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This work focuses on the structural and electrical characterization of La–Ni–O coatings deposited by reactive

magnetron sputtering using Plasma Emission Monitoring (PEM) which allows high deposition rate. The optimal

regulation setpoint for lanthanumdeposition is determined and then the current dissipated on the nickel target is

adjusted to obtain the convenient La/Ni ratio to achieve the K2NiF4 structure. After an appropriate annealing

treatment, all coatings exhibit crystalline structures that depend on the La/Ni ratio. Some cracks appear on sam-

ples deposited on alumina substrates depending to the argon flow rate and influence their electrical behavior.

1. Introduction

It is well known that the short life time and the high cost of the

components of nowadays Solid Oxide Fuel Cells (SOFC) are induced

by their high operating temperature (1273 K). The challenge, that

many researches try to face with, is to reduce this operating temper-

ature below 1073 Kwhilemaintaining the fuel cell performances (IT-

SOFC). However at low operating temperature, the electrocatalytic

activity of the standard cathode (lanthanum strontium oxide such

as LSM: La1 − xSrxMnO3) decreases, leading to high overpotential

and reduced power density. These lanthanum strontium oxides

have also been involved in the formation of secondary phases at

the interface with the YSZ electrolyte (La2Zr2O7 or SrZrO3) leading

to degradation in cell performance. So there is a need to develop

new cathode materials that will operate at low temperature with

high reliability and chemical stability. Amongst others, A2MO4+ δ

compounds with K2NiF4 structure have recently been investigated

as promising substitutes for LSM. Indeed, these materials are mixed

ionic and electronic conductors (MIECs) that moreover exhibit rath-

er high electrocatalytic properties. It could then be attempted to syn-

thesize them as dense materials for SOFC cathodes. A specific

attention was focused on lanthanum nickelate La2NiO4+ δ because

it exhibits convenient electrochemical characteristics [1–5]. Its thermal

expansion coefficient (TEC) is very close to those of themost commonly

used electrolyte materials (13 · 10−6 K−1 [2], 11.9·10−6 K−1 and

11.6·10−6 K−1 for La2NiO4+ δ, CeO2–Gd2O3 (CGO) and ZrO2–Y2O3

(YSZ) respectively). Moreover, its TEC value is very close to the one re-

corded for ferritic steel interconnect materials (11.0–12.5·10−6 K−1)

[9] which are essential in the last generation metal supported SOFC

stack. Its oxygen surface exchange coefficient (k) and oxygen diffusion

coefficient (D*) are interesting and seem much better than those of

LSM and La1 − xSrxCo1 − yFeyO3 (LSCF), the most commonly used

cathodes (Table 1).

La2NiO4 coatings have already been produced in our laboratory

implementing conventional reactive magnetron sputtering [10]. In this

study, we investigate the feasibility of producing thin and dense

La2NiO4+ δ coatings as performed in the literature [11–13] by reactive

magnetron sputtering under unstable conditions using Plasma Emission

Monitoring (PEM) [14,15]. This technique is assumed to allow the depo-

sition of oxide coatingswith high sputtering rate. Four point probe elec-

trical analyses were performed on annealed lanthanum nickelate films

in static air at room temperature and in the temperature range from

293 to 1273 K every 25 K. On the one hand,measurements were carried

out after 60 min stabilization in order to follow the effect of the as-

deposited sample crystallization. On the other hand, the electrical con-

ductivity is followed after 20 min stabilization for K2NiF4 structure's

samples.
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2. Experimental details

