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Toulouse, France, bCEMES-CNRS UPR 8011, Toulouse, France, cLaboratoire de

Génie Chimique, UMR 5503 CNRS–INPT–UPS, Université de Toulouse, Toulouse,
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Calcium pyrophosphate hydrate (CPP, Ca2P2O7�nH2O) and

calcium orthophosphate compounds (including apatite, octa-

calcium phosphate etc.) are among the most prevalent

pathological calcifications in joints. Even though only two

dihydrated forms of CPP (CPPD) have been detected in vivo

(monoclinic and triclinic CPPD), investigations of other

hydrated forms such as tetrahydrated or amorphous CPP

are relevant to a further understanding of the physicochem-

istry of those phases of biological interest. The synthesis of

single crystals of calcium pyrophosphate monohydrate

(CPPM; Ca2P2O7�H2O) by diffusion in silica gel at ambient

temperature and the structural analysis of this phase are

reported in this paper. Complementarily, data from synchro-

tron X-ray diffraction on a CPPM powder sample have been

fitted to the crystal parameters. Finally, the relationship

between the resolved structure for the CPPM phase and the

structure of the tetrahydrated calcium pyrophosphate � phase

(CPPT-�) is discussed.

Keywords: crystal structure; calcium pyrophosphate hydrates;

powder diffraction; structure determination; pathological

calcification; synchrotron study.

1. Introduction

Calcium pyrophosphate hydrate (CPP) and calcium ortho-

phosphate compounds (including apatite, octacalcium phos-

phate, tricalcium phosphate and whitlockite) are among the

most prevalent pathological calcifications in joints

(MacMullan et al., 2011). CPP crystals are particularly

involved in several kinds of arthritis, including osteoarthritis, a

degenerative joint disorder affecting 80% of the population

over 75 (Ea et al., 2011). Two different CPP phases have been

detected in vivo in joints, viz. monoclinic and triclinic calcium

pyrophosphate dihydrates (CPPD), referred to as m-CPPD

and t-CPPD, respectively (Liu et al., 2009). In vivo studies

have revealed that both are associated with a high inflam-

matory potential, probably due to their interaction with cell

membranes (Roch-Arveiller et al., 1990).

Several other forms of calcium pyrophosphate hydrates

have also been synthesized in vitro, including two monoclinic

calcium pyrophosphate tetrahydrates (CPPT), denoted

m-CPPT-� and m-CPPT-�, and an amorphous phase, denoted

a-CPP, which has been described as much more stable than the

calcium phosphate and calcium carbonate amorphous phases

(Brown et al., 1963; Slater et al., 2011).

Although the thermal decomposition of calcium ortho-

phosphates has been studied extensively, few data are avail-

able on the behaviour of calcium pyrophosphate hydrates at

high temperature. The dehydration process of m-CPPT-� is

described as occurring in four steps (Christoffersen et al., 2000;

Gras et al., 2013). First, the loss of one water molecule occurs

at low temperature (�323 K) to form a trihydrated calcium

pyrophosphate (Gras et al., 2013). This phase was revealed to

be highly metastable, rehydration occurring in less than 15 min

under normal conditions of humidity at room temperature.

The second step in the dehydration process corresponds to the

loss of two water molecules at around 373 K to form calcium

pyrophosphate monohydrate (CPPM). The next dehydration

step involves the formation of a calcium orthophosphate

phase, monetite CaHPO4, by hydrolysis of the pyrophosphate

molecules, and the final step is condensation into anhydrous

�-Ca2P2O7. The structures of the tri- and monohydrated

phases were described in the earlier works, but a full under-

standing of the different steps in the dehydration of CPP

hydrates, particularly the involvement of hydrolysis reactions

of the pyrophosphate molecules, is still lacking.

The present study focuses on the structure of calcium

pyrophosphate monohydrate resolved by single-crystal X-ray

diffraction (XRD) as a key step to further understanding the

m-CPPT-� dehydration process. The preparation of CPPM

crystals by diffusion in gel is also described.

2. Experimental

2.1. Synthesis and crystallization

The technique used for the synthesis of hydrated CPP single

crystals consists of the diffusion of separate calcium and

pyrophosphate solutions into a silica gel, leading to a suffi-

ciently high supersaturation in the gel to initiate homogeneous

nucleation and slow growth of calcium pyrophosphate crystals.

