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2 LINA / Université de Nantes, Nantes, France

Abstract. Estimating the frequency of any piece of information in large-
scale distributed data streams became of utmost importance in the last
decade (e.g., in the context of network monitoring, big data, etc.). If some
elegant solutions have been proposed recently, their approximation is com-
puted from the inception of the stream. In a runtime distributed context,
one would prefer to gather information only about the recent past. In
this paper, we consider the sliding window functional monitoring model
and propose two different (on-line) algorithms that (ε, δ)-approximate
the items frequency in the active window. They use a very small amount
of memory with respect to the size of the window N and the number
of distinct items n of the stream: namely O( 1

ε
log 1

δ
(logN + log n)) and

O( 1

τε
log 1

δ
(logN + log n)) bits of space, where τ is a parameter limiting

memory usage. We also provide their distributed variant with a communi-
cation cost of O( k

ε2
log 1

δ
logN) bits per window (where k is the number

of nodes). Experiments on synthetic traces and real data sets validate
the robustness and accuracy of our algorithms.

1 Introduction and Related Work

In large distributed systems it is most likely critical to gather various aggregates
over data spread across multiple nodes. This can be modelled by a set of nodes,
each observing a stream of items, collaborating to continuously track a function
over the global distributed stream. For instance, current network management
tools analyse the input streams of a set of routers to detect malicious sources
or extract user behaviours [2,14,20]. The main goal is to evaluate such function
minimizing the communication cost, the space used at each node, as well as the
update and query time. Usually, solutions proposed so far are focused on com-
puting functions or statistics using ε or (ε, δ)-approximations in poly-logarithmic
space over the size m and number of distinct items n of the stream.

In the data streaming model, results have been shown for estimating the
number of distinct data items in a stream [4,17], frequency moments [1], most
frequent data items [18], frequency estimation [9,10] or information divergence
over streams [2]. Cormode et al. [11] propose solutions for frequency moments
estimation in the functional monitoring model. In most applications, computing
such function from the inception of the distributed streams is useless. Only the
most recent data may be relevant: the function has to be evaluated over a sliding
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window of size N . Datar et al. [13] introduced the sliding window concept in
the data streaming model presenting the exponential histogram algorithm that
provides an ε-approximation for basic counting. Gibbons and Tirthapura [15]
presented an algorithm matching the results of [13], based on the waves data struc-
ture. However they achieve constant processing time and provide extensions for
distributed streams. Arasu and Manku [3] studied the problem of ε-approximating
counts over sliding windows, presenting both a deterministic and randomized
solutions achieving respectively O( 1

ε
log2 1

ε
) and O( 1

ε
log ε

δ
). In this model there

are also works on variance [21], quantiles [3] and frequent items [16]. This model
has also been applied to distributed streams [8,15]. Recently Cormode and Yi [12]
presented an optimal solution based on the backward/forward paradigm for basic
counting. Taking from [13], Gibbons and Tirthapura [15] propose also an opti-
mal algorithm for counting distinct items. Both [8] and [12] provide an optimal
solution for the heavy hitter problem with O(k

ε
log2(εN)(log2 N + log2 n)) bits

of communication.
In this paper we extend a well-known algorithm for frequency estimation,

namely the Count-Min sketch [10], in a windowed version. To our knowledge
there is no prior work addressing this problem in the sliding window functional
monitoring model, neither local nor distributed. Note that related problems are
the identification or estimation of the most frequent items (usually called heavy hit-
ters) and approximate counts. To be self-contained, we describe the computational
model and some necessary background in Section 2. In Section 3 we propose two
novel (ε, δ)-approximations, achieving respectively O( 1

ε
log2

1
δ
(log2 N + log2 n))

and O( 1
τε

log2
1
δ
(log2 N+log2 n)) bits of space, where τ is an additional parameter

limiting memory usage (see Section 3.4). Section 3.5 presents their application to
distributed data streams with a communication cost of O( k

ε2
log2

1
δ
log2 N) bits

per window. The efficiency of both algorithms is analysed and Section 4 presents
an extended performance evaluation of the estimation accuracy of our algorithms,
with both synthetic traces and real data sets.

2 Preliminaries and Background

2.1 Data Streaming Model

We present the computation model under which we analyse our algorithms and
derive bounds: the functional monitoring model [11]. We consider a set of k nodes
u1, . . . , uk where each node uℓ receives a massively long input stream σℓ, that is,
a sequence of elements 〈a1, a2, . . . , am〉 called samples. Samples are drawn from
a universe [n] = {1, 2, . . . , n} of items. We have implicitly defined the size (or
length) of the stream as m and the size of the universe (or number of distinct
items) of the stream as n. Streams do not have to contain the same items and/or
with the same number of occurrences. Each sequence can only be accessed in
its given order (no random access). The targeted function must be computed
in a single pass (on-line) and continuously. Furthermore, nodes are not aware
of the length of the stream m. They may interact with a specific node called
coordinator, but do not communicate with each other.
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In order to reach these goals, we rely on randomized algorithms. Such an
algorithm A is said to be an (ε, δ)-approximation of a function φ on σ if, for any

sequence of items in the input stream σ, A outputs φ̂ such that P{| φ̂ − φ |>
εφ} < δ, where ε, δ > 0 are given as precision parameters. The interested reader
is invited to read the extensive overview published by Muthukrishan in [19].

