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ABSTRACT

In this paper, we analyze the iteration-complexity of Gener-

alized Forward–Backward (GFB) splitting algorithm, as pro-

posed in [2], for minimizing a large class of composite objec-

tives f `řn
i“1

hi on a Hilbert space, where f has a Lipschitz-

continuous gradient and the hi’s are simple (i.e. their prox-

imity operators are easy to compute). We derive iteration-

complexity bounds (pointwise and ergodic) for the inexact

version of GFB to obtain an approximate solution based on

an easily verifiable termination criterion. Along the way, we

prove complexity bounds for relaxed and inexact fixed point

iterations built from composition of nonexpansive averaged

operators. These results apply more generally to GFB when

used to find a zero of a sum of n ą 0 maximal monotone oper-

ators and a co-coercive operator on a Hilbert space. The the-

oretical findings are exemplified with experiments on video

processing.

Index Terms— Convex optimization, Proximal splitting,

Convergence rates, Inverse problems.

1. INTRODUCTION

1.1. Problem statement

Many structured convex optimization problems in science and

engineering, including signal/image processing and machine

learning, can be cast as solving

min
xPH

Jpxq :“ fpxq `
n
ÿ

i“1

hipxq, (1)

where f P Γ0pHq has β´1-Lipschitz continuous gradient,

hi P Γ0pHq is simple, and Γ0pHq is the class of lower semi-

continuous, proper, convex functions from a Hilbert space H
to s ´ 8,`8s. Some instances of (1) in signal, image and

video processing are considered in Section 3 as illustrative

examples.

Assume that Argmin J ‰ H and that the qualification

condition

p0, . . . , 0q P sri tpx ´ y1, . . . , x ´ ynq |x P H, @i, yi P domhiu
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holds, where sri is the strong relative interior, see [3]. Thus,

minimizing J in (1) is equivalent to

Find x P zerpBJq :“ tx P H|0 P ∇fpxq ` řn
i“1

Bhipxqu .
(2)

Although we only focus on optimization problems (1) in the

sequel, our results apply more generally to monotone inclu-

sion problems of the form

Find x P
#

zerpB `
n
ÿ

i“1

Aiq :“
 

x P H|0 P Bx `
n
ÿ

i“1

Aix
(

+

,

(3)

where B : H ÞÑ H is β-cocoercive, and Ai : H ÞÑ 2H is a

maximal monotone set-valued map.

In this paper, we will establish iteration-complexity

bounds of the inexact GFB algorithm [2] for solving (2),

whose steps are summarised in Algorithm 1. There, εk1 and

εk
2,i are the errors when computing ∇fp¨q and prox γ

ωi
hi

p¨q.

Algorithm 1: Inexact GFB Algorithm for solving (2).

Input: pziqiPt1,¨¨¨ ,nu, pωiqiPt1,¨¨¨ ,nu and
řn

i“1
ωi “ 1,

γ Ps0, 2βr, α “ 2β
4β´γ

and λk Ps0, 1

α
r.

k “ 0, x0 “ řn
i“1

ωiz
0
i ;

repeat

for i “ 1, . . . , n do

vk`1

i “
prox γ

ωi
hi

`

2xk ´ zki ´ γ∇fpxkq ` εk1
˘

` εk
2,i;

zk`1

i “ zki ` λkpvk`1

i ´ xkq;
xk`1 “ řn

i“1
ωiz

k`1

i ;

k “ k ` 1;

until convergence;

return x;

When n “ 1, GFB recovers the Forward–Backward split-

ting algorithm [4], and when ∇f “ 0, GFB specializes to the

Douglas–Rachford algorithm on product space [5].

There has been a recent wave of interest in splitting algo-

rithms to solve monotone inclusions taking the form of (2) or

(3), or even more general. In particular, several primal-dual

splitting schemes were designed such as those in [6, 7] or [8]

in the context of convex optimization. See also [9, 10] for



convergence rates analysis. The authors in [11, 12] analyze

the iteration-complexity of the hybrid proximal extragradient

(HPE) method proposed by Solodov and Svaiter. It can be

shown that the GFB can be cast in the HPE framework but

only for the exact and unrelaxed (i.e. λk “ 1) case.

