Advanced thermo-mechanical characterization of organic materials by piezoresistive organic resonators - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Materials Horizons Année : 2015

Advanced thermo-mechanical characterization of organic materials by piezoresistive organic resonators

Résumé

We present the piezoresistive transduction of an all-organic microelectromechanical (MEMS) resonant sensor fabricated through a low-cost and highly versatile process. The MEMS resonator consists of a U-shaped cantilever beam resonator made of a thin layer of a piezoresistive nanocomposite (SU/8 epoxy resin filled with industrially produced carbon nanotubes, or CNTs) deposited on flexible substrates such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and paper. The structures have been fabricated using a commercially available vinyl cutting machine. External piezoelectric actuation has been used to drive the devices into resonance while integrated piezoresistive transduction has been chosen as the resonance sensing approach. The achieved measurements validate the concept of dynamic piezoresistive-transduced organic MEMS. Sensitivity to temperature compares with that of state-of-the-art inorganic temperature sensors, thus confirming the high accuracy level of the new resonators. As an example of a sensing application, the present MEMS are employed as microdynamical mechanical analyzers enabling the rapid, low-cost and accurate characterization of the viscoelastic properties of organic materials.
Fichier principal
Vignette du fichier
postprint_Materials_Horizons_VF.pdf (370.79 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01073816 , version 1 (16-12-2014)

Identifiants

Citer

Damien Thuau, Cédric Ayela, Etienne Lemaire, Stephen Heinrich, Philippe Poulin, et al.. Advanced thermo-mechanical characterization of organic materials by piezoresistive organic resonators. Materials Horizons, 2015, 2, pp.106-112. ⟨10.1039/C4MH00165F⟩. ⟨hal-01073816⟩
155 Consultations
326 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More