On the other hand, we are interested in the “recently observed” samples,
that is, the sliding window model formalized by Datar et al. [13]. In this model
samples arrive continuously and expire after exactly N steps. A step can be
defined either as a time tick or a sample arrival, and we say that the window
is time-based or count-based. In the following we deal with count-based sliding
windows, where the window contains exactly N samples. With respect to sliding
windows, hopping windows split the window into sub-windows; the window moves
forward only when the most recent sub-window is completed. The challenge
consists in achieving this computation in sub-linear space and communication in
N and n.

2.2 Vanilla Count-Min Sketch

A relevant problem is the frequency estimation problem. A stream σ implicitly
defines a frequency vector f = (f1, . . . , fn), where fj represents the number of

occurrences of item j in σ. The goal is to provide an estimate f̂j of fj for each
item j ∈ [n] of the stream.

Cormode and Muthukrishnan have introduced in [10] the Count-Min sketch

that provides, for each item j in a stream, an (ε, δ)-approximation f̂j of the
frequency fj . This algorithm leverages collections of 2-universal hash-functions.
Recall that a collection H of hash functions h : [M ] → [M ′] is said to be 2-
universal if for every 2 distinct items x, y ∈ [M ], Ph∈H{h(x) = h(y)} ≤ 1

M ′
, that

is, the collision probability is as if the hash function assigns truly random values
to any x ∈ [M ]. Carter and Wegman provide an efficient method to build large
families of hash functions approximating the 2-universal property [7].

The Vanilla Count-Min sketch (Listing 2.1) consists of a two dimensional
count matrix of size c1 × c2, where c1 =

⌈

log2
1
δ

⌉

and c2 =
⌈

e
ε

⌉

. Each row is
associated with a different 2-universal hash function hi : [n] → [c2]. When it
reads sample j, it updates each row: ∀i ∈ [c1], count[i, hi(j)]← count[i, hi(j)]+1.
That is, the cell value is the sum of the frequencies of all the items mapped to
that cell. Since each row has a different collision pattern, upon request of f̂j′ we
want to return the cell associated with j′ minimizing the collisions impact. In
other words, the algorithm returns, as fj′ estimation, the cell associated with j′

with the lowest value: f̂j′ = min1≤i≤c1{count[i][hi(j
′)]}. The space complexity

of this algorithm is O( 1
ε
log2

1
δ
(log2 m + log2 n)) bits, while update and query

time complexities are O(log2 1/δ). Concerning its accuracy, the following quality

bound holds: P{| f̂j − fj |≥ ε(m− fj)} ≤ δ, while fj ≤ f̂j is always true.

Listing 2.1: Count-Min Sketch

1: init do
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2: count[1 . . . c1][1 . . . c2]←
#»

0
3: Choose c1 independent hash functions h1 . . . hc1 : [n]→ [c2] from
4: a 2-universal family.
5: end init
6: upon 〈Sample | j〉 do
7: for i = 1 to c1 do
8: count[i][hi(j)]← count[i][hi(j)] + 1
9: end for

10: end upon
11: function getFreq(j) ⊲ returns f̂j
12: return min{count[i][hi(j)] | 1 ≤ i ≤ c1}
13: end function

3 Windowed Count-Min

The Count-Min algorithm solves brilliantly the frequency estimation problem
in the data stream model. We propose two extensions to the sliding window
model: Proportional and Splitter. Nevertheless, we first introduce two naive
algorithms, which enjoy optimal bounds with respect to accuracy (algorithm
Perfect) and space complexity (algorithm Simple). Note that in the following
fj is redefined as the frequency of item j in the last N samples.

3.1 Perfect Windowed Count-Min

Perfect (Listing3.1) provides the best accuracy by dropping the complexity
space requirements: it trivially stores the whole active window in a queue. When
it reads sample j, it enqueues j and increases all the count matrix cells associated
with j. Once the queue reaches size N , it dequeues the expired sample j′ and
decreases all the cells associated with j′. The frequency estimation is retrieved
as in the Vanilla Count-Min (cf. Section 2.2).