1.2. Contributions

In this paper, we establish pointwise and ergodic iteration-

complexity bounds for sequences generated by inexact and

relaxed fixed point iterations, in which, the fixed point oper-

ator is α-averaged. It is a generalization of the result of [13]

to the inexact case, and of [14] who only considered the ex-

act Douglas–Rachford method. Then we apply these results

to derive iteration-complexity bounds for the GFB algorithm

to solve (1). This allows us to show that Op1{ǫq iterations

are needed to find a pair ppuiqi, gq with the termination crite-

rion ‖g ` ∇fp<iωiuiq‖2 ď ǫ, where g P ř

i Bihipuiq. This

termination criterion can be viewed as a generalization of the

classical one based on the norm of the gradient for the gra-

dient descent method. The iteration-complexity improves to

Op1{?
ǫq in ergodic sense for the same termination criterion.

2. ITERATION-COMPLEXITY BOUNDS

2.1. Preliminaries

The class of α-averaged non-expansive operators, α Ps0, 1r,
is denoted Apαq “ tT : T “ Id ` αpR ´ Idqu for some

non-expansive operator R. For obvious space limitations, we

recall in Section 4 only properties of these operators that are

essential to our exposition. The reader may refer to e.g., [3]

for a comprehensive account.

Let pωiqiPt1,...,nu Ps0, 1sn s.t.
ř

i ωi “ 1. Consider the

product space H :“ Hn endowed with scalar product xx¨, ¨yy

@x “ pxiqi,y “ pyiqi P H, xxx,yyy “ ř

iωixxi, yiy,

and the corresponding norm ~~ ¨ ~~. Define the non-empty sub-

space S Ă H :“ tx “ pxiqi P H|x1 “ . . . “ xnu, and

its orthogonal complement SK Ă H :“ tx “ pxiqi P
H|řn

i“1
ωixi “ 0u. Denote Id as the identity operator on

H, and the canonical isometry: C : H ÞÑ S, x ÞÑ px, . . . , xq.

2.2. Inexact relaxed fixed point equation of GFB

Denote PS : H Ñ H, z ÞÑ Cp<iωiziq, RS “ 2PS ´
Id, B : H Ñ H, x “ pxiqi ÞÑ p∇fpxiqqi, Jγ¨A “
pprox γ

ωi
hi

qi, and Rγ¨A “ 2Jγ¨A ´ Id.

Let T 1,γ “ 1

2
rRγ¨ARS`Ids and T 2,γ “ rId´γBPSs.

We can now define the inexact version of GFB.

Proposition 2.1. (i) The composed operator T 1,γ ˝ T 2,γ is

α-averaged monotone with α “ 2β
4β´γ

;

(ii) The inexact GFB is equivalent to the following relaxed

fixed point iteration

zk`1 “ zk ` λk

`

T 1,γpT 2,γz
k ` εk1q ` εk2 ´ zk

˘

, (4)

and pzkqkPN is quasi-Fejér monotone with respect to FixpT 1,γ˝
T 2,γq ‰ H.

Proof. (i) This a consequence of [2, Proposition 4.12-13] and

[1, Theorem 3]. (ii) See [2, Theorem 4.17], and [15, Theorem

3.1] since Argmin J ‰ H.

To further lighten the notation, let T “ T 1,γ ˝T 2,γ . Then

(4) can be rewritten as

zk`1 “ T kz
k ` λkε

k,

where T k “ λkT`p1´λkqId P Apαλkq, εk “ T 1,γpT 2,γz
k`

εk1q ` εk2 ´ Tzk. We now define the residual term that will

be used as a termination criterion for (4), i.e.

ek “ pId ´ T qzk “ pzk ´ zk`1q{λk ` εk. (5)

2.3. Iteration complexity bounds of (4)

We are now in position to establish our main results on point-

wise and ergodic iteration-complexity bounds for the inex-

act relaxed fixed point iteration (4). The proofs are deferred

to Section 4. Define τk “ λkp 1

α
´ λkq, τ “ infkPN τk,

τ “ supkPN τk. Let d0 “ ~~z0´z‹~~ be the distance from z0 to

z‹ P FixT , ν1 “ 2 supkPN ~~T λk
zk ´ z‹~~ ` supkPN λk~~εk~~

and ν2 “ 2 supkPN ~~ek ´ ek`1~~. Let ℓ1` denote the set of

summable sequences in r0,`8r.
Theorem 2.2 (Pointwise iteration-complexity bound of (4)).