The gel method of crystal growth is often used for single-

crystal synthesis because of its simplicity and the quality of the

crystals produced, which are suitable for single-crystal char-

acterization (Tamain et al., 2012).
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Anhydrous tetrasodium pyrophosphate (Na4P2O7) was

obtained by heating disodium hydrogen phosphate (Na2-

HPO4, 100 g, Merck, >99% purity) in a muffle furnace at

673 K for 3 h. Calcium chloride (CaCl2, Merck, >95% purity),

acetic acid solution (VWR, 100% purity) and sodium meta-

silicate pentahydrate (Na2SiO3�5H2O, Aldrich, >95% purity)

were used as received without further purification. All solu-

tions were prepared using deionized water.

The diffusion cell implemented for the present study was

composed of three compartments with the same volume

(150 ml), each separated by a dialysis membrane. The gel was

prepared by adding sodium metasilicate pentahydrate

(Na2SiO3�5H2O, 25 g) to deionized water (300 ml); the gel

obtained had a density of 1.04 Mg m�3 (Deepa et al., 1994).

After complete dissolution, the metasilicate solution was

added continuously with stirring (400 r min�1) to acetic acid

(15 ml) at a constant volumetric flow rate (7.25 ml min�1)

using a peristaltic pump. The alkaline metasilicate was added

until the pH of the final solution reached 5.8. The addition of

the solution to the acid with stirring avoided the formation of

inhomogeneities in the gel microenvironment. The solution

was then poured into the central compartment of the diffusion

cell, delimited on both sides by a dialysis membrane (Cellu

Step T3, MWCO 12000-14000), and a homogeneous gel was

obtained after 48 h of maturation.

The calcium and pyrophosphate reagent solutions were

prepared separately by dissolving CaCl2 (13.88 g, 12.50 �

10�2 mol) and Na4P2O7 (16.62 g, 6.25 � 10�2 mol) in de-

ionized water (250 ml). Each solution was poured into one

side compartment of the cell. The system was then kept

undisturbed for two weeks at room temperature.

m-CPPT-� crystal spherulites were formed with a diameter

of around 1 mm, containing crystals large enough for X-ray

characterization. The crystals showed a thin platelet morph-

ology with an orientation perpendicular to [100]. These large

crystals of m-CPPT-� were then heated at 383 K for 30 min,

resulting in their dehydration into the monoclinic calcium

pyrophosphate monohydrate phase (m-CPPM).

2.2. Refinement

Crystal data, data collection and structure refinement

details are summarized in Table 1. The selected crystal of

m-CPPM was mounted on a Microloop (MiTeGen) using

perfluoropolyether oil and cooled rapidly to 180 K in a stream

of cold N2. However, owing to the small size and rather poor

quality of the m-CPPM crystals that were obtained by heating

m-CPPT-� crystals at 383 K for 30 min, large and elongated

reflections were registered, limiting the accuracy of the

structural parameters. The position of H atoms were deter-

mined using Fourier difference maps and all H-atom para-

meters were refined freely.

Complementarily, we checked that the data (the structural

parameters) obtained from single-crystal XRD fitted the

X-ray powder diffraction data collected on the Cristal beam-

line at the SOLEIL synchrotron (Gif-sur-Yvette, France;

http://www.synchrotron-soleil.fr/). A monochromatic beam

was selected using an Si(111) double-crystal monochromator

and its wavelength (0.72442 Å) determined using NIST stan-

dard LaB6. The powder sample was placed in a 0.7 mm

diameter glass capillary, mounted on a spinner to improve

averaging. High angular resolution was obtained with the 21

(i.e. 21 diffraction patterns in a single acquisition) perfect-

crystal Si(111) rear analyser mounted on a two-circle

diffractometer.

The powder diffraction pattern was indexed using the LSI

method implemented in TOPAS (Coelho, 2003, 2009) in a

monoclinic system of setting P21/n or P21/c. The Rietveld

refinement was performed using JANA2006 (Petřı́ček et al.,

2006).