2.1. Deposition device

The experimental deposition device is a 100 L Alcatel SCM 650

sputtering chamber pumped down via a system combining XDS35i

Dry Pump and a 5401CP turbo-molecular pump. The sputtering cham-

ber is equipped with three 200 mm in diameter magnetron targets

and with a 620 mm in diameter rotating substrate holder parallel to

the targets at a distance of about 110 mm. The La and Ni targets were

supplied with a pulsed DC Advanced Energy dual generator allowing

the control of the discharge current. The discharge current was fixed

at 2.5 A on the La target and was varied on the Ni target to obtain the

convenient composition of the K2NiF4 structure. The substrates were

made of alumina and YSZ pellets as well as glass slides positioned on

the substrate holder at 170mm from its center point. Argon and oxygen

flow rates were controlled with Brooks flowmeters and the pressure

was measured using a MKS Baratron gauge. The deposition stage was

monitored using a closed loop control PEM (Plasma Emission Monitor-

ing) system relying on an optical emission spectroscopy device (OES)

[15,16]. This technique is based on the measurement of the optical in-

tensity of the 394.91 nm La emission line (ILa⁎) emitted from a volume

near the target. The signal is collected through an optical fiber and di-

rected to a Ropper Scientific SpectraPro 500i spectrometer, with a

1200 groove mm−2 grating and a photomultiplier tube (Hamamatsu

R 636). Then, the information is transferred to a computer where a

homemade software developed with Labview® monitors the oxygen

flow rate to maintain the intensity of the optical signal ILa⁎ at a fixed

value.

2.2. Structural, morphological and optical characterizations

Themorphology of the coatingswas characterized by Scanning Elec-

tronMicroscopy (SEM) using a JEOL JSM 5800 LV equippedwith Energy

Dispersive Spectroscopy (EDS) for chemical measurements. The struc-

tural features of the coatings were identified in Bragg–Brentano config-

uration X-ray diffraction using a BRUKER D8 focus diffractometer

(CoKα1 + α2 radiations) equipped with the LynxEye linear detector.

XRD patterns were collected at room temperature during 10 min in the

[20°–80°] scattering angle range by steps of 0.019°. The coating thickness

was determined using the “step” method (a small surface of the sub-

strate is covered with a tape that is removed after deposition leaving a

step due to the coating thickness) with an Altysurf profilometer from

Altimet allowing an accuracy of about 20 nm. Before eachmeasurement,

the calibration of the experimental device was realized with a reference

sample number 787569 accredited by CETIM, France.

The optical transmittance measurements were performed with a

UV–visible-NIR Shimadzu UV-3600 Spectrophotometer controlled by

UV probe 2.33 software. All measurements were carried out on glass

substrates between 380 and 780 nm.

2.3. Electrical measurements

The electrical resistivity measurements were performed with a HP

3458A multimeter on La–Ni–O films deposited on alumina substrates.

With regard to its high insulating character, it is assumed in the follow-

ing that the substrate has no significant contribution to the electrical

conductivity. The four-point-probe technique with four Pt aligned elec-

trodes was used. Two outer probes behaved as the current-carrying

electrodes (I1, I2) and the two inner ones were used to measure the

voltage (E1, E2). Two cell configurations were used for the measure-

ments: cell 1 was used to define the resistivity at room temperature

(Jandel, Linslade, UK). It is a standard and certified cell allowing the ac-

curate determination of the geometric factor. The second cell developed

by the LEPMI laboratory (Grenoble, France) allows measurements at

various temperatures. The cell is placed inside an alumina tube and po-

sitioned into a furnace (Pekly, Thions Gardais, France). The comparison

of the resistance measured at room temperature with cell 1 and cell 2

was used to determine the geometric factor of cell 2.

Table 1

Surface exchange (k) and oxygen diffusion coefficients (D*) for different cathode

materials.

D* (700 °C) k (700 °C)

La2NiO4 3.4 · 10−8 [2], 1.6 · 10−8 [6],

5.0 · 10−8 [7]

1.7 · 10−7 [2], 1.3 · 10−7 [6],

2.0 · 10−6 [7]

LSM 3.2 · 10−16 [8] 1.0 · 10−9 [8]

LSCF 3.2 · 10−9 [7], 7.2 · 10−9 [8] 1.0 · 10−7 [7], 6.1 · 10−7 [8]

Fig. 1. Optical transmission vs. wavelength of La2O3 coatings deposited with 20 or 50 sccm Ar.