(i) If

λk Ps0, 1{αr, pτkqkPN R ℓ1` and pλk~~εk~~qkPN P ℓ1` , (6)

then the sequence pekqkPN converges strongly to 0, and

pzkqkPN converges weakly to a point z‹ P FixpT q.

(ii) If

0 ă inf
kPN

λk ď sup
kPN

λk ă 1

α
and

`

pk ` 1q~~εk~~
˘

kPN
P ℓ1` ,

(7)

then C1 “ ν1
ř

jPN λj ~~εj ~~ ` ν2τ
ř

ℓPNpℓ ` 1q~~εℓ~~ ă `8,

and

~~ek~~ ď
d

d2
0

` C1

τpk ` 1q ; (8)

(iii)If 1

2α
ď λk ď supkPN λk ă 1

α
is non-decreasing, then

~~ek~~ ď
d

d2
0

` C2

τkpk ` 1q . (9)

where C2 “ ν1
ř

jPN λj ~~εj ~~`ν2τ0
ř

ℓPNpℓ`1q~~εℓ~~ ă `8.

In a nutshell, after k ě O
`

pd20 ` C2q{ǫ
˘

iterations, (4)

achieves the termination criterion ~~ek~~2 ď ǫ.



Denote now Λk “ řk
j“0

λj , and define ēk “ 1

Λk

řk
j“0

λje
j .

We have the following theorem.

Theorem 2.3 (Ergodic iteration-complexity bound of (4)). If

λk Ps0, 1r and C3 “ ř`8
j“0

λj ~~εj ~~ ă `8, then

~~ēk~~ ď 2
`

d0 ` C3

˘

{Λk.

If infk λk ą 0, then we get the iteration-complexity

Op1{?
ǫq in ergodic sense for (4).

2.4. Iteration complexity bounds of (2)

We now turn to the complexity bounds of the GFB applied to

solve (2) (or equivalently (1)).

From the quantities used in Algorithm 1, let’s denote

uk`1 “ puk`1

i qi “
`

prox γ
ωi

hi
p2xk´zki ´γ∇fpxkqq

˘

i
, εki “

vk`1

i ´ uk`1

i , then eki “ xk ´ uk`1

i “ pzki ´ zk`1

i q{λk ` εki ,

and gk “ 1

γ
xk ´ ∇fpxkq ´ 1

γ
p<iωiu

k`1

i q. To save space, we

only consider the case where λk P r 1

2α
, 1

α
r is non-decreasing.

Theorem 2.4 (Pointwise iteration-complexity bound of (2)).

We have gk P ř

i Bhipuk`1

i q. Moreover, under the assump-

tions of Theorem 2.2,

‖gk ` ∇fp<iωiu
k`1

i q‖ ď 1

γ

d

d2
0

` C2

τkpk ` 1q .

Let now ūk
i “ 1

Λk

řk
j“0

λku
j`1

i , x̄k “ 1

Λk

řk
j“0

λjx
j

and ḡk “ 1

γ
x̄k ´∇fpx̄kq´ 1

γ
p<iωiū

k
i q. We get the following.

Theorem 2.5 (Ergodic iteration-complexity bound of (2)).

Under the assumptions of Theorem 2.3, we have

‖ḡk ` ∇fp<iωiū
k
i q‖ ď 2pd0 ` C3q{pγΛkq.