3. Results and discussion

The XRD data obtained from the single-crystal analysis led to

the refined cell constants and additional crystal data reported

in Table 1. The resolved molecular structure for the CPPM

phase is presented in Fig. 1. Selected bond lengths are

reported in Table 2.

The reciprocal lattice corresponds to a monoclinic system,

with systematic extinctions consistent with the space group

P21/n, similar to the space group of the m-CPPT-� structure

determined by Balić-Žunić et al. (2000), and its asymmetric

unit contains only one unit, Ca2P2O7�H2O.

We checked the structure determined from single-crystal

XRD data by using a refinement of synchrotron X-ray powder

diffraction data for the m-CPPM sample (Fig. 2). The unit-cell

Table 1
Experimental details.

Crystal data
Chemical formula Ca2P2O7�H2O
Mr 272.12
Crystal system, space group Monoclinic, P21/n
Temperature (K) 180
a, b, c (Å) 10.16 (14), 6.97 (5), 10.77 (10)
� (�) 114.4 (4)
V (Å3) 695 (12)
Z 4
Radiation type Mo K�

� (mm�1) 2.11
Crystal size (mm) 0.2 � 0.03 � 0.02

Data collection
Diffractometer Bruker Kappa APEXII diffractom-

eter with a Quasar CCD area-
detector

Absorption correction Multi-scan (SADABS; Bruker, 2001)
Tmin, Tmax 0.665, 0.957
No. of measured, independent and

observed [I > 2�(I)] reflections
7104, 1402, 996

Rint 0.059
(sin �/�)max (Å

�1) 0.625

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.051, 0.133, 1.06
No. of reflections 1402
No. of parameters 117
H-atom treatment All H-atom parameters refined
��max, ��min (e Å�3) 0.89, �0.69

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SORTAV

(Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2014) and
WinGX (Farrugia, 2012).



parameters obtained were a = 10.0058 (5) Å, b = 6.8629 (3) Å,

c = 10.5596 (5) Å and � = 114.258 (2)�. The unit cell for the

P21/c space group was obtained using the transformation

matrix (001/010/101) and refined with cell parameters a =

10.5596 (4) Å, b = 6.8630 (2) Å, c = 11.1762 (5) Å and � =

125.257 (2)�, for comparison with the m-CPPT-� structure.

The structure was fully resolved and refined. The results were

in good agreement with the structure obtained by single-

crystal XRD analysis.

We note that the resolved structure for m-CPPM is closely

related to that of m-CPPT-� (Fig. 3). The structure of m-

CPPT-� is formed by alternate layers of water molecules and

calcium pyrophosphate oriented in the (100) plane (Balić-

Žunić et al., 2000). In this structure, two different layers are

linked together only by hydrogen bonds. In a second frame-

work, the inner layer of calcium pyrophosphate can also be

described as constituting layers of calcium and layers of

pyrophosphate organized in the (001) plane, transverse to the

water layers (Fig. 3a). This organization can be compared with

that of brushite (CaHPO4�2H2O), described as a layered

structure in which the layers are held together by water mol-

ecules via hydrogen bonding (Dosen & Giese, 2011). The

dehydration of brushite leads to the formation of monetite,

CaHPO4; these two calcium orthophosphate phases have the

same Ca/P atomic ratio as the m-CPPM and m-CPPT-�

calcium pyrophosphate phases.

It has been shown by Balić-Žunić et al. (2000) that partial

dehydration of m-CPPT-� involves the release of three water

molecules, referred to as OW2, OW3 and OW4. These water

molecules are held in the m-CPPT-� structure either by a weak

interaction with Ca2 (OW2 and OW3) or by hydrogen bonds

only (OW4). They were described as being weakly bound

compared with atom O8, which is coordinated to both Ca1 and

Ca2. The dehydrated structure loses its initial layered organ-

ization based on hydrogen bonds with water molecules, with a

closing of the gap resulting in the formation of bonds between

the pyrophosphate molecules and calcium, as observed in the

m-CPPM structure. The layered framework of calcium and

pyrophosphate still remains in the (001) plane, but is slightly

modified.

