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, for minimizing a large class of composite objectives f `řn i"1 h i on a Hilbert space, where f has a Lipschitzcontinuous gradient and the h i 's are simple (i.e. their proximity operators are easy to compute). We derive iterationcomplexity bounds (pointwise and ergodic) for the inexact version of GFB to obtain an approximate solution based on an easily verifiable termination criterion. Along the way, we prove complexity bounds for relaxed and inexact fixed point iterations built from composition of nonexpansive averaged operators. These results apply more generally to GFB when used to find a zero of a sum of n ą 0 maximal monotone operators and a co-coercive operator on a Hilbert space. The theoretical findings are exemplified with experiments on video processing.

h i pxq, (1) 
where f P Γ 0 pHq has β ´1-Lipschitz continuous gradient, h i P Γ 0 pHq is simple, and Γ 0 pHq is the class of lower semicontinuous, proper, convex functions from a Hilbert space H to s ´8, `8s. Some instances of (1) in signal, image and video processing are considered in Section 3 as illustrative examples.

Assume that Argmin J ‰ H and that the qualification condition p0, . . . , 0q P sri tpx ´y1 , . . . , x ´yn q |x P H, @i, y i P domh i u This work has been supported by the ERC project SIGMA-Vision and l'Institut Universitaire de France. We would like to thank Yuchao Tang for pointing [START_REF] Ogura | Non-strictly convex minimization over the fixed point set of an asymptotically shrinking nonexpansive mapping[END_REF] to us. holds, where sri is the strong relative interior, see [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. Thus, minimizing J in (1) is equivalent to Find x P zerpBJq :" tx P H|0 P ∇f pxq `řn i"1 Bh i pxqu .

(2) Although we only focus on optimization problems [START_REF] Ogura | Non-strictly convex minimization over the fixed point set of an asymptotically shrinking nonexpansive mapping[END_REF] in the sequel, our results apply more generally to monotone inclusion problems of the form

Find x P # zerpB `n ÿ i"1 A i q :" x P H|0 P Bx `n ÿ i"1 A i x ( + , (3) where 
B : H Þ Ñ H is β-cocoercive, and A i : H Þ Ñ 2 H is a maximal monotone set-valued map.
In this paper, we will establish iteration-complexity bounds of the inexact GFB algorithm [START_REF] Raguet | Generalized forward-backward splitting[END_REF] for solving [START_REF] Raguet | Generalized forward-backward splitting[END_REF], whose steps are summarised in Algorithm 1. There, ε k 1 and ε k 2,i are the errors when computing ∇f p¨q and prox γ ω i hi p¨q.

Algorithm 1: Inexact GFB Algorithm for solving [START_REF] Raguet | Generalized forward-backward splitting[END_REF].

Input: pz i q iPt1,¨¨¨,nu , pω i q iPt1,¨¨¨,nu and

ř n i"1 ω i " 1, γ Ps0, 2βr, α " 2β 4β´γ and λ k Ps0, 1 α r. k " 0, x 0 " ř n i"1 ω i z 0 i ; repeat for i " 1, . . . , n do v k`1 i " prox γ ω i hi `2x k ´zk i ´γ∇f px k q `εk 1 ˘`ε k 2,i ; z k`1 i " z k i `λk pv k`1 i ´xk q; x k`1 " ř n i"1 ω i z k`1 i ; k " k `1; until convergence; return x;
When n " 1, GFB recovers the Forward-Backward splitting algorithm [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF], and when ∇f " 0, GFB specializes to the Douglas-Rachford algorithm on product space [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF].

There has been a recent wave of interest in splitting algorithms to solve monotone inclusions taking the form of (2) or (3), or even more general. In particular, several primal-dual splitting schemes were designed such as those in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] or [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF] in the context of convex optimization. See also [START_REF] Bot | Convergence analysis for a primal-dual monotone+ skew splitting algorithm with applications to total variation minimization[END_REF][START_REF] Bot | On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems[END_REF] for convergence rates analysis. The authors in [START_REF] Monteiro | On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean[END_REF][START_REF] Monteiro | Complexity of variants of Tseng's modified FB splitting and Korpelevich's methods for hemivariational inequalities with applications to saddle-point and convex optimization problems[END_REF] analyze the iteration-complexity of the hybrid proximal extragradient (HPE) method proposed by Solodov and Svaiter. It can be shown that the GFB can be cast in the HPE framework but only for the exact and unrelaxed (i.e. λ k " 1) case.