3. NUMERICAL EXPERIMENTS

As an illustrative example, in this section, we consider the

principal component pursuit (PCP) problem, and apply it to

decompose a video sequence into its background and fore-

ground components. The rationale behind this is that since

the background is virtually the same in all frames, if the lat-

ter are stacked as columns of a matrix, it is likely to be low-

rank (even of rank 1 for perfectly constant background). On

the other hand, moving objects appear occasionally on each

frame and occupy only a small fraction of it. Thus the corre-

sponding component would be sparse.

Assume that a matrix real M can be written as

M “ XL,0 ` XS,0 ` N,

where a XL,0 is low-rank, XS,0 is sparse and N is a pertur-

bation matrix that accounts for model imperfection. The PCP

proposed in [16] attempts to provably recover pXL,0, XS,0q,

to a good approximation, by solving a convex optimization.

Here, toward an application to video decomposition, we also

add a non-negativity constraint to the low-rank component,

which leads to the convex problem

min
XL,XS

1

2
‖M´XL´XS‖

2

F `µ1‖XS‖1`µ2‖XL‖˚`ιP`
pXLq,
(10)

where ‖¨‖F is the Frobenius norm, ‖¨‖˚ stands for the nuclear

norm, and ιP`
is the indicator function of the nonnegative

orthant.

One can observe that for fixed XL, the minimizer of (10)

is X‹
S “ proxµ1‖¨‖

1

pM ´ XLq. Thus, (10) is equivalent to

min
XL

1pµ1‖ ¨ ‖
1
qpM ´ XLq ` µ2‖XL‖‹ ` ιP`

pXLq, (11)

where 1pµ1‖ ¨ ‖
1
qpM ´ XLq “ minZ

1

2
‖M ´ XL ´ Z‖

2

F `
µ1‖Z‖

1
is the Moreau Envelope of µ1‖ ¨ ‖

1
of index 1. Since

the Moreau envelope is differentiable with a 1-Lipschitz con-

tinuous gradient [17], (11) is a special instance of (1) and

can be solved using Algorithm 1. Fig. 2 shows the recov-

ered components for a video example. Fig. 1 displays the

observed pointwise and ergodic rates and those predicted by

Theorem 2.4 and 2.5.
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Fig. 1. Observed rates and theoretical bounds for the GFB

applied to the PCP problem.

Fig. 2. Left: Original frames of a video (436 384ˆ 288-pixel

frames). Middle and Right: recovered background (low-rank)

and foreground (sparse) components.



4. PROOFS

4.1. Preparatory lemmata

Lemma 4.1. Let T P Apαq, then 1

2α
pId ´ T q is firmly non-

expansive, i.e. 1

2α
pId ´ T q P Ap 1

2
q.

Proof. From the definition, it is straightforward to see that

1

2α
pId ´ T q “ 1

2
pId ` p´Rqq.

Lemma 4.2. If the operator B is β-cocoercive, β ą 0, then

Id ´ γB P Ap γ
2β

q, with γ Ps0, 2βr.
Proof. This is Baillon-Haddad theorem, see e.g., [3, Proposi-

tion 4.33].

Lemma 4.3. For ek, the following inequality holds

1

2αλk

~~ek ´ ek`1~~2 ď xxek ´ εk, ek ´ ek`1yy.

Proof. Let E : H Ñ H, z ÞÑ pId ´ T qz, then 1

2α
E “

1

2

`

Id ` p´Rq
˘

P Ap 1

2
q (Lemma 4.1), and thus @p, q P H,

~~ 1

2α
Eppq ´ 1

2α
Epqq~~2 ď xxp ´ q, 1

2α
Eppq ´ 1

2α
Epqqyy,

substituting zk and zk`1 for p, q yields the result.

Denote ν1 “ 2 supkPN ~~T kz
k ´ z‹~~ ` supkPN λk~~εk~~.

Lemma 4.4. For z‹ P FixpT q, λk Ps0, 1

α
r, we have

~~zk`1´z‹~~2 ď ~~zk´z‹~~2´λkp 1
α

´ λkq~~ek~~2`ν1λk~~εk~~.