Listing 3.1: Perfect Windowed Count-Min

1: init do
2: count[1 . . . c1][1 . . . c2]←

#»

0
3: Choose c1 independent hash functions h1 . . . hc1 : [n]→ [c2] from
4: a 2-universal family.
5: samples← ∅ queue of samples
6: end init
7: upon 〈Sample | j〉 do
8: for i = 1 to c1 do
9: count[i][hi(j)]← count[i][hi(j)] + 1

10: end for
11: enqueue j in samples
12: if | samples |> N then
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13: j′ ← dequeue from samples
14: for i = 1 to c1 do
15: count[i][hi(j

′)]← count[i][hi(j
′)]− 1

16: end for
17: end if
18: end upon
19: function getFreq(j) ⊲ returns f̂j
20: return min{count[i][hi(j)] | 1 ≤ i ≤ c1}
21: end function

Theorem 1. Perfect is an (ε, δ)-approximation of the frequency estimation

problem in the sliding windowed functional monitoring model where P{| f̂j−fj |≥

ε(N − fj)} ≤ δ, while fj ≤ f̂j is always true.

Proof. Since the algorithm stores the whole previous window, it knows exactly
which sample expires in the current step and can decrease the associated counters
in the count matrix. Then Perfect provides an estimation with the same error
bounds of a Vanilla Count-Min executed on the last N samples of the stream.

⊓⊔

Theorem 2. Perfect space complexity is O(N) bits, while update and query
time complexities are O(log2

1
δ
).

Proof. The algorithm stores N samples, which leads to a space complexity of
O(N) bits, assuming that N = ω( 1

ε
log2

1
δ
(log2 N + log2 n)). An update requires

to enqueue and dequeue two samples (O(1)), and to manipulate a cell on each
row. Thus the update time complexity is O(log2

1
δ
). A query requires to look up a

cell for each row of the count matrix: the query time complexity is O(log2
1
δ
). ⊓⊔

3.2 Simple Windowed Count-Min

Simple (Listing3.2) is as straightforward as possible and achieves optimal space
complexity with respect to the vanilla algorithm. It behaves as the Vanilla

Count-Min, except that it resets the count matrix at the beginning of each new
window. Obviously it provides a really rough estimation since it simply drops all
information about any previous window once a new window starts.

Listing 3.2: Simple Windowed Count-Min

1: init do
2: count[1 . . . c1][1 . . . c2]←

#»

0
3: Choose c1 independent hash functions h1 . . . hc1 : [n]→ [c2] from
4: a 2-universal family.
5: m′ ← 0
6: end init
7: upon 〈Sample | j〉 do
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8: if m′ = 0 then
9: count[1 . . . c1][1 . . . c2]←

#»

0
10: end if
11: for i = 1 to c1 do
12: count[i][hi(j)]← count[i][hi(j)] + 1
13: end for
14: m′ ← m′ + 1 mod N
15: end upon
16: function getFreq(j) ⊲ returns f̂j
17: return min{count[i][hi(j)] | 1 ≤ i ≤ c1}
18: end function

Theorem 3. Simple space complexity is O( 1
ε
log2

1
δ
(log2 N +log2 n)) bits, while

update and query time complexities are O(log2
1
δ
).

Proof. The algorithm uses a counter of size O(log2 N) and a matrix of size c1×c2
(c1 = ⌈log2

1
δ
⌉ and c2 = ⌈ e

ε
⌉) of counters of size O(log2 N). In addition, for each

row it stores a hash-function. Then the space complexity is O( 1
ε
log2

1
δ
(log2 N +

log2 n)) bits. An update requires to hash a sample, then retrieve and increase a
cell for each row, thus the update time complexity is O(log2

1
δ
). We consider the

cost of resetting the matrix (O( 1
ε
log2

1
δ
)) negligible since it is done only once per

window. A query requires to hash a sample and retrieve a cell for each row: the
query time complexity is O(log2

1
δ
) ⊓⊔

3.3 Proportional Windowed Count-Min

We now present the first extension algorithm, denoted Proportional. The
intuition behind this algorithm is as follows. At the end of each window, it stores
separately a snapshot of the count matrix, which represents what happened
during the previous window. Starting from the current count state, for each new
sample, it increases the associated cells and decreases all the count matrix cells
proportionally to the last snapshot. This smooths the impact of resetting the
count matrix throughout the current window.

More formally (Listing3.3), after reading N samples, Proportional stores
the current count matrix and divides each cell by the window size: ∀i1, i2 ∈
[c1] × [c2], snapshot[i1, i2] ← count[i1, i2]/N . This snapshot represents the av-
erage step increment of the count matrix during the previous window. When
Proportional reads sample j, it increments the count cells associated with
j (∀i ∈ [c1], count[i, hi(j)] ← count[i, hi(j)] + 1) and subtracts snapshot from
count: ∀i1, i2 ∈ [c1]× [c2], count[i1, i2]← count[i1, i2]− snapshot[i1, i2]. Finally,
the frequency estimation is retrieved from count as in the vanilla algorithm.