The transition between these inner calcium pyrophosphate

structures could be described as a reorganization of the

calcium (001) framework, related to the formation of the

Ca2—O5 coordination between the different layers. The Ca

layer is inclined at 2.2� relative to (001) in m-CPPM, compared

with an inclination of 11.5� for m-CPPT-�. The Ca2—O5

coordination is created in the former water layers and, as a

consequence, the inner layered structure is slightly modified

by this reorientation. Atoms Ca1 and P1, in particular, keep

almost the same structural environment in m-CPPM as in

m-CPPT-�, on the 21 axes for Ca1 and on the c-glide for P1.

This deformation, supposedly based on the orientation of

the calcium framework, leads to greater deformations of the

P2 tetrahedron of the pyrophosphate molecules. It also

involves a change in the Ca2 environment, which evolves from

coordination polyhedra with a coordination number of 7

(CN7) to new ones with CN6. CN6 has not yet been observed

for hydrated calcium pyrophosphate, but it is common for

anhydrous calcium pyrophosphates �-Ca2P2O7, other hydra-

ted pyrophosphate compounds (X2P2O7�2H2O; X = Mg, Mn,

Figure 1
The molecular structure of m-CPPM, showing the atom-numbering
scheme and symmetry-equivalent atoms. Displacement ellipsoids are
drawn at the 50% probability level, except for H atoms, which are
represented by 20% probability spheres. [Symmetry codes: (a) x + 1

2,
�y + 1

2, z +
1
2; (b)�x + 3

2, y +
1
2,�z + 3

2; (c)�x + 1,�y + 1,�z + 1; (d) x, y + 1,
z; (e) x � 1

2, �y + 3
2, z �

1
2; (f) �x + 1

2, y +
1
2, �z + 3

2; (g) x �
1
2, �y + 1

2, z �
1
2.]

Table 2
Selected bond lengths (Å).

Ca1—O7i 2.37 (2) Ca2—O1ii 2.388 (18)
Ca1—O2i 2.389 (16) Ca2—O7i 2.427 (18)
Ca1—O4ii 2.410 (14) Ca2—O8v 2.554 (16)
Ca2—O5iii 2.33 (3) Ca2—O3iv 2.968 (18)
Ca2—O6iv 2.34 (2)

Symmetry codes: (i) �xþ 3
2; yþ

1
2;�zþ 3

2; (ii) �xþ 1;�yþ 1;�zþ 1; (iii)
xþ 1

2;�yþ 1
2; z�

1
2; (iv) �xþ 1;�y;�zþ 1; (v) �xþ 3

2; y�
1
2;�zþ 3

2.

Figure 2
Rietveld plot for the m-CPPM phase based on the powder XRD pattern.
Observed data points are indicated by dots, and the best-fit profile (upper
trace) and the difference pattern (lower trace) are solid lines. The vertical
bars indicate the positions of the Bragg peaks.



Fe, Co) or calcium phosphate hydrates like octacalcium

phosphate, and could explain the dehydration mechanism

without a major reorganization. The loss of water molecules

OW2 and OW3 and the formation of the Ca2—O5 coordina-

tion deforms the Ca2 coordination polyhedra.

The new coordination provides the only link between the

former calcium pyrophosphate layers, the remaining hydrogen

bond of O8 being reoriented to the closest pyrophosphates on

the same side of the initial gap between the calcium pyro-

phosphate layers. As a consequence, the Ca2 polyhedron is a

highly distorted octahedron, resembling a pentagonal bipy-

ramid with a missing O atom due to dehydration. Indeed,

atom O5 takes a position between the former OW2 and OW3

positions in the coordination sphere, closer to the OW3

position. Water molecule OW3 has already been reported by

Balić-Žunić et al. (2000) to face atom O5 with matching

surfaces. The Ca2 distorted octahedron has an O6—Ca2—O7

[171.85 (18)�] axis to which the equatorial O1—O2—O5—O8

plane is nearly perpendicular [87.3 (15)�]. The angles between

the Ca2—O bonds show the initial position of the water

molecules by virtue of a larger distortion at that position:

78.5 (7) (O8—Ca2—O5), 78.6 (8) (O8—Ca2—O2), 80.1 (6)

(O2—Ca2—O1) and 119.5 (6)� (O5—Ca2—O1). The next

closest O atom in the m-CPPM structure is O3 at 2.97 (4) Å,

but this cannot be considered part of the Ca2 coordination

environment, due to its distance and position as a bridging

atom in the pyrophosphate molecule.

