose a method for

the worst-case tolerance analysis but also to provide an efficient and a suitable tool for electrical engineers that can

be easily applied to realistic electrical engineering problems. The proposed method is based on the robust analysis

method (so-called µ-analysis) for which well-known and efficient algorithms exist. However in order to apply it, the

problem under consideration has to be transformed in a standard minimal so-called LFT representation. Its derivation

is a difficult task even for control systems engineers. Our paper proposes a transparent and systematic LFT derivation

procedure for users based only on their knowledge of electrical engineering. At the end of the paper, an industrial

example is provided which reveals the benefits and the efficiency of the proposed approach and how it can be applied

to any linear electrical circuit.

Index Terms

Linear Fractional Transformation, Robustness analysis of circuits, uncertainty, worst-case analysis, µ-analysis,

ν-analysis.



I. INTRODUCTION

Nowadays, the semiconductor industry continuously scales toward nanometer technologies while constantly

increasing complexity and deep silicon integration of electrical circuits. Both important technological dispersions and

increase of interconnection parameter variations can bring a significant degradation of electrical circuit performance.

In order to design a reliable system, it is thus required to take these parameter variations into account and to ensure

the robust performance of the circuit besides the nominal one. The robust performance analysis is the procedure

allowing to test whether the system performance remains to be acceptable in front of possible parameter variations

or model uncertainties.

There can be underlined two existing approaches to achieve the mentioned goal: (i) probabilistic and (ii) worst-

case analysis methodologies. The first approach allows to determine the probability of robust performance based

on the given probability density functions (PDF) over parameters [1]–[5]. The worst-case approach in its turn does

not consider any probabilistic aspects and the performance criteria is analyzed for the worst combination of the

uncertain parameters [3], [6]–[12]. It ensures the robust performance for all possible combination of the uncertain

parameters.

In some critical applications such as cardiac stimulation chips, nuclear power plant control, automatic driving

panels of vehicles, etc., the ability to ensure the system performance in 100% of the cases is crucial. For these

reasons, and due to the importance of such critical applications, the subject of this paper focuses on the worst-case

tolerance analysis of electrical circuits. In this paper, only linear electrical circuit models are addressed. Even though

the linearity assumption could appear restrictive, in a large number of applications, the linear model of an electrical

circuit precisely describing the behavior of the system around an operation point can still be derived. Furthermore,

the worst-case robust performance analysis even for the linear systems but with general (possibly large) size and

structure is actually a challenging NP-hard problem [13]. This means that the execution time of the algorithm is a

Non-Polynomial function of the number of uncertainties.

There is a number of approaches to evaluate the worst-case system performance. In many applications related to

circuit theory, such as, for example, filter or phase locked loop (PLL) analysis, the performance is evaluated in the

frequency domain. In this case, the robust system performance is assessed by computing upper and/or lower bounds

on the frequency responses of some performance transfer functions. These transfer functions are chosen such that

they reflect the performance measure of the circuit. For the filter example, the performance transfer function is the

filter attenuation measure between filter inputs and outputs.

The main purpose of the present paper is to propose a method for the worst-case tolerance analysis of any linear

electrical circuit systems. The proposed method operates in frequency domain and should be efficient in terms of

computational time (time grows as a polynomial function relative to the number of uncertainties) such that it is

applicable for large-scale systems.

The importance of the problem under consideration is illustrated by the growing number of publications in

this field [3], [6]–[12]. However, as it was pointed out before, the computational complexity and time is the



main difficulty of the proposed solutions. In [6], [7] and [9], a methodology based on Interval Arithmetic (IA) is

proposed. In order to simplify the computations, the authors enforce the assumption of monotonicity of the variable

of interest with respect to the uncertain parameters. Transposing to the problem under consideration, it means that

the frequency response magnitude of a filter can only grow if any of the uncertain parameters grows. This is a

very strong assumption restricting the number of the electrical circuits that can be analyzed. In [7], the authors

propose an alternative solution based on interval partitioning which is again inefficient in terms of the computation

time for large-scale systems. Another approach improving the idea of interval partitioning based on constraint logic

programming and Relational Interval Arithmetic (RIA) is proposed in [8]. However, as claimed by the authors,

the algorithm for the worst-case tolerance analysis proposed in [8] has exponential complexity with respect to the

number of uncertain parameters and therefore is inefficient.

In [10], genetic algorithms (GA) and affine arithmetic (AA) are used to improve the results obtained from IA

and RIA. However, the computational complexity is still high for systems of significant size and therefore its usage

is somehow limited. An interesting solution to relax the monotonicity assumption and decrease the computation

time is to encapsulate the bounds by outer and inner solutions as presented in [12]. Nevertheless the authors in [12]

consider only the steady states worst-case analysis and the dynamical aspects were put in perspective.

An interesting approach to address the problem considered in frequency domain is the µ-analysis methodology

originally proposed in the control system theory community [14]–[16]. This methodology proposes to deal with the

computation complexity by relaxing complex analysis conditions. It leads to the convex Linear Matrix Inequality

(LMI) optimization framework [17] for which efficient computation algorithms are available nowadays. The same

idea of outer (inner) solutions as in [12] is used to perform this relaxation so that the performance analysis result

is still ensured in 100% of the cases. However, in contrast to [12], the µ-analysis can be applied for all frequencies

which allows to include the dynamical system behavior and not only its steady states.