Listing 3.3: Proportional Windowed Count-Min

1: init do
2: count[1 . . . c1][1 . . . c2]←

#»

0
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3: Choose c1 independent hash functions h1 . . . hc1 : [n]→ [c2] from
4: a 2-universal family.
5: snapshot[1 . . . c1][1 . . . c2]←

#»

0
6: m′ ← 0
7: end init
8: upon 〈Sample | j〉 do
9: if m′ = 0 then

10: for i1 = 1 to c1 and i2 = 1 to c2 do
11: snapshot[i1][i2]←

count[i1][i2]
N

12: end for
13: end if
14: for i1 = 1 to c1 and i2 = 1 to c2 do
15: if hi1(j) = i2 then
16: count[i1][i2]← count[i1][i2] + 1
17: end if
18: count[i1][i2]← count[i1][i2]− snapshot[i1][i2]
19: end for
20: m′ ← m′ + 1 mod N
21: end upon
22: function getFreq(j) ⊲ returns f̂j
23: return round{min{count[i][hi(j)] | 1 ≤ i ≤ c1}}
24: end function

Theorem 4. Proportional space complexity is O( 1
ε
log2

1
δ
(log2 N + log2 n))

bits. Update and query time complexities are O( 1
ε
log2(1/δ)) and O(log2

1
δ
).

Proof. The algorithm stores a count and a snapshot matrix, as well as a counter
of size O(log2 N). Then the space complexity is O( 1

ε
log2

1
δ
(log2 N + log2 n)) bits.

An update require to look up all the cells of both the count and snapshot, thus
the update time complexity is O( 1

ε
log2

1
δ
). A query requires to hash a sample

and retrieve a cell for each row: the query time complexity is O(log2
1
δ
) ⊓⊔

3.4 Splitter Windowed Count-Min

As one could observe in Section 4, Proportional provides quite good perfor-
mances. However the frequency distribution of the previous window is averagely
removed from the current window. Thus Proportional does not capture sudden
changes in the stream distribution. To cope with this flaw, one could track these
critical changes through multiple snapshots. However, each row of the count
matrix is associated with a specific 2-universal hash function, thus changes in
the stream distribution will not affect equally each rows.

Therefore, Splitter proposes a finer grained approach analysing the update
rate of each cell in the count matrix. To record changes in the cell update rate,
we add a (fifo) queue of sub-cells to each cell. When Splitter detects a relevant
variation in the cell update rate, it creates and enqueues a new sub-cell. This
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new sub-cell then tracks the current update rate, while the former one stores the
previous rate.

Each sub-cell has a frequency counter and 2 timestamps: init, that stores the
(logical) time where the sub-cell started to be active, and last, that tracks the
time of the last update. After a short bootstrap, any cell contains at least two
sub-cells: the current one that depicts what happened in the very recent history,
and a predecessor representing what happened in the past. ?? presents the global
behaviour of Splitter.

Splitter spawns additional sub-cells to capture distribution changes. The
decision whether to create a new sub-cell is tuned by two parameters, τ and µ, and
an error function: Error. Informally, the function Error (Listing3.5) evaluates
the potential amount of information lost by merging two consecutive sub-cells,
while µ represents the amount of affordable information loss. Performing this
check at each sample arrival may lead to erratic behaviours. To avoid this, we
introduced τ that sets the minimal length of a sub-cell before taking the sub-cell
into account in the decision process.

In more details, when Splitter reads sample j, for each cell of count it
retrieves the oldest sub-cell in the queue, denoted first (Line 10). If firstwas
active precisely N steps ago (Line 11), Splitter computes the rate at which
first has been incremented while it was active (Line 12). This value is then
subtracted from the cell counter v (Line 13) and from first counter (Line 14).
Having retracted what happened N steps ago, first moves forward increasing
its init timestamp (Line 15). Finally, first is removed if it has expired (Lines 16
and 17).

The next part handles the update of the cells associated with item j. For each
of them (Line 20), Splitter increases the cell counter v (Line 21) and retrieves
the current sub-cell, denoted last (Line 22). (a) If last does not exist, it creates
and enqueues a new sub-cell (Lines 24 to 28). (b) If last has not reached the
minimal size to be evaluated (Line 29), last is updated (Lines 30 and 31). (c)
If not, it retrieves the predecessor of last: pred (Line 33). (c.i) If pred exists
and the amount of information lost by merging is lower than the threshold µ
(Line 34), Splitter merges last into pred and renews last (Lines 35 to 39). (c.ii)
Otherwise it creates and enqueues a new sub-cell (Lines 41 to 45), i.e., it splits
the cell.