3. Result and discussion

3.1. Determination of the optimal regulation setpoint

In DC or pulsed DC mode, the optical signal of the sputtered metal

atoms IM⁎measured by OES in a pure Ar atmosphere varies as the square

function of the discharge current [18,19]. When oxygen gas is intro-

duced into the discharge, a hysteresis loop appears on the oxygen par-

tial pressure versus oxygen flow rate curve related to the instability of

the sputtering conditions. So, the transition between the fast metallic

and the slow ceramic deposition rates occurs suddenly. The Plasma

EmissionMonitoring (PEM) system allows the deposition of oxide coat-

ings in these unstable sputtering conditions byfixing the intensity of the

plasma emission line of the metallic atoms sputtered from the target

with a closed loop as previously detailed in [14]. Indeed, PEM is a very

suitable technique to allow high growth rate of oxide coatings [14,20].

As the main element of La2NiO4 is La, the PEM control was performed

on the La target at a fixed 2.5 A discharge current in order to deposit

coatingswith high sputtering ratewithout consuming toomuch the tar-

get. In the first set of experiments, the optical emission signal collected

in pure argon atmosphere was allocated to 100%. Then, the PEM

setpoint ILa⁎ was varied from 30 to 80% in order to deposit transparent

coatings.

Fig. 1 shows the evolution of the optical transmission of La–O coat-

ings deposited at 2.5 A applied on the La target for various Ar flow

rates and regulation setpoints. For coatings deposited with 20 sccm Ar

flow rate, a regulation setpoint fixed at 40% produces an unattenuated

optical signal, which reveals the transparency (low extinction coeffi-

cient k) of the coating. The optical signal value is between 75 and 90%,

the latter value is similar to the one recorded for glass. Moreover, the

optical transmission signal is more and more attenuated for higher

setpoints. In a previous study dedicated to the optical emission spec-

troscopy study of the deposition of TiO2 [16], it was shown that increas-

ing the setpoint decreases the coating transparency and then the

stoichiometry of the coating. Indeed, the sputtered flow of metal

atoms increases with the setpoint, which was associated with a reduc-

tion of the oxygen partial pressure in the reactor. Higher Ar flow rate in-

duces higher total pressure in the device and then theoretically less

dense andmore columnar coatingswith lower deposition rate. Such be-

havior means that the La–O based film is fully oxidized for setpoints

lower than 40% and sub-stoichiometric for higher setpoints. Indeed, as

shown by Briois et al. for YSZ coatings characterized by spectrophotom-

etry and EPMA, transparent coatings are fully oxidized [21]. By increas-

ing the Ar flow rate at 50 sccm, the transition between stoichiometric

and under-stoichiometric oxide deposits appears at higher setpoints

(i.e. 70%). The choice of the optimal setpoint must also be guided by

the deposition rate of the coatings. Fig. 2 shows that the deposition

rate is varying linearly with the setpoint values. A deposition rate

around 0.65 μm/h is achieved at a setpoint of 30% whatever the Ar

flow rate whereas if the setpoint is doubled it is of 1.6 and 0.9 μm/h

for 20 and 50 sccm, respectively. By increasing the Ar flow rate, the de-

position rate becomes less sensitive to the variation of the regulation

setpoint. A setpoint of 50% was then chosen for the 20 sccm Ar flow

rate flow rate because it presents a good compromise between deposi-

tion rate and stoichiometry of the coating. In addition, the difference be-

tween the atomic radii of La (187 pm) and Ni atoms (124 pm) would

probably lead during the deposition of the cathode layer to an amor-

phous coating because of the confusion principle. This phenomenon im-

poses the realization of a crystallization annealing treatmentwhichmay

saturate the film. For higher Ar flow rate (i.e. 50 sccm), the differences

between the deposition rates at 70% and 80% are not significant enough.