In the m-CPPM structure, the Ca atoms of parallel Ca

chains are surrounded by oxygen polyhedra sharing O–O

edges. Atom O1 is a shared vertex between the Ca1 poly-

hedron at (x, y, z) and the Ca2 polyhedron at (�x + 1, �y + 1,

�z + 1), resulting in a Ca chain. The orientations of the

pyrophosphate molecules, defined by the P1� � �P2 vector, are

alternately parallel to [011] and [011] in a complementary

structure.

Pyrophosphate molecules are reported to have a very high

flexibility with two characteristic configurations, staggered or

eclipsed (Rulmont et al., 1991). Similar to pyrosilicates,

pyroarsenates or pyrogermanates, crystals of pyrophosphate

compounds of the composition X2P2O7, with an ionic radius of

X less than 0.97 Å (X = Mg, Mn, Fe, Co, Ni, Cu, Zn), are

isostructural with thortveitite (Sc2Si2O7), with the P—O—P

bond angle varying from 140 to 180�, an O—P� � �P—O

pseudo-torsion angle of 60� (staggered conformation) and the

YO4 (Y = P, Si, As, Ge) tetrahedra showing a very low degree

of distortion. For an ionic radius greater than 0.97 Å (X = Ca,

Sr, Ba) or for hydrates, pyrophosphate molecules usually have

the same configuration as the dichromate structure, with a P—

O—P angle of approximately 120–135�, an O—P� � �P—O

pseudo-torsion angle of 0–30� (eclipsed conformation) and

distorted YO4 (Y = P, Si, As, Ge) tetrahedra (Davis et al.,

1985). In the present structure of m-CPPM, the angle of the

P—O—P bridge, the torsion between the two phosphate

tetrahedra and the P—O3 distance correspond to an eclipsed

configuration. The evolution of this structure leads to a highly

deformed P2 tetrahedron for m-CPPM, with the P2—O3

distance, 1.680 (16) Å, being the highest reported to date. The

two tetrahedra have the same orientation, with a difference

between the O4/O1/O3 and O6/O5/O3 bases of the phosphate

group of 12.2 (3)� and a O4—P1� � �P2—O6 torsion angle of

4.9 (6)� [this torsion is defined by Mandel (1975) and the

choice is based on the orientation of the central O atom]. For

comparison, the angle between the two terminal phosphate

groups for m-CPPT-� is 19.6� and the torsion angle is 9.1�.

Finally, the P1—O3—P1 angle in m-CPPM is 132.7 (4)�,

compared with 134.1� for m-CPPT-�.

Dehydration leads to a higher density, from 2.36 Mg m�3

for m-CPPT-� to 2.60 Mg m�3 for m-CPPM. The volume of

the cell also decreases by 25%, from 918.4 to 695 (12) Å3.

The distance between atoms O8 and O3 in the m-CPPM

structure is 3.21 (4) Å. The water molecule is close to the

central O atom of the pyrophosphate molecule. This config-

uration could favour the internal hydrolysis of pyrophosphate

ions into hydrogenphosphate ions. This would contribute to

our understanding of the hydrolysis phenomenon occurring

during the next step in the dehydration of the m-CPPM phase.

The next step that occurs upon heating m-CPPM corre-

sponds, unexpectedly, to the transient hydrolysis of pyro-

Figure 3
Comparison of projections along the b axis of (a) the structure of
m-CPPM, showing the polyhedron frameworks in the structure with P21/c
symmetry (dashed lines indicate hydrogen bonds), and (b) the structure
of m-CPPT-�.



phosphate ions and the formation of monetite (CaHPO4). At

higher temperatures, condensation of the hydrogen phosphate

re-forms the pyrophosphate ions, i.e. �-Ca2P2O7, and

completes the dehydration process.
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Structure of the calcium pyrophosphate monohydrate phase (Ca2P2O7·H2O): 

towards understanding the dehydration process in calcium pyrophosphate 

hydrates

Pierre Gras, Nicolas Ratel-Ramond, Sébastien Teychéné, Christian Rey, Erik Elkaim, Béatrice 

Biscans, Stéphanie Sarda and Christèle Combes

Computing details 

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SORTAV (Blessing, 

1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: 

SHELXL2014 (Sheldrick, 2014).