Nevertheless, though the µ-analysis method is usually accepted in the control theory community for the worst-case

performance analysis, very few results were published on its application by the electronic engineering community.

Few exceptions can be found in [18], [19]. We believe that there are two main reasons that could explain this

fact. The first reason is that the µ-analysis method is a powerful theoretically based tool. It uses the control theory

mathematical formalism which is not necessary the same as in the electrical engineering community and is rarely

adapted to its practice. As a consequence, the interesting ideas are not understood and are not transmitted for practical

use in electrical circuit systems. The second reason is that in order to apply the µ-analysis, as it will be presented

in this paper, a particular system transformation is necessary. This particular representation of the transformed

system is called Linear Fractional Transformation (LFT) or ∆M -representation. Once the LFT representation of

the uncertain linear electrical circuit is derived, the application of robust worst-case performance analysis is a quite

routine method based on the resolution of convex optimization problems involving LMI constraints.

For a typical automatic control application, it was proved that an LFT representation can be always obtained [20].

However, the choice of the LFT representation is not unique and the quality of the obtained result dramatically

depends on this choice. In order to limit the computation burden and the numerical problems, an interesting choice



is to find the so-called minimal LFT representation, that is, the LFT representation of the smallest dimension. This

point is important since for non-academic applications, without a rigorous methodology, an LFT representation of

an unnecessary high size is usually obtained. Such non-academic applications include the real industrial electrical

circuits with an important number of components and uncertain parameters as well as several hierarchical levels.

Unfortunately, except for very particular classes of problems, the computation of the minimal LFT representation

is a difficult and open problem [21]. Nevertheless, in the applications of the automatic control community, when the

uncertain system is represented by a block diagram, a procedure was proposed to obtain from this block diagram,

an LFT representation of the smallest size [22]. In the case when the block diagram representation is a minimal

representation of the uncertain system, which is usually the case when the block diagram is rigorously constructed,

the procedure leads to the minimal LFT representation. Nevertheless, in the electrical engineering community, the

models of linear electrical circuits are not expressed as block diagrams but as electrical schematic. Even if it is

theoretically possible, for real industrial electrical circuits, the transformation of an electrical schematic into a block

diagram is a heavy, time-consuming task and thus it is not practically possible. It is then important to propose an

efficient procedure to obtain an LFT representation directly from an electrical schematic.

In the few existing results on the application of the µ-analysis to (uncertain) electrical circuit [18], [19], this

crucial question was not addressed. The authors in [19] do not explain how to derive the LFT form, while in [18],

the authors propose a manual and rather complex procedure based on matrix state space representations and block

scheme interconnection that strongly depends on the example under consideration.

The main contribution of this paper is to propose a systematic procedure in order to obtain, for any linear electrical

circuit, an LFT representation of reasonable dimension using the formalism of electrical schematic. Based on this

representation, black-box procedures of the µ-analysis approach allow to investigate the worst-case performance

analysis of arbitrary linear electrical circuits. The major benefit is that an electrical engineer can directly apply the

µ-analysis to the worst-case tolerance analysis of arbitrary linear electrical circuits without special knowledge in

control systems theory.

In section II, the problem formulation is given. In section III, based on the µ-analysis theoretical result, the worst

case upper bound problem is solved. Then in section IV, the systematic LFT representation derivation procedure

of reasonable dimension is presented. In section V, a general algorithm for worst case performance analysis is

formulated and at the end of the paper, in section VI, an application numerical industrial example is presented. The

article ends with a conclusion and further work discussions.

NOTATIONS AND DEFINITIONS

• Conjugate transpose of a matrix F is denoted by F ∗;

• Singular values σi of a complex n×m matrix F are defined as square roots of eigen values λi of the matrix

F ∗F if n ≥ m and FF ∗ if n < m i.e. σi (F ) =
√
λi (F ∗F ) for n ≥ m or σi (F ) =

√
λi (FF ∗) for n < m

[23];

• σmax (F ) and σmin (F ) stand for the maximum and minimal singular value of the complex matrix F ,



respectively. For scalar matrix F , i.e. n = m = 1, σmax (F ) = σmin (F ) = |F |;

• dim(w) denotes the dimension of the vector w;

• In and 0n×m respectively denote an n×n identity and n×m zero matrices. The dimensions could be omitted

if apparent from the context.

II. PROBLEM STATEMENT

A linear electrical component is a dipole for which voltage and current are linked by a linear differential equation

with constant coefficients. A linear electrical circuit is a system of interconnected linear electrical components and

of couplings between currents and/or voltages in various parts of the circuit such as mutual inductors, controlled

voltage sources. . . (see Table I). Usually these circuits are described as a schematic including elementary dipoles

(resistors, inductors, capacitor) and couplings. Each of these elements is described by a parameter. For nominal

parameters, electric circuit simulators can easily compute the nominal performance of the circuit in the frequency

domain, that is, the magnitude of the frequency response between the circuit input and the circuit output. If the

parameters are known as a nominal value and a given level of uncertainty, in order e.g. to ensure conformity to

standards, the circuit designer has to evaluate the worst-case performance defined as, for a given frequency, the

range of the magnitude of the frequency response for any possible values of the circuit parameters.