Listing 3.4: Splitter Windowed Count-Min

1: init do
2: count[1 . . . c1][1 . . . c2]←

#        »

〈∅, 0〉 ⊲ the set is a queue
3: Choose c1 independent hash functions h1 . . . hc1 : [n]→ [c2] from
4: a 2-universal family.
5: m′ ← 0
6: end init
7: upon 〈Sample | j〉 do
8: for i1 = 1 to c1 and i2 = 1 to c2 do
9: 〈queue, v〉 ← count[i1][i2]

10: first← head of queue ⊲ retrieves the oldest sub-cell
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11: if ∃first ∧ firstinit = m′ −N then ⊲ if the sub-cell was active
12: v′ ← firstcounter

firstlast−firstinit+1

13: v ← v − v′

14: firstcounter ← firstcounter − v′

15: firstinit ← firstinit + 1
16: if firstinit > firstlast then
17: remove first from queue
18: end if
19: end if
20: if hi1(j) = i2 then ⊲ handle update for sample j
21: v ← v + 1
22: last← bottom of queue ⊲ retrieves the newest sub-cell
23: if 6 ∃last then
24: last← new sub-cell
25: lastinit ← m′

26: lastlast ← m′

27: lastcounter ← 1
28: enqueues new in queue
29: else if lastcounter < τN

c2
then

30: lastlast ← m′

31: lastcounter ← lastcounter + 1
32: else
33: pred← predecessor of the last in queue
34: if ∃pred ∧ Error(pred, last) ≤ µ then ⊲ merge check
35: predlast ← lastlast
36: predcounter ← predcount + lastcount
37: lastinit ← m′

38: lastlast ← m′

39: lastcounter ← 1
40: else
41: new ← new sub-cell
42: newinit ← m′

43: newlast ← m′

44: newcounter ← 1
45: enqueues new in queue ⊲ splits the cell
46: end if
47: end if
48: end if
49: count[i1][i2]← 〈queue, v〉
50: end for
51: m′ ← m′ + 1
52: end upon
53: function getFreq(j) ⊲ returns f̂j
54: return round{min{count[i][hi(j)].v | 1 ≤ i ≤ c1}}
55: end function
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Listing 3.5: Splitter Windowed Count-Min error function

1: function Error(pred, last)
2: freqpred ←

predcount

lastinit−predinit

3: freqlast ←
lastcount

lastinit−lastinit+1
4: if freqlast > freqpred then

5: return freqlast

freqpred

6: else
7: return

freqpred
freqlast

8: end if
9: end function

Lemma 1. The total number s of splits (number of sub-cell spawned to track
distribution changes) is O( 1

ετ
log2

1
δ
).

Proof. A sub-cell is not involved in the decision process of merging or splitting
while its counter is lower than τN

c2
= ετN . So, no row can own more than 1

ετ

splits. Thus, the maximum numbers of splits among the whole data structure
count is s = O( 1

ετ
log2

1
δ
). ⊓⊔

Theorem 5. Splitter space complexity is O( 1
τε

log2
1
δ
(log2 N + log2 n)) bits,

while update and query time complexities are O(1/ε log2 1/δ) and O(log2
1
δ
).

Proof. Each cell of the count matrix is composed of a counter and a queue of sub-
cells made of two timestamps and a counter, all3 of size O(log2 N) bits. Without
any split and considering that all cells have bootstrapped, the initial space
complexity is O( 1

ε
log2

1
δ
(log2 N + log2 n)) bits. Each split costs two additional

timestamps and a counter (size of a sub-cell). Let s be the number of splits, then
O( 1

ε
log2

1
δ
(log2 N + log2 n) + s log2 N) bits. Lemma 1 establishes the following

space complexity bound: O( 1
ε
log2

1
δ
(log2 N + log2 n) +

1
ετ

log2
1
δ
log2 N) bits.

Each update requires to retrieve and manipulate the first sub-cell of all the
count matrix cells. Then, for each row it has to retrieve a cell and manipulate its
last and pred sub-cells. Thus, the update time complexity is O( 1

ε
log2

1
δ
). Each

query requires to lookup one cell by row of the count matrix. Then, the query
time complexity is again O(log2

1
δ
). ⊓⊔

Note that the space complexity can be reduced by removing the cell counter v.
However, the query time would increase since this counter must be reconstructed
summing all the sub-cell counters. One can argue that sub-cell creations and
destructions cause memory allocations and disposals. However, we believe that
one can avoid wild memory usage leveraging the sub-cell creation patterns, either
through a smart memory allocator or a memory aware data structure.

Finally, Table 1 summarizes the space, update and query complexities of the
presented algorithms.

3 Note that, for sake of clarity, timestamps are of size O(log
2
m) bits in the pseudo-code.

However, counters of size O(log
2
N) bits are sufficient.
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Table 1: Complexities comparison

Algorithm Space (bits) Update time Query time

Vanilla Count-Min O( 1
ε
log

2

1

δ
(log

2
m+ log

2
n)) O(log

2

1

δ
) O(log

2

1

δ
)

Perfect O(N) O(log
2

1

δ
) O(log

2

1

δ
)

Simple O( 1
ε
log

2

1

δ
(log

2
N + log

2
n)) O(log

2

1

δ
) O(log

2

1

δ
)

Proportional O( 1
ε
log

2

1

δ
(log

2
N + log

2
n)) O( 1

ε
log

2

1

δ
) O(log

2

1

δ
)

Splitter O( 1

τε
log

2

1

δ
(log

2
N + log

2
n)) O( 1

ε
log

2

1

δ
) O(log

2

1

δ
)

3.5 Distributed Count-Min

Note that the count matrix is a linear-sketch data structure, which means that for
every two streams σ1 and σ2, we have Count-Min(σ1∪σ2) = Count-Min(σ1)⊕
Count-Min(σ2), where σ1∪σ2 is a stream containing all the samples of σ1 and σ2

in any order, and ⊕ sums the underlying count matrix term by term. Considering
only the last N samples of σ1 and σ2, the presented algorithms are also linear-
sketches.