Calcium pyrophosphate monohydrate 

Crystal data 

Ca2P2O7·H2O
Mr = 272.12
Monoclinic, P21/n
Hall symbol: -P 2yn
a = 10.16 (14) Å
b = 6.97 (5) Å
c = 10.77 (10) Å
β = 114.4 (4)°
V = 695 (12) Å3

Z = 4

F(000) = 544
Dx = 2.602 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 1804 reflections
θ = 3.7–27.8°
µ = 2.11 mm−1

T = 180 K
Needle, colourless
0.2 × 0.03 × 0.02 mm

Data collection 

Bruker Kappa APEXII 
diffractometer with Quasar CCD area-detector

Radiation source: micro-focus
Multilayer optics monochromator
φ and ω scans
Absorption correction: multi-scan 

(SADABS; Bruker, 2001)
Tmin = 0.665, Tmax = 0.957

7104 measured reflections
1402 independent reflections
996 reflections with I > 2σ(I)
Rint = 0.059
θmax = 26.4°, θmin = 5.3°
h = −12→12
k = −8→8
l = −13→13

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.051
wR(F2) = 0.133
S = 1.06
1402 reflections
117 parameters

0 restraints
Primary atom site location: structure-invariant 

direct methods
Secondary atom site location: difference Fourier 

map
Hydrogen site location: inferred from 

neighbouring sites
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All H-atom parameters refined
w = 1/[σ2(Fo

2) + (0.0566P)2 + 4.017P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max < 0.001
Δρmax = 0.89 e Å−3

Δρmin = −0.69 e Å−3

Special details 

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and 
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. 
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

O1 0.4356 (5) 0.4417 (6) 0.6198 (4) 0.0238 (10)
O2 0.6208 (4) 0.2267 (6) 0.5986 (4) 0.0179 (9)
O3 0.4099 (4) 0.0743 (6) 0.6350 (4) 0.0205 (10)
O4 0.3620 (4) 0.2220 (6) 0.4061 (4) 0.0220 (10)
O5 0.4312 (5) 0.1701 (7) 0.8751 (4) 0.0304 (11)
O6 0.3854 (5) −0.1793 (7) 0.7846 (5) 0.0282 (11)
O7 0.6306 (4) −0.0269 (7) 0.8522 (4) 0.0235 (10)
O8 0.5937 (5) 0.5446 (9) 0.9158 (5) 0.0264 (11)
P1 0.45546 (16) 0.2487 (2) 0.56019 (15) 0.0184 (4)
P2 0.46790 (17) 0.0080 (2) 0.79898 (15) 0.0200 (4)
Ca1 0.70409 (13) 0.51047 (18) 0.74953 (12) 0.0186 (3)
Ca2 0.73672 (14) 0.3039 (2) 0.43544 (13) 0.0242 (4)
H1 0.572 (10) 0.421 (15) 0.905 (9) 0.05 (3)*
H2 0.526 (13) 0.631 (19) 0.885 (12) 0.10 (4)*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

O1 0.023 (2) 0.022 (2) 0.018 (2) 0.0011 (19) −0.0002 (19) −0.0022 (19)
O2 0.018 (2) 0.019 (2) 0.0101 (19) 0.0007 (17) −0.0011 (17) 0.0001 (17)
O3 0.021 (2) 0.021 (2) 0.011 (2) −0.0021 (19) −0.0020 (17) −0.0002 (18)
O4 0.020 (2) 0.024 (3) 0.012 (2) 0.0000 (19) −0.0039 (17) 0.0001 (18)
O5 0.033 (3) 0.035 (3) 0.017 (2) 0.005 (2) 0.005 (2) −0.003 (2)
O6 0.024 (2) 0.026 (3) 0.024 (2) −0.005 (2) −0.0012 (19) 0.001 (2)
O7 0.016 (2) 0.033 (3) 0.013 (2) 0.0016 (19) −0.0030 (17) 0.0048 (19)
O8 0.023 (3) 0.030 (3) 0.017 (2) 0.000 (2) −0.0017 (19) −0.004 (2)
P1 0.0146 (8) 0.0196 (8) 0.0115 (7) −0.0007 (7) −0.0041 (6) −0.0011 (6)
P2 0.0166 (8) 0.0233 (9) 0.0135 (8) −0.0003 (7) −0.0003 (6) −0.0004 (7)
Ca1 0.0163 (6) 0.0191 (7) 0.0126 (6) −0.0009 (5) −0.0020 (5) −0.0005 (5)
Ca2 0.0192 (6) 0.0315 (8) 0.0141 (6) 0.0024 (6) −0.0008 (5) −0.0004 (6)