As pointed out in the introduction and as detailed in the next section, µ-analysis can be applied to compute

lower bound and upper bound on these range if the circuit with its uncertain parameters is expressed using an LFT

representation, derivation of which is a difficult task.

The problem under consideration is to extend the usual electrical schematic from the representation of “nominal”

electrical circuits to “uncertain” ones such that an LFT representation of reasonable size is systematically obtained

in order to evaluate the worst-case performance.

To solve this problem, let us proceed in two steps. Firstly, in the next section, the problem of worst-case tolerance

analysis is introduced and its efficient solution is presented based on the existing results in control theory. This step

allows to illustrate how the LFT representation is used for the worst-case tolerance analysis and to underline the

importance of its systematic derivation. Secondly, in section IV, a solution of the problem of the LFT representation

derivation is proposed by introducing a library of ”uncertain components” in addition to the usual library of ”nominal

components” of the electrical schematic.

III. WORST-CASE TOLERANCE ANALYSIS PROBLEM

A. Problem formulation

Let us introduce the problem of electrical circuits worst-case tolerance analysis. For this purpose, the linear

electrical circuit is modeled by a transfer function Twp→zp(s) such that

zp(s) = Twp→zp(s)wp(s)



where zp(s) denotes the Laplace transform of the system output, wp(s) the Laplace transform of the system input

and Twp→zp(s) is such that with p = (p1, · · · , pN ) the vector of the N parameters of the linear electrical circuit:

Twp→zp(s) =

m∑
j=0

bj(p)s
j

n∑
i=0

ai(p)s
i

. (1)

The coefficients ai and bj of the transfer function Twp→zp are in general rational functions of the N parameters of

the linear electrical circuit:

ai(p) = ai(p1, · · · , pN ) and bj(p) = bj(p1, · · · , pN ).

which are designed such that the transfer function frequency response Twp→zp(jω) satisfies some performance

specifications.

Unfortunately, due to production or ageing etc. dispersions, the actual value of the parameters p is different from

the designed value p0. A more adequate modeling is then to assume that each parameter pk belongs to an interval:

pk ∈
[
pmink , pmaxk

]
. (2)

The center of the interval p0
k =

pmax
k +pmin

k

2 is referred to as the nominal value. If the actual value of pk is not

known, the lower bound pmink and the upper bound pmaxk are a priori known. They are usually expressed as relative

expression of the nominal value p0
k, e.g.:

pk = p0
k ± 50%.

The question is then to evaluate for any frequency ω the range of variation of |Twp→zp(jω)| for any pk ∈

[pmink , pmaxk ]. This question can be decomposed into two different problems: the worst-case upper bound problem

and the worst-case lower bound problem.

WORST-CASE UPPER BOUND PROBLEM

Given Twp→zp , pmink and pmaxk , for a given frequency ω compute the smallest η(ω) such that for any pk ∈

[pmink , pmaxk ]

|Twp→zp(jω)| ≤ η(ω).

Another interesting problem is the computation of the worst-case lower bound on the frequency response of the

transfer function Twp→zp : given Twp→zp , pmink and pmaxk , for a given frequency ω compute the largest β(ω) such

that for any pk ∈ [pmink , pmaxk ]

β(ω) ≤ |Twp→zp(jω)|.

Nevertheless in the sequel, we focus on the WORST-CASE UPPER BOUND PROBLEM since the worst-case lower

bound problem can be recast as an equivalent WORST-CASE UPPER BOUND PROBLEM with the upper bound η̂(jω)

defined as 1
β(ω) and the transfer function T̂wp→zp defined as T−1

wp→zp .



In the case when zp(s) and wp(s) are vectors (with nz = dim(zp) and nw = dim(wp)) i.e. Multi-Input Multi-

Output (MIMO) case, Twp→zp(s) previously defined by (1) is now a matrix of transfer functions. The formulation

of the WORST-CASE UPPER BOUND PROBLEM is extended as follows.

MIMO WORST-CASE UPPER BOUND PROBLEM

Given Twp→zp , pmink and pmaxk , for a given frequency ω compute the smallest η(ω) such that for any pk ∈

[pmink , pmaxk ]

σmax
(
Twp→zp(jω)

)
≤ η(ω).

As in the single input, single output case, another interesting problem is the computation of the worst-case lower

bound on the frequency response of the transfer function Twp→zp : given Twp→zp , pmink and pmaxk , for a given

frequency ω compute the largest β(ω) such that for any pk ∈ [pmink , pmaxk ]

β(ω) ≤ σmin
(
Twp→zp(jω)

)
.

Nevertheless, in the sequel and for the same reasons as previously, we focus on the MIMO upper bound case only.