The sketch property is suitable for the distributed context. Each node can run
locally the algorithm on its own stream σℓ (ℓ ∈ [k]). The coordinator can retrieve
all the countℓ matrices (ℓ ∈ [k]), sum them up and obtain the global matrix
count =

⊕

ℓ∈[k]countℓ. The coordinator is then able to retrieve the frequency
estimation for each item on the global distributed stream σ = σ1 ∪ . . . ∪ σk.

Taking inspiration from [12], we can define the DistCM algorithm, which
sends the count matrix to the coordinator each εN samples. DistCM can be
applied to the four aforementioned windowed extensions of Vanilla Count-Min,
resulting in a distributed frequency (ε, δ)-approximation in the sliding windowed
distributed functional monitoring model. Due to space constraints, proofs of the
following theorems are available in Appendix ??.

Theorem 6. DistCM communication complexity is O( k
ε2

log2
1
δ
log2 N) bits

per window.

Proof. In each window and for each node uℓ (ℓ ∈ [k]), DistCM sends the
count matrix at most N

εN
= 1

ε
times. Thus the communication complexity is

O( k
ε2

log2
1
δ
log2 N) bits per window. ⊓⊔

Theorem 7. DistCM introduces an additive error of at most kεN , i.e, the skew
between any cell (i1, i2) of the global count matrix at the coordinator and the sum
of the cells (i1, i2) of the countℓ matrices (ℓ ∈ [k]) on nodes is at most kεN .

Proof. Similarly to [12], the coordinator misses for each node uℓ (ℓ ∈ [k]) at most
the last εN increments. Then, the global count cells cannot fall behind by more
than kεN increments. Thus DistCM introduces at most an additive error of
kεN . ⊓⊔
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3.6 Time-based windows

We have presented the algorithms assuming count-based sliding windows, however
all of them can be easily applied to time-based sliding windows. Recall that in
time-based sliding windows the steps defining the size of the window are time
ticks instead of sample arrival.

In each algorithm it is possible to split the update code into a subroutine
increasing the count matrix and a subroutine decreasing the count matrix, Let
denote the former as updateSample and the latter as updateT ick. At each
sample arrival, the algorithm will perform the updateSample subroutine, while
performing the updateT ick subroutine at each time tick (i.e. step). Note that
time-stamps have to be updated using the current tick count.

This modification affects the complexities of the algorithms, since N is no
longer the number of samples, but the number of time ticks. Thus, the complexities
improve or worsen, depending if the number of sample arrivals per time tick is
greater or lower than 1.

4 Performance Evaluation

This section provides the performance evaluation of our algorithms. We have
conducted a series of experiments on different types of stream and parameter
settings. To check the robustness of our algorithms, we have fed them with
synthetic traces and real-world datasets. The latter give a representation of
some existing monitoring applications, while synthetic traces allow to capture
phenomena that may be difficult to obtain otherwise. Each run has been executed
a hundred times, and we provide the mean over the repeated runs, after removing
the 1-st and 10-th deciles to avoid outliers.

Settings If not specified otherwise, in all experiments, the window size is
N = 50, 000 and streams are of length m = 3N (i.e. m = 150, 000) with
n = 1, 000 distinct items. Note that we restrict the stream to 3 windows since
the behaviour of the algorithms in the following windows does not change. We
skip the first window where all algorithms are trivially perfect.

The Vanilla Count-Min uses two parameters: δ that sets the number of
rows c1, and ε, which tunes the number of columns c2. In all simulations, we have
set ε = 0.01, meaning c2 = ⌈ e

0.01⌉ = 28 columns. Most of the time, the count
matrix has several rows. However, analysing results using multiple rows requires
taking into account the interaction between the hash functions. If not specified,
for sake of clarity we present the results for a single row (δ = 0.5).

In order to simulate changes in the distribution over time, our stream generator
considers a width w, a period p and a number of repetitions r as parameters.
After every p samples, the distribution is shifted right (from lower to greater
items) by w positions. Then, after r shifts, the distribution is reset to the initial
unshifted version. If not specified, the default settings are w = 2c1, p = 10, 000
and r = 4.
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Fig. 1: Results for different window sizes: N ∈ {50k, 100k, 200k, 400k}

We evaluate the performance by generating families of synthetic streams,
following five distributions: (i) Uniform: uniform distribution; (ii) Normal:
truncated standard normal distribution; (iii) Zipf1: Zipfian distribution with
α = 1.0; (iv) Zipf2: Zipfian distribution with α = 2.0; and (v) Plateau: a
distribution where the probabilities are divided in two levels: a set of w items is
100 times more probable than the other n− w samples.