Contributions

In this paper, we establish pointwise and ergodic iterationcomplexity bounds for sequences generated by inexact and relaxed fixed point iterations, in which, the fixed point operator is α-averaged. It is a generalization of the result of [START_REF] Cominetti | On the rate of convergence of Krasnoselski-Mann iterations and their connection with sums of bernoullis[END_REF] to the inexact case, and of [START_REF] He | On convergence rate of the Dou-glasRachford operator splitting method[END_REF] who only considered the exact Douglas-Rachford method. Then we apply these results to derive iteration-complexity bounds for the GFB algorithm to solve [START_REF] Ogura | Non-strictly convex minimization over the fixed point set of an asymptotically shrinking nonexpansive mapping[END_REF]. This allows us to show that Op1{ǫq iterations are needed to find a pair ppu i q i , gq with the termination criterion g `∇f p< i ω i u i q 2 ď ǫ, where g P ř i B i h i pu i q. This termination criterion can be viewed as a generalization of the classical one based on the norm of the gradient for the gradient descent method. The iteration-complexity improves to Op1{ ? ǫq in ergodic sense for the same termination criterion.

ITERATION-COMPLEXITY BOUNDS

Preliminaries

The class of α-averaged non-expansive operators, α Ps0, 1r, is denoted Apαq " tT : T " Id `αpR ´Idqu for some non-expansive operator R. For obvious space limitations, we recall in Section 4 only properties of these operators that are essential to our exposition. The reader may refer to e.g., [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] for a comprehensive account.

Let pω i q iPt1,...,nu Ps0, 1s n s.t. ř i ω i " 1. Consider the product space H :" H n endowed with scalar product x x¨, ¨y y @x " px i q i , y " py i q i P H, x xx, yy y "

ř i ω i xx i , y i y,
and the corresponding norm ~~¨~~. Define the non-empty subspace S Ă H :" tx " px i q i P H|x 1 " . . . " x n u, and its orthogonal complement S K Ă H :" tx " px i q i P H| ř n i"1 ω i x i " 0u. Denote Id as the identity operator on H, and the canonical isometry:

C : H Þ Ñ S, x Þ Ñ px, . . . , xq.

Inexact relaxed fixed point equation of GFB

Denote P S : H Ñ H, z Þ Ñ Cp< i ω i z i q, R S " 2P S Íd, B : H Ñ H, x " px i q i Þ Ñ p∇f px i qq i , J γ¨A " pprox γ ω i
hi q i , and R γ¨A " 2J γ¨A ´Id. Let T 1,γ " 1 2 rR γ¨A R S `Ids and T 2,γ " rId´γBP S s. We can now define the inexact version of GFB. Proposition 2.1. (i) The composed operator T 1,γ ˝T 2,γ is α-averaged monotone with α " 2β 4β´γ ;

(ii) The inexact GFB is equivalent to the following relaxed fixed point iteration

z k`1 " z k `λk `T 1,γ pT 2,γ z k `εk 1 q `εk 2 ´zk ˘, (4) 
and pz k q kPN is quasi-Fejér monotone with respect to FixpT 1,γ T 2,γ q ‰ H. Proof. (i) This a consequence of [2, Proposition 4.12-13] and [1, Theorem 3]. (ii) See [2, Theorem 4.17], and [15, Theorem 3.1] since Argmin J ‰ H.

To further lighten the notation, let T " T 1,γ ˝T 2,γ . Then (4) can be rewritten as

z k`1 " T k z k `λk ε k , where T k " λ k T `p1´λ k qId P Apαλ k q, ε k " T 1,γ pT 2,γ z k ὲk 1 q `εk
2 ´T z k . We now define the residual term that will be used as a termination criterion for (4), i.e. e k " pId ´T qz k " pz k ´zk`1 q{λ k `εk .