In the next subsection, we reveal how the MIMO WORST-CASE UPPER BOUND PROBLEM is solved using robust

control approach.

B. Robust Worst-case Performance Analysis

According to (2), the uncertain parameters can be expressed as a sum of two parts: (i) the nominal part p0
k and

(ii) the uncertain part p0
kp
g
kδk:

pk = p0
k(1 + δkp

g
k) (3)

where p0
k = 1

2

(
pmaxk + pmink

)
denotes the nominal or center parameter value, pgk =

pmax
k −pmin

k

pmax
k +pmin

k

the relative value

of the uncertainty1 (for 50%→ pgk = 0.5) and δk is the corresponding normalized uncertainty |δk| ≤ 1.

The transfer function Twp→zp defined by (1) can then be expressed as:

Twp→zp(s) =

m∑
j=0

b̂j(δ1, · · · , δN )sj

n∑
i=0

âi(δ1, · · · , δN )si
. (4)

As the coefficients âi(δ1, · · · , δN ) and b̂j(δ1, · · · , δN ) are rational functions of δ1, · · · , δN , zp(s) = Twp→zp(s)wp(s)

can always be transformed as [20]: z (s)

zp (s)

 = M (s)

 w (s)

wp (s)

 and w (s) = ∆ (s) z (s) (5)

1In (3), the relative uncertainty representation is introduced in order to limit the numerical problems during the further computations. However

the absolute uncertainty form can be used as well.



where ∆ is defined by

∆ =


δ1In1

0 0

0
. . . 0

0 0 δNInN


with ni defining the number of repetitions of uncertain parameter δi in the uncertain circuit model.

This representation, denoted2 as ∆?M , is referred to as a Linear Fractional Transformation (LFT) representation

of the linear electrical circuit. This representation can be interpreted as the feedback interconnection of the nominal

part M (usually designed to be stable) and the unknown part ∆, see Fig.1.

Fig. 1. LFT representation of the linear electrical circuit

Let us introduce the uncertainty set ∆ defined as:

∆ =

∆|∆ =


δ1In1

0 0

0
. . . 0

0 0 δNInN

 ,
∀k,

|δk| ≤ 1,

δk ∈ R

 (6)

The MIMO WORST-CASE UPPER BOUND PROBLEM can then be expressed as for a given ω: compute the smallest

η(ω) such that for any ∆ ∈ ∆,

σmax (∆ ? M(jω)) ≤ η(ω).

This problem referred to as the robust performance problem was largely investigated in the Automatic Control

community. A solution is presented in the following theorem.

2The symbol ? denotes the Redheffer star product, see e.g. [20].



Theorem 1 (MIMO case, [24], Theorem 2.1): For stable nominal system M(s), for all possible ∆ ∈ ∆, for a

given ω

σmax (∆ ? M(jω)) < η (ω)

if and only if there exists an hermitian matrix Φ (jω) : Φ∗ (jω) = Φ (jω) such that3

(i) ∀∆ ∈ ∆,

 I

∆

∗  Φ11 Φ12

Φ∗12 Φ22

 I

∆

 ≥ 0 (7)

and

(ii)

 M

I

∗


Φ11 0 Φ12 0

0 Inz 0 0

Φ21 0 Φ22 0

0 0 0 −η2Inw


 M

I

 ≤ −εI (8)

with ε > 0

Based on this Theorem, the solution of WORST-CASE UPPER BOUND PROBLEM is readily obtained, see the

following Corollary.

Corollary 1 (SISO case): For stable nominal system M(s) and for all possible ∆ ∈ ∆, for a given ω:

|∆ ? M(jω)| < η (ω)

if and only if there exists an hermitian matrix Φ (jω) : Φ∗ (jω) = Φ (jω) such that (7) and (8) are satisfied with

nz = nw = 1.

C. Computational Application of Theorem 1 and Corollary 1

For a given frequency ω, the application of Theorem 1 (respectively Corollary 1) allows to exactly find the upper

bound η(ω) on the maximum singular value (frequency response magnitude) of Twp→zp for MIMO (resp. SISO)

case by computing an appropriate matrix Φ(jω) such that conditions (7) and (8) are satisfied.

However, it turns out that testing condition (7) is a difficult problem. Indeed, condition (7) has to be tested for

all possible uncertainty ∆ in the set ∆, i.e. an optimization problem involving an infinite number of constraints. In

order to obtain an efficient computation, the optimization problem is modified by

1) parametrizing i.e. defining a set Φ of matrices Φ(jω) for which the condition (7) is always satisfied;

2) testing the condition (8) for all Φ(jω) from this set i.e. for all Φ(jω) ∈ Φ.

In the case of a set Φ which is affine or defined by LMI constraints, the constraint (8) of Theorem 1 defines a convex

optimization problem involving a finite number of LMI constraints which is efficiently solved in polynomial time.

Nevertheless, this optimization problem computes an upper bound η(ω) on η(ω) instead of computing η(ω) itself.

The consequence is a possible conservatism of the obtained result i.e. η(ω) can be far away from η(ω). However,

thanks to an appropriate choice of the parametrization set Φ, the conservatism can be significantly reduced.