So the coatingswill be depositedwith the conditions allowing the depo-

sition of a transparent coating (i.e. 70% setpoint).

3.2. Elaboration of La–Ni–O coatings

The experimental parameters for the synthesis of the films are sum-

marized in Table 2. The coatings are deposited by the co-sputtering of La

and Ni targets in Ar–O2 mixtures for which the oxygen flow rate is con-

trolled by the PEM system. Fig. 3 presents the metallic La/Ni ratio

Fig. 2. Deposition rate of La2O3 coatings as a function of I⁎La for 20 and 50 sccm Ar.

Table 2

Main deposition conditions of the study.

Ar flow rate = 20 sccm Ar flow rate = 50 sccm

Total pressure (Pa) 0.30 0.44

Setpoint (%) 50 70

Oxygen flow rate (sccm) 5.5–6.2 4.5–4.9

Run duration (h) 1 h 30 min–2 h 2 h–2 h 20 min

Discharge current for La (A) 2.5 2.5

Frequency (Hz) — toff (μs) 50–5 50–5

Discharge current for Ni (A) 0.25–0.45 0.55–0.65

Frequency (Hz) — toff (μs) 50–5 50–5



determined by EDS analyses versus the discharge current applied to the

Ni target while the La target current is fixed at 2.5 A. EDS measurement

is sufficiently accurate to determine the cationic composition of thin

films because this technique iswell adapted tomeasure heavy elements

as shown elsewhere [21]. For both Ar flow rates, the metallic ratio de-

creases linearly with the increase of the current. In addition, a higher

current is needed to deposit the same metallic ratio at high Ar flow

rate. To obtain the La2NiO4 composition a current discharge of 0.3 and

0.57 A with 20 and 50 sccm Ar flow rates (1.94 and 2.04 La/Ni ratio)

must be supplied, respectively. The linear evolution of the composition

with the current applied on the Ni target reveals that the oxygen flow

rate is sufficient to deposit a ceramic instead of ametallic layer. The reg-

ulation ensures then a constant oxidation rate of the La target and sub-

sequently a constant sputtering rate of the La atoms. As expected, XRD

performed on as-deposited samples shows the presence of an amor-

phous structure whatever the composition. In order to crystallize the

La2NiO4 phase, different annealing temperatures (973 K–1273 K for

2 h) were tested in a previous study [22] with samples presenting that

a La/Ni ratio of about 2. 1173 K for 2 hwas found to be the optimal ther-

mal treatment. It has to be noticed that these coatings are annealed at

higher temperature than those deposited with stable sputtering condi-

tions [10]. Fig. 4 presents the XRD patterns of annealed coatings

Fig. 3. Evolution of atomic composition ratio La/Ni measured by EDS as a function of current dissipated on the Ni target for different Ar flow rates ( ILa = 2.5 A).

Fig. 4. XRD spectra as a function of La/Ni metallic ratio for 20 sccm and 50 sccm Ar flow rates after annealing at 1173 K for 2 h. JCPDS files: 00-033-0710, 00-050-0243, 01-071-1126, 01-

083-1344, 01-089-3460.



elaborated at 20 (Fig. 4a) and 50 sccm (Fig. 4b) of Ar flow rates and var-

ious discharge currents, which means various atomic La/Ni ratios. The

crystalline structure of the La–Ni–O coatings evolves with the metallic

ratios. When the Ni content is high (La/Ni ratio below 1.5, see Fig. 4b),

coatings crystallize mainly in the LaNiO3 structure. By decreasing the

Ni content (La/Ni ratio between 1.5 and 2), a mixture of phases is iden-

tified that includes LaNiO3, La4Ni3O10 and La2NiO4. La2NiO4 is the only

phase identified for the coatings elaborated with ratios around 2 (1.91

and 1.94 at 20 sccm 2.04 and 2.17 at 50 sccm). For a La/Ni ratio superior

to 2, the diffraction peaks are moved to the lowest angles, implying an

increase of the lattice parameter due to an excess of La in which atomic

radius is bigger than the Ni one.When La2NiO4 phase is oxygen saturat-

ed, La2O3 is crystallizing. These results are in agreementwith the La–Ni–

O phase diagram in air [23]. Same behavior is noticed for both Ar flow

rates studied in this work. However, increasing the Ar flow rate seems

to enhance the crystallization but the coating appears to be oriented

along the (113) crystallographic plane.