(5)

Iteration complexity bounds of (4)

We are now in position to establish our main results on pointwise and ergodic iteration-complexity bounds for the inexact relaxed fixed point iteration [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. The proofs are deferred to Section 4. Define

τ k " λ k p 1 α ´λk q, τ " inf kPN τ k , τ " sup kPN τ k . Let d 0 " ~~z 0 ´z‹ ~~be the distance from z 0 to z ‹ P FixT , ν 1 " 2 sup kPN ~~T λ k z k ´z‹ ~~`sup kPN λ k ~~ε k ~ãnd ν 2 " 2 sup kPN ~~e k ´ek`1 ~~. Let ℓ 1
`denote the set of summable sequences in r0, `8r. Theorem 2.2 (Pointwise iteration-complexity bound of (4)).

(i) If λ k Ps0, 1{αr, pτ k q kPN R ℓ 1
`and pλ k ~~ε k ~~q kPN P ℓ 1 `, (6) then the sequence pe k q kPN converges strongly to 0, and pz k q kPN converges weakly to a point z ‹ P FixpT q.

(ii) If

0 ă inf kPN λ k ď sup kPN λ k ă 1 α and `pk `1q~~ε k ~~˘k PN P ℓ 1 `, ( 7 
)
then C 1 " ν 1 ř jPN λ j ~~ε j ~~`ν 2 τ ř ℓPN pℓ `1q~~ε ℓ ~~ă `8, and 
~~e k ~~ď d d 2 0 `C1 τ pk `1q ; ( 8 
) (iii)If 1 2α ď λ k ď sup kPN λ k ă 1 α is non-decreasing, then ~~e k ~~ď d d 2 0 `C2 τ k pk `1q . ( 9 
)
where C 2 " ν 1 ř jPN λ j ~~ε j ~~`ν 2 τ 0 ř ℓPN pℓ `1q~~ε ℓ ~~ă `8. In a nutshell, after k ě O `pd 2 0 `C2 q{ǫ ˘iterations, (4) achieves the termination criterion ~~e k ~~2 ď ǫ.

Denote now Λ k "

ř k j"0 λ j , and define ēk " 1 Λ k ř k j"0 λ j e j . We have the following theorem.

Theorem 2.3 (Ergodic iteration-complexity bound of (4)). If λ k Ps0, 1r and C 3 " ř `8 j"0 λ j ~~ε j ~~ă `8, then

~~ē k ~~ď 2 `d0 `C3 ˘{Λ k .
If inf k λ k ą 0, then we get the iteration-complexity Op1{ ? ǫq in ergodic sense for (4).

Iteration complexity bounds of (2)

We now turn to the complexity bounds of the GFB applied to solve (2) (or equivalently (1)).

From the quantities used in Algorithm 1, let's denote

u k`1 " pu k`1 i q i " `prox γ ω i hi p2x k ´zk i ´γ∇f px k qq ˘i, ε k i " v k`1 i ´uk`1 i , then e k i " x k ´uk`1 i " pz k i ´zk`1 i q{λ k `εk i , and g k " 1 γ x k ´∇f px k q ´1 γ p< i ω i u k`1 i q.
To save space, we only consider the case where λ k P r 1 2α , 1 α r is non-decreasing. Theorem 2.4 (Pointwise iteration-complexity bound of ( 2)). We have

g k P ř i Bh i pu k`1 i q.
Moreover, under the assumptions of Theorem 2.2,

g k `∇f p< i ω i u k`1 i q ď 1 γ d d 2 0 `C2 τ k pk `1q
.

Let now ūk

i " 1 Λ k ř k j"0 λ k u j`1 i , xk " 1 Λ k
ř k j"0 λ j x j and ḡk " 1 γ xk ´∇f px k q ´1 γ p< i ω i ūk i q. We get the following.

Theorem 2.5 (Ergodic iteration-complexity bound of ( 2)).

Under the assumptions of Theorem 2.3, we have ḡk `∇f p< i ω i ūk i q ď 2pd 0 `C3 q{pγΛ k q.