3The dependency on jω (and on ω) is dropped for simplicity of notation.



It is clear that the set Φ depends on the uncertainty set ∆ and the better it describes the uncertainty throughout (7)

the closer the relaxed upper bounds η(ω) to the real ones η(ω) are. For our problem, a suitable set Φ is defined4

by:

Φ =


Φ|Φ =



D1 0 G1 0

. . . . . .

0 DN 0 GN

−G1 0 D1 0

. . . . . .

0 −GN 0 DN




(9)

with Di and Gi are complex, full, ni×ni hermitian and respectively skew hermitian frequency depending matrices

i.e. D∗ = D and G∗ = −G. It is so called D,G-scaling for the case of real uncertainties δi used in µ-analysis

[14], [15]. For these reasons, the use of the Theorem 1 with structure of Φ defined by (9) can be interpreted in

terms of standard µ-analysis.

Finally, the computation of the upper bounds (close to the real upper bounds) is thus achieved by solving for

each frequency ω the following convex optimization problem under LMI constraints:

min
η2,Φ

η2

subject to (8) for Φ ∈ Φ defined by (9)
(10)

The program solving the optimization problem (10) in Matlab environment, providing the Robust Toolbox is

included in Matlab distribution, is available online on the website [25].

The MIMO WORST-CASE UPPER BOUND PROBLEM can be therefore efficiently solved in order to apply the

worst-case performance analysis of the linear electrical circuit. However, this is possible only in the case when the

LFT representation (5) corresponding to the electrical circuit is available. The next section presents how to obtain

the LFT representation of reasonable size starting from the electrical circuit schematic.

IV. SYSTEMATIC LFT DERIVATION

In this section, a method of systematic LFT derivation for general linear uncertain electrical circuits is presented.

This is the crucial step to solve the worst-case tolerance analysis problem and, as discussed in the introduction, it is

a difficult problem. In this paper, the following interesting idea is used to overcome this issue. When a designer is

constructing the model of an electrical circuit with an arbitrary software5, interconnecting the library components

together, creating and interconnecting then the subsystems in hierarchical way etc., he is actually building at the

same time the LFT representation of the circuit with a minimal number of components. The only question is: how

to extract this LFT representation (see ∆ ? M in (5)) from the electric circuit model? For this purpose, once the

4The dependency on jω (and on ω) is dropped for simplicity.
5The example presented is SimPowerSystemsTMtoolbox.



electric circuit model is built, first the traditionally used component models (such as resistor, capacitor, inductor

models etc.) are replaced by uncertain component models proposed in this section. The number and the ordering

of these uncertain components automatically define the structure of the block ∆. Then, the extraction procedure is

performed in order to obtain the matrix transfer function M(s).

In the following subsection, a library of elementary uncertain linear electric circuit components is proposed.

Since these uncertain components are very similar to the standard ones, there is only the need of regular electrical

engineer’s knowledge to use (and build) the uncertain model. It is even possible to combine the regular and uncertain

components in order to avoid time consuming computation in the case where some uncertainties can be neglected.

Then, in next subsection, the procedure of LFT representation extraction is presented.

A. Block Diagram of Uncertain Electrical Components

The detailed description of the uncertain components is given only for Resistor, Capacitor and Mutual Inductor

while other components can be deduced in a similar fashion. A more complete table (or library) of uncertain

components is then presented.

1) Resistor: the equivalent circuit of the normalized uncertain resistor is presented in the first line of the Table. I,

where Rg is the unit less normalization factor, R0 is the resistor nominal value (Ω), δR is a real number such that

|δR| < 1, zR is the uncertain output, wR is the uncertain input, iR is the current that flows through the resistor and

vR is the voltage drop across the resistor.

Note that the voltage seen by the terminals + and - of the circuit is the voltage drop on the resistor R0 plus

the voltage of the source in series with the resistor, which is given by R0iRRgδR. The total voltage drop between

terminals + and - of the circuit is given by (11). Hence, the equivalent resistance of the circuit corresponds exactly

to the normalized relative form of uncertain parameter introduced in (3).

2) Capacitor: the equivalent circuit of the normalized uncertain capacitor is presented in the second line of

Table I.

Note that the current that flows through the terminals + and - of the circuit is the current that flows through

the capacitor C0 plus the current that is injected by the source in parallel with the capacitor C0, which is given

by C0
dvC
dt CgδC . The total current of the circuit is given by (12). Hence, the equivalent capacitance of the circuit

exactly corresponds to the normalized relative form of uncertain parameter introduced in (3).

3) Mutual Inductor: the equivalent circuit of the normalized uncertain mutual inductor is presented in the eighth

line of Table I.

Note that the voltage v1 seen by the terminals + and - in the left part of the circuit is the voltage drop on

the inductor L1, which is given by L1
diL1

dt , plus the voltage drop on the Mutual Inductor M0, which is given by

−M0
di2
dt and plus the voltage of the source in series with M0, which is given by −M0

di2
dt MgδM . Thus, the total

voltage v1 in the left part of the circuit is given by (13).