Proof. Proposition 2.1(i) implies that ~~zk ´ Tzk~~2 “
α2~~zk ´ Rzk~~2 for some non-expansive operator R. There-

fore, using [3, Corollary 2.14] we get

~~zk`1 ´ z‹~~2 ď
`

~~T kz
k ´ z‹~~ ` λk~~εk~~

˘2

ď p1 ´ αλkq~~zk ´ z‹~~2 ` αλk~~Rzk ´ z‹~~2

´ αλkp1 ´ αλkq~~zk ´ Rzk~~2 ` ν1λk~~εk~~

ď ~~zk ´ z‹~~2 ´ λkp 1
α

´ λkq~~ek~~2 ` ν1λk~~εk~~.

Denote ν2 “ 2 supkPN ~~ek ´ ek`1~~.

Lemma 4.5. For λk Ps0, 1

α
r, the sequence pekqkPN obeys

~~ek`1~~2 ´ ν2~~εk~~ ď ~~ek~~2.

Proof. Using Lemma 4.3, we get

~~ek`1~~2 “~~ek~~2 ´ 2xxek, ek ´ ek`1yy ` ~~ek ´ ek`1~~2

ď~~ek~~2 ´ 1 ´ αλk

αλk

~~ek ´ ek`1~~2 ` ν2~~εk~~

ď~~ek~~2 ` ν2~~εk~~.

4.2. Proofs of main results

Proof of Theorem 2.2

(i) This is an adaptation of [15, Lemma 5.1].

(ii) piq implies that ~~ek~~ and ~~zk ´ z‹~~ are bounded, since

pλk~~εk~~qkPN P ℓ1`, therefore, ν1 and ν2 are bounded con-

stants. Then from Lemma 4.5, @j ď k,

~~ek~~2 ´ ν2
řk´1

ℓ“j ~~εℓ~~ ď ~~ej ~~2 .

Inserting this in Lemma 4.4, and summing up over j, we get

řk
j“0

τj ~~ek~~2 ď d20`ν1
řk

j“0
λj ~~εj ~~`ν2

řk
j“0

τj
řk´1

ℓ“j ~~εℓ~~,
(12)

whence we obtain

pk`1qτ ~~ek~~2 ď d20`ν1
řk

j“0
λj ~~εj ~~`ν2τ

řk´1

ℓ“0
pℓ`1q~~εℓ~~ .

Assumption 7 then yields the bound (8).

(iii) 1

2α
ď λk ď supkPN λk ă 1

α
is non-decreasing implies

that τk is non-increasing. Hence from (12), we get (9).

Proof of Theorem 2.3 Nonexpansiveness of T k implies

~~zk`1 ´ z‹~~ ď ~~z0 ´ z‹~~ ` řk
j“0

λj ~~εj ~~.

Combining this with the definition of ēk, we arrive at

~~ēk~~ ď 1

Λk

p~~z0´zk`1~~`řk
j“0

λj ~~εj ~~q ď 2pd0 ` C3q{Λk.

Proof of Theorem 2.4 From the update formula of uk`1

i ,

we get

γ´1xk ´ ∇fpxkq ´ γ´1p<iωiu
k`1

i q ` γ∇fp<iωiu
k`1

i q
P ř

iBhipuk`1

i q ` ∇fp<iωiu
k`1

i q .

Since Id´ γ∇f P Ap γ
2β

q (Lemma 4.2), hence nonexpansive,

and using Theorem 2.2 (iii), we arrive at

‖gk ` ∇fp<iωiu
k`1

i q‖ ďγ´1‖xk ´ ř

iωiu
k`1

i ‖

ďγ´1~~xk ´ uk`1~~

“γ´1~~ek~~ ď 1

γ

d

d2
0

` C2

τkpk ` 1q .

Proof of Theorem 2.5 Owing to Theorem 2.4, we get

‖ḡk ` ∇fp<iωiū
k
i q‖ ďγ´1‖x̄k ´ ř

iωiū
k
i ‖ ď γ´1~~x̄k ´ ūk~~

ďγ´1~~ēk~~ ď 2pd0 ` C3q{pγΛkq.
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