Recall that Splitter has two additional parameters: µ and τ . We provide
the results for µ = 1.5 and τ = 0.05. Their influence is analysed in Section 4.2.
Given these parameters, we have an upper bound of s = 560 spawned sub-cells.

Finally, the accuracy metric used in our evaluation is the mean squared error
of the frequency estimation of all n items returned by the algorithms with respect
to Perfect, that is

∑

j∈[n](f̂
Perfect
j − f̂Algo

j )2/n. We refer to this metric as
estimation error.

We also evaluate the additional space used by Splitter, due to merge and
split mechanism, through the number of splits s.

4.1 Comparing the performance of all algorithms

Window sizes Figure 1(a) presents the estimation error of the Simple, Pro-
portional and Splitter algorithms considering the Normal, Plateau, Zipf1
and Zipf2 distributions, with N = 50, 000 (so m = 150, 000), N = 100, 000
(so m = 300, 000), N = 200, 000 (so m = 600, 000) and N = 400, 000 (so
m = 1, 200, 000). Note that the y-axis (error) is in logarithmic scale and error
values are averaged over the whole stream. Simple is always the worst (more
than 107 in average), followed by Proportional (roughly 2.4× 106 in average),
while Splitter is always the best (less than 3.7 × 104). The error estimation
of Simple, Proportional and Splitter increases in average 3.7×, 8.9× and
4.2× respectively for each 2-fold increase of N .

Figure 1(b)give the number of splits Splitter spawned in average to keep
up with the distribution changes. The number of splits is globally unaffected by
N since the ratio N/p remain constant: in average, there are 30 splits, while the
standard deviation over all experiments is 2.2.
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Fig. 2: Results for different periods: p ∈ {1k, 4k, 16k, 64k}
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Fig. 3: Results for different number of rows: c1 ∈ {1, 2, 4, 8}

Periods Recall that the distribution is shifted each p samples. The estimation
error and the number of splits for p ∈ {1, 000; 4, 000; 16, 000; 64, 000} are displayed
in Figure 2. Again, Splitter is always the best (at most 103), followed by
Proportional (roughly 2× 105 in average), while Simple is always the worst
(more than 106). Simple grows slowly but continuously (in average 2 times
from 1, 000 to 64, 000) because slower shifts cast all the error on less items,
resulting in a larger mean squared error. The same phenomenon causes also the
Proportional trend from 1, 000 to 16, 000. However for 64, 000 we have less
than a shift per window, meaning that some window will have a non-changing
distribution and Proportional will be almost perfect. In general Splitter
estimation error is not heavily affected by decreasing p since it keeps up spawning
more sub-cells. For p = 64, 000 we have at most 7 splits, while for p = 1, 000
we have in average 166 splits. Each 4-fold decrease of p increases the number of
splits by 3.4× in average.

Rows The Count-Min algorithm uses a hash-function for each row mapping
items to cells. Using multiple rows produces different collisions patterns, increasing
the accuracy. Figure 3 presents the estimation error and splits for c1 = 1 (δ = 0.5),
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Fig. 5: Frequency estimation of item 0 with multiple distributions

c1 = 2 (δ = 0.25), c1 = 4 (δ = 0.0625) and c1 = 8 rows (δ = 0.004). Increasing the
number of rows do enhance the accuracy of the algorithms. However, Simple does
not better than 105, followed by Proportional, roughly 8.5× 104 in average,
and Splitter has the lowest error, at most 513. For each distribution shift,
2w item change their occurrence probability, meaning that (without collisions)
most likely 2wc1 cells will change their update rate. Since w = 2c1, we have 4c21
potential splits per shift. Hopefully, the number of splits growth is not quadratic:
in average it increases by 2.4× for each 4-fold increase of c1.

Multiple distributions This test on a synthetic trace has p = 15, 000 and swaps
the distribution each 60, 000 samples in the following order: Uniform, Normal,
Uniform, Zipf1, Uniform, Zipf2, Uniform, Plateau. The streams is of length
m = 480, 000. Note that the distribution shifts and swaps are not synchronized
with the window swaps (N = 50, 000 samples).

Figure 4 presents the estimation error evolution as the stream unfolds. Split-
ter error does not exceed 5× 103 (in average 718), while Proportional goes
up to 2 × 106 (in average 3 × 105) and Simple does not better than 5 × 103

(in average 2.6× 106). Since at the beginning of each window Simple resets its
count matrix, there is a periodic behaviour: the error burst when a window starts
and shrinks towards the end. In the 1-st (0 to 50, 000) and in the 6-th windows
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(250, 000 to 300, 000) the distribution does not change over time (shifting Uniform
has no effect). This means that Splitter does not capture more information
than Proportional, thus they provide the same estimations in the 2-nd (50, 000
to 100, 000) and the 7-th windows (300, 000 to 350, 000).