The procedure for obtaining v2 is analogous. All other uncertain components from the proposed library are

obtained in similar fashion and are presented in the Table I.



TABLE I

UNCERTAIN COMPONENT LIBRARY

Component
Equivalent circuit

Resistor

vtotR = R0iR +R0iRRgδR =

R0(1 +RgδR)iR

(11) 𝑅0 

+ − 𝑖𝑅 𝑣𝑅
𝑡𝑜𝑡 

𝑅𝑔 
𝑣𝑅 𝑧𝑅 

𝛿𝑅 

𝑤𝑅 

Capacitor

itotC = C0
dvC
dt

+ C0
dvC
dt

CgδC =

C0(1 + CgδC) dvC
dt

(12)

𝐶0 

𝑣𝐶  

+ 

− 

𝑖𝐶
𝑡𝑜𝑡 

𝑖𝐶  

𝐶𝑔 
𝑖𝐶  

𝛿𝐶  

𝑧𝐶  
𝑤𝐶  

Inductor

vtotL = L0
diL
dt

+ L0
diL
dt
LgδL =

L0(1 + LgδL)
diL
dt

𝑣𝐿
𝑡𝑜𝑡 

+ − 𝑖𝐿 

𝐿𝑔 
𝑣𝐿 𝑧𝐿 

𝛿𝐿 

𝑤𝐿 
𝐿0 

Conductor

itotG = G0vG +G0vGGgδG =

G0(1 +GgδG)vG

𝐺0 

𝑣𝐺  

+ 

− 

𝑖𝐺
𝑡𝑜𝑡 

𝑖𝐺  

𝐺𝑔 
𝑖𝐺  

𝛿𝐺  

𝑧𝐺  
𝑤𝐺  

Controlled Voltage Source

vCS = vin + vinvgδv =

(1 + vgδv)vin

 𝑣𝑔 

  𝛿𝑣 

𝑣𝑖𝑛 

+ 

− 

𝑣𝑐𝑠 

𝑤𝑣 

𝑧𝑣 



TABLE I

UNCERTAIN COMPONENT LIBRARY (CONTINUE)

Component Equivalent circuit

Controlled Current Source

iCS = iin + iinigδi =

(1 + igδi)iin

𝑖𝑔 

𝛿𝑖 

𝑖𝑖𝑛 

𝑖𝑐𝑠 
𝑧𝑖 

𝑤𝑖 

Mutual Inductor

v1 = L1
di1
dt
−M0

di2
dt
−M0

di2
dt
MgδM

= L1
di1
dt
−M0(1 +MgδM ) di2

dt

(13)

v2 = L2
di2
dt
−M0

di1
dt
−M0

di1
dt
MgδM

= L2
di2
dt
−M0(1 +MgδM ) di1

dt

𝐿1 

𝑀0 
 𝑉 

 𝛿𝑀 
  𝑀𝑔 

𝑣1 

+ 

− 

𝑖1 

𝐿2 

 𝑉 

 𝛿𝑀 
 𝑀𝑔 

𝑣2 

+ 

− 

𝑖2 

𝑤𝑀1 

𝑧𝑀2 𝑧𝑀1 

𝑤𝑀2 

B. LFT extraction

In the last subsection, equivalent uncertain linear electrical circuits for uncertain linear components were devel-

oped. All these equivalent circuits have electrical terminals, for the usual electrical connections, but also two or

four uncertain terminals, an input wx and output zx, which should be connected to the uncertain block ∆.

Thus, to automatically derive the matrix of transfer functions M of any uncertain electrical circuit, one must

follow the steps below:

1) connect the equivalent uncertain elements by their electrical terminals creating the desired circuit topology;

2) connect inputs and outputs to the uncertain terminals respecting the ordering (the ith element should have

input wi and output zi) according to the ∆ structure, see Fig. 2;

3) connect the desired performance analysis input (voltage or current source) and output (voltage or current

measurement), see Fig. 2;

4) compute a linear state-space model of M and then the matrix transfer function M(s). This last step can be

performed, for example, in Matlab Simulink using the functions linmod(· · ·) and ss(· · ·).
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Fig. 2. Systematic extraction of LFT representation.

In this section, the systematic LFT derivation procedure was presented. Performing it together with the opti-

mization problem (10) from section III allows to solve the MIMO WORST-CASE UPPER BOUND PROBLEM. The

overall algorithm solving the worst-case tolerance analysis problem of linear electrical circuit i.e. upper and lower

frequency bound computation, is given in next section.