NUMERICAL EXPERIMENTS

As an illustrative example, in this section, we consider the principal component pursuit (PCP) problem, and apply it to decompose a video sequence into its background and foreground components. The rationale behind this is that since the background is virtually the same in all frames, if the latter are stacked as columns of a matrix, it is likely to be lowrank (even of rank 1 for perfectly constant background). On the other hand, moving objects appear occasionally on each frame and occupy only a small fraction of it. Thus the corresponding component would be sparse. Assume that a matrix real M can be written as

M " X L,0 `XS,0 `N,
where a X L,0 is low-rank, X S,0 is sparse and N is a perturbation matrix that accounts for model imperfection. The PCP proposed in [START_REF] Candès | Robust principal component analysis?[END_REF] attempts to provably recover pX L,0 , X S,0 q, to a good approximation, by solving a convex optimization.

Here, toward an application to video decomposition, we also add a non-negativity constraint to the low-rank component, which leads to the convex problem min

X L ,X S 1 2 M ´XL ´XS 2 F `µ1 X S 1 `µ2 X L ˚`ι P`p X L q, (10) 
where ¨ F is the Frobenius norm, ¨ ˚stands for the nuclear norm, and ι P`i s the indicator function of the nonnegative orthant.

One can observe that for fixed X L , the minimizer of ( 10) is X ‹ S " prox µ1 ¨ 1 pM ´XL q. Thus, ( 10) is equivalent to

min X L 1 pµ 1 ¨ 1 qpM ´XL q `µ2 X L ‹ `ιP`p X L q, (11) 
where

1 pµ 1 ¨ 1 qpM ´XL q " min Z 1 2 M ´XL ´Z 2 F μ1 Z 1 is the Moreau Envelope of µ 1 ¨ 1 of index 1.
Since the Moreau envelope is differentiable with a 1-Lipschitz continuous gradient [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF], ( 11) is a special instance of (1) and can be solved using Algorithm 1. Fig. 2 shows the recovered components for a video example. Fig. 1 displays the observed pointwise and ergodic rates and those predicted by Theorem 2.4 and 2.5. Let T P Apαq, then 1 2α pId ´T q is firmly nonexpansive, i.e. 1 2α pId ´T q P Ap 1 2 q. Proof. From the definition, it is straightforward to see that Lemma 4.4. For z ‹ P FixpT q, λ k Ps0, 1 α r, we have

~~z k`1 ´z‹ ~~2 ď ~~z k ´z‹ ~~2 ´λk p 1 α ´λk q~~e k ~~2 `ν1 λ k ~~ε k ~~.
Proof. Proposition 2.1(i) implies that ~~z k ´T z k ~~2 " α 2 ~~z k ´Rz k ~~2 for some non-expansive operator R. Therefore, using [3, Corollary 2.14] we get

~~z k`1 ´z‹ ~~2 ď `~~T k z k ´z‹ ~~`λ k ~~ε k ~~˘2 ď p1 ´αλ k q~~z k ´z‹ ~~2 `αλ k ~~Rz k ´z‹ ~~2 ´αλ k p1 ´αλ k q~~z k ´Rz k ~~2 `ν1 λ k ~~ε k ~ď ~~z k ´z‹ ~~2 ´λk p 1 α ´λk q~~e k ~~2 `ν1 λ k ~~ε k ~~.
Denote ν 2 " 2 sup kPN ~~e k ´ek`1 ~~.

Lemma 4.5. For λ k Ps0, 1 α r, the sequence pe k q kPN obeys ~~e k`1 ~~2 ´ν2 ~~ε k ~~ď ~~e k ~~2 .

Proof. Using Lemma 4.3, we get

~~e k`1 ~~2 "~~e k ~~2 ´2x xe k , e k ´ek`1 y y `~~e k ´ek`1 ~~2 ď~~e k ~~2 ´1 ´αλ k αλ k ~~e k ´ek`1 ~~2 `ν2 ~~ε k ~ď~~e k ~~2 `ν2 ~~ε k ~~.

Proofs of main results

Proof of Theorem 2.2

(i) This is an adaptation of [15, Lemma 5.1].