Figure 5 presents the value of f0 and its estimations over time (for clarity
Simple is omitted). The plain line is f0, which also reflects the distribution
changes. The plots for Perfect and Splitter are overlapping, this is why only
blackened squares are visible. Except for the error introduced by the Count-

Min approximation, they both follow the f0 shape precisely. Item 0 occurrence
probability changes significantly in the following intervals: [60k, 75k], [180k, 195k],
[300k, 315k] and [420k, 435k]. Proportional fails to follow the f0 trend in the
windows following those intervals, namely the 3-rd, 5-th, 8-th and 10-th, since it
is unable to correctly asses the previous window distribution.

Finally, Figure 6 presents the number of splits s. There are in average 31
and at most 66 splits (while s upper bound is 560). Splits decrease when the
distribution does not change (in the Uniform intervals): some sub-cells expire
and no new sub-cells are created. In other words Splitter correctly detects that
no changes occur. Conversely, when a distribution shifts or swaps there is a steep
growth, meaning that the change is detected. This pattern is clearly visible in
the 2-nd window.

Real DDoS trace We have retrieved the CAIDA “DDoS Attack 2007” [6]
and “CAIDA Anonymized Internet Traces 2008” [5] datasets, interleaved them
and retained the first 350, 000 samples (i.e., the DDoS attack beginning). The
stream has n = 4.9× 104 distinct items. The item representing the DDoS target
has a frequency proportion equal to 0.09, while the following most frequent
item frequency proportion is 0.004. Figure 7(a) presents the estimation error
evolution. In order to avoid drowning the estimation error in the high number
of items, we have restricted the computation to the most frequent 7500 items,
which cover 75% of the stream4. We can see trends similar to the previous test,
however the estimation provided by Proportional is closer to Splitter since
the stream changes much less over time. Simple does not better than 5.7× 103,

4 The remaining items have a frequency proportion lower than 2× 10−5.
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Fig. 8: Performance comparison with τ = 0.05 and µ ∈ {0.9, 2.5}

while Proportional and Splitter do not exceed 2.1 × 104 and 1.4 × 103

respectively. As for the splits, there are at most 154 splits with an average of 105
splits. Figure 7(b) resumes the average values over the whole stream.

4.2 Impact of the Splitter parameters

Figure 8 presents the estimation error and the number of splits with µ ∈ {0.9, 2.5}
and τ = 0.05. As expected, the estimation error grows with µ. Zipf1 goes from
18 (µ = 0.9) to 4, 944 (µ = 2.5), while the other distributions in average go from
110 (µ = 0.9) to 684 (µ = 2.5). Conversely, increasing µ decreases the number of
splits. Since Error cannot return a value lower than 1.0, going from 1.0 to 0.9
has almost no effect with at most 454 splits, roughly 19% less than the upper
bound. From µ = 1.0 to 1.3, the average falls down to 51, reaching 20 at µ = 2.5.

Figure 9 presents the estimation error and splits with τ ∈ {0.005, 0.5} and
µ = 1.5. Note that the x-axis (τ) is logarithmic. As for µ, increasing τ increases
the estimation error: the average starts at 4 (τ = 0.005), reaches 610 at τ = 0.1
and grows up at 12, 198 (τ = 0.5). Conversely, increasing τ decreases the number
of splits: the average starts at 1, 659 (τ = 0.005), reaches 77 at τ = 0.02 and ends
up at 14 (τ = 0.5). Figure 9(b) presents also the theoretical upper bound.
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Fig. 9: Performance comparison with µ = 1.5 and τ ∈ {0.005, 0.5}

The trend in all four plots (and the results for different values of p and c1)
hints to the existence of some optimal value of µ and τ to minimize the error
and the splits. This optimal value could either be independent from the stream
distribution or computed based on the recent behaviour of the algorithm and
some constraints provided by the user.

5 Conclusion and Future Work

We have presented two (ε, δ)-approximations for the frequency estimation problem
in the sliding window functional monitoring model: Proportional and Split-

ter. We have proven that their space complexities are O( 1
ε
log2

1
δ
(log2 N+log2 n))

and O( 1
τε

log2
1
δ
(log2 N + log2 n)) bits respectively, while their update and query

time complexities are O( 1
ε
log2

1
δ
) and O(log2

1
δ
). Leveraging the sketch property,

we have shown how they can be applied to distributed data streams with a
communication cost of O( k

ε2
log2

1
δ
log2 N) bits per window. However, we believe

there is still room for improvement.
We have performed an extensive performance evaluation showing the accuracy

of both algorithms in the face of real world traces and of specifically tailored
adversarial synthetic traces. We have also studied the impact of the two additional
parameters of Splitter: τ and µ.

From these results, we are looking forward to an extensive formal analysis of
the approximation and space bounds of our algorithms. In particular, we seek
some insight for computing the optimal values of τ and µ, minimizing the space
usage and maximizing the accuracy of Splitter.
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