V. GENERAL ALGORITHM FOR WORST-CASE PERFORMANCE ANALYSIS

As explained in the section III, the lower bound is obtained similarly to the upper bound by inverting the perfor-

mance transfer function Twp→zp = ∆ ?M and computing the upper bound of the inverted system
(
Twp→zp

)−1
=

(∆ ? M)
−1: ∣∣Twp→zp (jω)

∣∣−1 ≤ β−1 (ω)⇔ β (ω) ≤
∣∣Twp→zp (jω)

∣∣
To do so, there is no need to recompute a new LFT representation and build a new electrical circuit. The

corresponding inverse matrix transfer function Minv can be computed based on the already computed direct matrix

transfer function M and thanks to the following LFT inversion relation [21]:

Minv =

M11 −M12M
−1
22 M21 M12M

−1
22

−M−1
22 M21 M−1

22

 (14)



It should be noted that in the case of a non-invertible systems (zero static gain or non-causal inverse etc.), it is still

possible to compute the corresponding inverse Minv but frequency by frequency. In this case, for the frequencies

with zero magnitude for nominal transfer function, the lower frequency bounds are zero as well and there is no

need to compute the inverse matrix Minv .

The overall algorithm for the worst-case tolerance analysis of linear electrical circuits is now given.

Algorithm 1 Algorithm of the worst-case performance analysis of the linear electrical circuits

1) Build the regular nominal electrical circuit model;

2) Derive the LFT representation of this electrical circuit i.e. ∆ ? M according to section IV;

3) Determine the matrix of transfer functions Minv corresponding to the inverse LFT, applying (14);

4) Define the frequency grid vector and, for each frequency ω, compute the frequency responses M (jω) and

Minv (jω);

5) Compute the upper bounds (on the exact upper bounds) η (ω) and η̂ (ω) solving the optimization problem

(10) for M (jω) and Minv (jω) respectively and for each frequency value;

6) The upper and lower bounds on the frequency response magnitude are η (ω) and β (ω) = η̂−1 (ω).

VI. APPLICATION

The methodology presented in the previous section will be applied to an EMC filter. Its electrical schematic

is shown in Fig. 3. It is a linear electrical circuit model with standard components R, C, L etc.. Since the filter

is fabricated in industrial scale, technological dispersions causing parameter variations of these components are

inevitable. In this example, there are 12 resistors, 9 inductors and 5 capacitors (including parasitic inductances and

capacitances), which corresponds to 26 uncertain parameters. Computing the upper and lower bounds of the filter

frequency response magnitude is therefore crucial in order to ensure an acceptable level of filtering performance.

Each electrical component is replaced by its uncertain block diagram and the matrices M and Minv of the filter

are readily obtained from the diagram presented in Fig. 4 using linmod function of Matlab. As presented in Fig. 4,

the structure of the model does not change with respect to the nominal model in Fig. 3, i.e. the same number of

hierarchical levels, the same interconnection subsystems, etc.. The only change concerns the additional uncertain

inputs and outputs appearing for each uncertain component model. These inputs/outputs are propagated through

every hierarchical level. Only last, global hierarchical level is shown in Fig. 4.

A frequency grid covering typical Conducted EMI standard’s for this case was chosen. The computation of upper

and lower bounds was then performed thanks to the function available [25]. The final results are presented in Fig. 5.

In this figure, the full blue line represents the nominal filter frequency response magnitude. The red lines correspond

to the computed upper and lower bounds, while dashed-dot green lines depict the frequency response magnitudes

of the filter for the random chosen parameter combinations. For comparison reasons, the classical Monte-Carlo

simulations were performed in order to compute the upper and lower frequency bounds as well.

As it can be seen in Fig. 5, no frequency response magnitude of randomly chosen parameter combinations
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Fig. 3. Electrical schematic of EMC Filter.

(dashed-dot green lines) exceeds the bounds computed by our approach (red lines). Admittedly in contrast to our

worst-case analysis approach, where the bounds are ensured, the Monte-Carlo bounds are only underestimation.

Despite this, since Monte-Carlo simulations are a reference for robust performance analysis of electrical circuits

(as well as for other domains), they should be discussed and compared with our approach. Furthermore, both the

Monte-Carlo approach and our approach can be applied for any models of electrical circuit of arbitrary size and

hierarchical structure.

First, the corresponding upper and lower bounds are close for both approaches. It is true that the Monte-Carlo

bounds are tighter than those of the µ-analysis. There are two reasons which explain the existence of such a

gap. The first is, as discussed previously, the possible conservatism of the result. This aspect can be improved by

considering new types of parametrization sets Φ for the optimization problem (10), see for example [24]. The second

reason is, of course, the fact that the Monte-Carlo bounds are an estimation. This means that there are possible

combinations of parameter values that may exceed the computed Monte-Carlo bounds. Ideally, if we could perform
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Fig. 4. Systematic LFT derivation of EMC Filter.

an infinite number of Monte-Carlo simulations, the new bounds will be closer to those of the µ-analysis. This is

confirmed by comparing Monte-Carlo bounds between 104 and 105 samples. The case of 105 samples ensures a

higher probability that the frequency response magnitude is inside of the computed bounds and it can be seen that

these bounds approach the µ-analysis upper and lower bounds.

Another comparison aspect is the computational efforts for two approaches. To obtain the bounds for 104 samples,

the computation time of Monte-Carlo approach is t4MC = 3 hours and for the case of 105 samples t5MC = 28 hours.