(ii) piq implies that ~~e k ~~and ~~z k ´z‹ ~~are bounded, since pλ k ~~ε k ~~q kPN P ℓ 1 `, therefore, ν 1 and ν 2 are bounded constants. Then from Lemma 4.5, @j ď k, ~~e k ~~2 ´ν2 ř k´1 ℓ"j ~~ε ℓ ~~ď ~~e j ~~2 .

Inserting this in Lemma 4.4, and summing up over j, we get

ř k j"0 τ j ~~e k ~~2 ď d 2 0 `ν1 ř k j"0 λ j ~~ε j ~~`ν 2
ř k j"0 τ j ř k´1 ℓ"j ~~ε ℓ ~~, (12) whence we obtain pk`1qτ ~~e k ~~2 ď d 2 0 `ν1 ř k j"0 λ j ~~ε j ~~`ν 2 τ ř k´1 ℓ"0 pℓ`1q~~ε ℓ ~~.

Assumption 7 then yields the bound (8).

(iii) 1 2α ď λ k ď sup kPN λ k ă 1 α is non-decreasing implies that τ k is non-increasing. Hence from [START_REF] Monteiro | Complexity of variants of Tseng's modified FB splitting and Korpelevich's methods for hemivariational inequalities with applications to saddle-point and convex optimization problems[END_REF], we get [START_REF] Bot | Convergence analysis for a primal-dual monotone+ skew splitting algorithm with applications to total variation minimization[END_REF]. Proof of Theorem 2.4 From the update formula of u k`1 i , we get γ ´1x k ´∇f px k q ´γ´1 p< i ω i u k`1 i q `γ∇f p< i ω i u k`1 i q P ř i Bh i pu k`1 i q `∇f p< i ω i u k`1 i q .

Since Id ´γ∇f P Ap γ 2β q (Lemma 4.2), hence nonexpansive, and using Theorem 2.2 (iii), we arrive at

g k `∇f p< i ω i u k`1 i q ďγ ´1 x k ´ři ω i u k`1 i ďγ ´1~~x k ´uk`1 ~"γ ´1~~e k ~~ď 1 γ d d 2 0 `C2 τ k pk `1q
.

Proof of Theorem 2.5 Owing to Theorem 2.4, we get ḡk `∇f p< i ω i ūk i q ďγ ´1 xk ´ři ω i ūk i ď γ ´1~~x k ´ū k ~ďγ ´1~~ē k ~~ď 2pd 0 `C3 q{pγΛ k q.

Fig. 1 .

 1 Fig. 1. Observed rates and theoretical bounds for the GFB applied to the PCP problem.

Fig. 2 .

 2 Fig. 2. Left: Original frames of a video (436 384 ˆ288-pixel frames). Middle and Right: recovered background (low-rank) and foreground (sparse) components.
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 23 Nonexpansiveness of T k implies ~~z k`1 ´z‹ ~~ď ~~z 0 ´z‹ ~~`ř k j"0 λ j ~~ε j ~~.Combining this with the definition of ēk , we arrive at ~~ē k ~~ď 1 Λ k p~~z 0 ´zk`1 ~~`ř k j"0 λ j ~~ε j ~~q ď 2pd 0 `C3 q{Λ k .

  ~~2 ď x xe k ´εk , e k ´ek`1 y y.~~12α Eppq ´1 2α Epqq~~2 ď x xp ´q, 1 2α Eppq ´1 2α Epqqy y, substituting z k and z k`1 for p, q yields the result.Denote ν 1 " 2 sup kPN ~~T k z k ´z‹ ~~`sup kPN λ k ~~ε k ~~.

	1 2α pId ´T q " 1 2 pId `p´Rqq.
	Lemma 4.2. If the operator B is β-cocoercive, β ą 0, then Id ´γB P Ap γ 2β q, with γ Ps0, 2βr.
	Proof. This is Baillon-Haddad theorem, see e.g., [3, Proposi-
	tion 4.33].
	Lemma 4.3. For e k , the following inequality holds
	1 2αλ k ~~e k ´ek`1 Proof. Let E : H Ñ H, z Þ Ñ pId ´T qz, then 1 2α E " 1 2 `Id `p´Rq ˘P Ap 1 2 q (Lemma 4.1), and thus @p, q P H,