Geometric parameters (Å, º) 

O1—P1 1.540 (10) P2—Ca2iii 3.33 (2)
O1—Ca2i 2.388 (18) P2—Ca2ii 3.48 (3)
O1—Ca1 2.54 (3) P2—Ca2v 3.50 (3)
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O2—P1 1.56 (2) Ca1—O7vi 2.37 (2)
O2—Ca1ii 2.389 (16) Ca1—O2vi 2.389 (16)
O2—Ca1 2.476 (14) Ca1—O4i 2.410 (14)
O2—Ca2 2.54 (2) Ca1—O4vii 2.410 (15)
O3—P1 1.627 (9) Ca1—P1i 3.48 (3)
O3—P2 1.680 (16) Ca1—Ca1ii 3.61 (2)
O3—Ca2iii 2.968 (18) Ca1—Ca1vi 3.61 (2)
O4—P1 1.546 (15) Ca1—Ca2vi 3.79 (3)
O4—Ca1i 2.410 (14) Ca1—Ca2 3.81 (3)
O4—Ca1iv 2.410 (15) Ca2—O5viii 2.33 (3)
O5—P2 1.530 (9) Ca2—O6iii 2.34 (2)
O5—Ca2v 2.33 (3) Ca2—O1i 2.388 (18)
O6—P2 1.524 (11) Ca2—O7vi 2.427 (18)
O6—Ca2iii 2.34 (2) Ca2—O8ii 2.554 (16)
O7—P2 1.53 (2) Ca2—O3iii 2.968 (18)
O7—Ca1ii 2.37 (2) Ca2—P2iii 3.33 (2)
O7—Ca2ii 2.427 (18) Ca2—P2vi 3.48 (3)
O8—Ca1 2.49 (2) Ca2—P2viii 3.50 (3)
O8—Ca2vi 2.554 (16) Ca2—Ca1ii 3.79 (3)
P1—Ca1i 3.48 (3)