Morphological features were observed by SEM on the surfaces of

the coatings (Fig. 5) and on the brittle-fracture cross sections (Fig. 6)

of as-deposited and annealed coatings. The observation of the sur-

face of the as-deposited films (Fig. 5a and c) reveals an adherent

and covering filmwith a topmorphology reproducing that of the alumi-

na substrate. These coatings are then conformal. This observation is

confirmed by the arithmetic roughness measurements (Ra) of the sam-

ples before and after deposits which are 0.49 ± 0.01 μm and 0.51 ±

0.01 μm respectively. The good adherence of these films is pointed out

by the observation of the cross section of the films (Fig. 6) which also

denotes a slightly columnar aspect. The thickness of these films is in

Fig. 5. SEM view of surface of samples deposited on alumina substrate with 20 sccm (a, b) and 50 sccm (c, d) Ar as-deposited (a, c) and annealed in air for 2 h at 1173 K (b, d)with La2NiO4

structure. View of a coating deposited at 50 sccm Ar on YSZ after annealing (e).

Fig. 6. Brittle fracture cross section of samples deposited with 20 sccm (a, b) and 50 sccm (c, d) Ar on alumina substrate as-deposited and annealed in air for 2 h at 1173 K with La2NiO4

structure. Cross section of a coating deposited at 50 sccm Ar on YSZ after annealing (e).



good agreementwith 3Dmeasurements (i.e.≈3.5 μm). The crystalliza-

tion thermal treatment allows the densification of the coatings (Fig. 6b

and d) but some cracks appear on the surface (Fig. 5b and d). These

cracks are more visible on the films deposited with an Ar flow rate of

20 sccm (Fig. 5b) than 50 sccm (Fig. 5d). Indeed, a lower pressure

causes a higher coating density, which increases the mechanical strains

due to the different thermal expansion coefficients between the film

and the substrate during the annealing treatment at high temperature.

Alumina TEC is much lower than the coating one, 7 and 13 · 10−6 K−1

respectively. Cracking of films could then happen during cooling. In

order to check this hypothesis, films were synthesized on YSZ sub-

strates (conventional material of SOFC electrolytes) in which TEC is

around 11 · 10−6 K−1, closest to the coating one as compared to alumi-

na. The surface and cross section observations after the thermal treat-

ment for the coatings realized with Ar flow rate of 50 sccm show no

cracks, which is favorable for the SOFC materials commonly used

(Figs. 5e and 6e).

3.3. Electrical analyses

In order to assess the effect of the crystallization on the sample con-

ductivities, electrical measurements were performed implementing a

four point probemethod on as-deposited samples presenting a metallic

ratio of about 2 as reported in Fig. 7. Changes in the resistance versus

temperature curve slopes are clearly identified on this graph and in-

volve structural, microstructural or chemical modifications of the

films. The correlation with XRD measurements performed on the sam-

ples deposited with 50 sccm Ar after annealing at increasing tempera-

tures [22] shows that amorphous coatings are highly resistive and that

the coating resistance decreases with its crystallization. During the in-

crease in temperature, different crystallographic phases appear. La2O3

and La4Ni3O10 orthorombic phases are the first phases to crystallize.

La2NiO4 tetragonal phase starts to crystallize from 1123 K [22]. More-

over, the crystallization seems to occur at lower temperature for the

sample deposited with 50 sccm of Ar flow rate.