Whereas, in order to compute the bounds by µ-analysis approach, ensured for all 100% cases, the computation

time obtained is only tµ = 17 minutes. The proposed method is almost 100 times quicker. These time comparisons

were carried out on a Intel i7-2860QM Quad-Core 2.5 GHz. Thus, there is ample evidence of advantages of the

proposed method when compared to the Monte-Carlo simulations.

VII. CONCLUSION

In this paper, a frequency domain worst-case tolerance analysis method for uncertain linear electrical circuits

was presented. The method is based on a robust control theory approach, the so called µ-analysis. To apply the
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µ-analysis, a particular LFT transformation problem must be considered first. The algorithm for systematic LFT

derivation and worst-case tolerance analysis of linear electrical circuits was presented. To this purpose, a library

of uncertain electrical components was created. The numerical example of EMC Filter proves the efficiency of the

proposed approach compared to the classical Monte Carlo methodology.

Future works related to this paper will be an extension of the proposed approach to the case of the worst-case

tolerance analysis along ranges of frequency, so that the appropriate choice of frequency grid can be easily performed.

Other interesting perspectives are the systematic LFT reduction and the extension to the case of non-linear electrical

circuits including switches.
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[4] M. Ferber De Vieira Lessa, C. Vollaire, L. Krähenbühl, and A. Vasconcelos, Joao, “Adaptive unscented transform for uncertainty

quantification in EMC large-scale systems,” in Proc. of the 12th International Workshop on Optimization and Inverse Problems in

Electromagnetism, Ghent, Belgium, Sep. 2012, p. CD.

[5] M. Ferber, C. Vollaire, L. Krahenbuhl, J.-L. Coulomb, and J. A. Vasconcelos, “Conducted EMI of DC–DC converters with parametric

uncertainties,” Electromagnetic Compatibility, IEEE Transactions on, vol. PP, no. 99, pp. 1 –8, 2013.

[6] S. Skelboe, “True worst-case analysis of linear electrical circuits by interval arithmetic,” Circuits and Systems, IEEE Transactions on,

vol. 26, no. 10, pp. 874–879, Oct 1979.

[7] W. Tian, X.-T. Ling, and R. Liu, “Novel methods for circuit worst-case tolerance analysis,” Circuits and Systems I: Fundamental Theory

and Applications, IEEE Transactions on, vol. 43, no. 4, pp. 272–278, Apr 1996.

[8] A. Abderrahman, E. Cerny, and B. Kaminska, “Worst case tolerance analysis and clp-based multifrequency test generation for analog

circuits,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 18, no. 3, pp. 332–345, Mar 1999.

[9] M. Tian and C. J. R. Shi, “Worst case tolerance analysis of linear analog circuits using sensitivity bands,” Circuits and Systems I:

Fundamental Theory and Applications, IEEE Transactions on, vol. 47, no. 8, pp. 1138–1145, Aug 2000.

[10] N. Femia and G. Spagnuolo, “True worst-case circuit tolerance analysis using genetic algorithms and affine arithmetic,” Circuits and

Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 47, no. 9, pp. 1285–1296, Sep 2000.

[11] J. Leyva-Ramos and J. Morales-Saldana, “Uncertainty models for switch-mode DC-DC converters,” Circuits and Systems I: Fundamental

Theory and Applications, IEEE Transactions on, vol. 47, no. 2, pp. 200–203, Feb 2000.

[12] L. Kolev, “Worst-case tolerance analysis of linear DC and AC electric circuits,” Circuits and Systems I: Fundamental Theory and

Applications, IEEE Transactions on, vol. 49, no. 12, pp. 1693–1701, Dec 2002.

[13] R. D. Braatz, P. M. Young, J. C. Doyle, and M. Morari, “Computational complexity of µ calculation,” IEEE Trans. Aut. Control, vol.

AC-39, no. 5, pp. 1000–1002, May 1994.

[14] J. Doyle, “Analysis of feedback systems with structured uncertainties,” IEE Proc., vol. 129-D, no. 6, pp. 242–250, Nov. 1982.

[15] M. K. H. Fan, A. L. Tits, and J. C. Doyle, “Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics,” IEEE

Trans. Aut. Control, vol. 36, no. 1, pp. 25–38, Jan 1991.

[16] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control, Analysis and Design. John Wiley and Sons Chischester, 2005.

[17] Y. Nesterov, Introductory Lectures on Convex Optimization, ser. Applied optimization. Boston/Dordrecht/London: Kluxer Academic

Publishers, 2004, no. 87.

[18] R. Tymerski, “Worst-case stability analysis of switching regulators using the structured singular value,” Power Electronics, IEEE

Transactions on, vol. 11, no. 5, pp. 723–730, Sep 1996.

[19] J. Wang, O. Hafiz, and J. Li, “A linear fractional transform (LFT) based model for interconnect parametric uncertainty,” in Design

Automation Conference, 2004. Proceedings. 41st, July 2004, pp. 375–380.

[20] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control. Prentice Hall, New Jersey, 1995.

[21] J. Doyle, A. Packard, and K. Zhou, “Review of LFTs, LMIs, and µ,” in Decision and Control, 1991., Proceedings of the 30th IEEE

Conference on, Dec 1991, pp. 1227–1232 vol.2.
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