In order to determine the characteristics of the well-crystallized

films, samples were annealed at 1173 K for 2 h under air before

performing the electrical measurements. The resistivity of the annealed

coatings as a function of their La/Ni ratio at room temperature (286 K)

and after 20 min stabilization at 973 K is reported in Table 3. The in-

crease of the Ni content in the samples permits to obtain the highest

conductivities. As expected, the most favorable behavior is obtained

for the samples which crystallized mainly as a perovskite LaNiO3 struc-

ture. However the La2NiO4 structure presents reasonable conductivities.

For the samemetallic ratios and also the same structure (La/Ni = 1.69–

1.75 and1.95–2.04), the electrical conductivity of the samples deposited

with 50 sccm Ar is higher than with 20 sccm at 973 K. This difference is

certainly due to the presence of cracks on the surface of the samples de-

positedwith 20 sccmAr. There is probably no effect of the density of the

coatings because the four point probe technique takes place only on the

surface of the samples and not through its thickness.

Samples with a La/Ni ratio of about 2, whichmeans a La2NiO4 struc-

ture after annealing 2 h at 1173 K, were especially studied from 293 to

1273 K after 20 min stabilization at each temperature (Fig. 8). The con-

ductivity of these samples increases with temperature and tends to be

stabilized over 773 K. The electrical behavior of the corresponding

bulk materials is quite different. The conductivity of these samples in-

creases up to a temperature around 773 K and decreases at higher tem-

peratures. This diminution is explained by an oxygen loss in the

structure of the bulk materials [2,3,17]. Consequently, it could be as-

sumed that oxygen stoichiometry of thin layers seems to be less sensi-

tive to temperature. Fig. 8 highlights that the electrical conductivity of

the films (30–60 S·cm) is in the same order of magnitude than the

one of bulk materials in SOFC application domain. As explained before,

samples deposited with 20 sccm and 50 sccm Ar flow rates present dif-

ferent conductivities certainly induced by the presence of cracks but

their different crystallographic orientations may also assume a role in

their electrical behavior. Electrical tests were also repeated for several

cycles during the heating and the cooling stages of the sample deposited

Fig. 7. Resistance of as deposited coatings of La2NiO4 composition deposited with 20 sccm (La:Ni = 1.94) or 50 sccm Ar (La/Ni = 2.04) as a function of the annealing temperature.

Table 3

Resistivity of La–Ni–O crystallized samples with different Ar flow rates.

Ar flow rate Samples' conductivity at room temperature and at

700 °C (S·cm)

La/Ni ratio

1.25 1.41 1.57 1.69 1.75 1.95 2.04 2.32 2.49

20 sccm 293 K 275.5 116.2 10.9 2.3 0.01

973 K 295.0 157.7 45.4 43.5 27.5

50 sccm 293 K 144.0 16.2 2.2 0.06

973 K 292.3 62.3 52.2 22.1



with 50 sccm Ar flow rate. All the tests showed the same electrical be-

havior with quite the same electrical conductivity values.

5. Conclusion

La–Ni–O coatings were deposited by magnetron sputtering on

different substrates by co-sputtering of La and Ni metallic targets in

the presence of reactive argon–oxygen mixture gas. The use of a

closed loop control which consists of controlling the introduced re-

active gas flow rate in order to fix the system in unstable sputtering

domain allows obtaining optimal deposition rates under chosen op-

erational conditions. As-deposited coatings with La/Ni ratios of

about 2 are amorphous and crystallize under a tetragonal La2NiO4

phase after an annealing treatment at 1173 K for 2 h under air. A

higher Ar flow rate, i.e. a higher pressure, coupled with a lower

setpoint allows minimizing the crack formation during the treat-

ments and leading thus to a higher electrical conductivity. La2NiO4

coatings present an electrical conductivity of 30–60 S·cm in the tem-

perature range for intermediate temperature solid oxide fuel cells

(873–1073 K). These values are in the same order of magnitude

than the values reported for bulk samples in the literature.
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