P1—O1—Ca2i 138.9 (4) O2—Ca1—Ca1vi 142.3 (4)
P1—O1—Ca1 95.6 (5) O8—Ca1—Ca1vi 95.7 (3)
Ca2i—O1—Ca1 120.4 (6) O1—Ca1—Ca1vi 113.63 (15)
P1—O2—Ca1ii 131.1 (5) P1i—Ca1—Ca1vi 63.5 (3)
P1—O2—Ca1 97.7 (4) Ca1ii—Ca1—Ca1vi 150.2 (4)
Ca1ii—O2—Ca1 95.7 (6) O7vi—Ca1—Ca2vi 126.4 (5)
P1—O2—Ca2 123.3 (6) O2vi—Ca1—Ca2vi 41.3 (4)
Ca1ii—O2—Ca2 100.4 (8) O4i—Ca1—Ca2vi 95.8 (7)
Ca1—O2—Ca2 98.9 (6) O4vii—Ca1—Ca2vi 85.6 (6)
P1—O3—P2 132.7 (4) O2—Ca1—Ca2vi 154.58 (16)
P1—O3—Ca2iii 138.8 (5) O8—Ca1—Ca2vi 41.9 (4)
P2—O3—Ca2iii 86.9 (4) O1—Ca1—Ca2vi 109.3 (5)
P1—O4—Ca1i 121.7 (5) P1i—Ca1—Ca2vi 115.9 (6)
P1—O4—Ca1iv 140.2 (4) Ca1ii—Ca1—Ca2vi 125.0 (3)
Ca1i—O4—Ca1iv 96.9 (6) Ca1vi—Ca1—Ca2vi 62.0 (3)
P2—O5—Ca2v 129.1 (4) O7vi—Ca1—Ca2 37.8 (3)
P2—O6—Ca2iii 117.4 (4) O2vi—Ca1—Ca2 122.2 (6)
P2—O7—Ca1ii 132.2 (7) O4i—Ca1—Ca2 77.1 (6)
P2—O7—Ca2ii 121.6 (4) O4vii—Ca1—Ca2 95.2 (6)
Ca1ii—O7—Ca2ii 105.4 (8) O2—Ca1—Ca2 41.2 (3)
Ca1—O8—Ca2vi 97.6 (7) O8—Ca1—Ca2 154.8 (3)
O1—P1—O4 115.1 (4) O1—Ca1—Ca2 84.7 (7)
O1—P1—O2 106.6 (3) P1i—Ca1—Ca2 60.6 (6)
O4—P1—O2 112.9 (5) Ca1ii—Ca1—Ca2 61.4 (2)
O1—P1—O3 109.5 (6) Ca1vi—Ca1—Ca2 104.5 (3)
O4—P1—O3 105.5 (6) Ca2vi—Ca1—Ca2 163.2 (2)
O2—P1—O3 106.9 (5) O5viii—Ca2—O6iii 84.4 (7)
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O1—P1—Ca1i 83.6 (6) O5viii—Ca2—O1i 119.5 (6)
O4—P1—Ca1i 36.1 (4) O6iii—Ca2—O1i 89.8 (5)
O2—P1—Ca1i 109.0 (4) O5viii—Ca2—O7vi 91.2 (7)
O3—P1—Ca1i 136.0 (5) O6iii—Ca2—O7vi 171.85 (18)
O6—P2—O7 111.4 (6) O1i—Ca2—O7vi 86.5 (6)
O6—P2—O5 116.2 (6) O5viii—Ca2—O2 153.8 (2)
O7—P2—O5 112.5 (5) O6iii—Ca2—O2 114.7 (7)
O6—P2—O3 100.9 (4) O1i—Ca2—O2 80.1 (6)
O7—P2—O3 107.1 (4) O7vi—Ca2—O2 71.8 (8)
O5—P2—O3 107.7 (6) O5viii—Ca2—O8ii 78.5 (7)
O6—P2—Ca2iii 38.6 (4) O6iii—Ca2—O8ii 108.1 (5)
O7—P2—Ca2iii 114.8 (5) O1i—Ca2—O8ii 156.5 (3)
O5—P2—Ca2iii 132.4 (7) O7vi—Ca2—O8ii 77.6 (6)
O3—P2—Ca2iii 62.9 (5) O2—Ca2—O8ii 78.6 (8)
O6—P2—Ca2ii 89.1 (7) O5viii—Ca2—O3iii 113.1 (4)
O7—P2—Ca2ii 36.4 (4) O6iii—Ca2—O3iii 54.0 (3)
O5—P2—Ca2ii 100.3 (7) O1i—Ca2—O3iii 110.9 (8)
O3—P2—Ca2ii 141.8 (4) O7vi—Ca2—O3iii 134.2 (3)
Ca2iii—P2—Ca2ii 114.4 (6) O2—Ca2—O3iii 70.3 (4)
O6—P2—Ca2v 85.8 (7) O8ii—Ca2—O3iii 70.7 (7)
O7—P2—Ca2v 135.3 (6) O5viii—Ca2—P2iii 100.1 (7)
O5—P2—Ca2v 31.1 (2) O6iii—Ca2—P2iii 23.99 (16)
O3—P2—Ca2v 109.5 (6) O1i—Ca2—P2iii 97.6 (7)
Ca2iii—P2—Ca2v 104.2 (8) O7vi—Ca2—P2iii 164.04 (14)
Ca2ii—P2—Ca2v 108.0 (8) O2—Ca2—P2iii 93.7 (7)
O7vi—Ca1—O2vi 85.2 (8) O8ii—Ca2—P2iii 93.5 (7)
O7vi—Ca1—O4i 79.1 (5) O3iii—Ca2—P2iii 30.3 (2)
O2vi—Ca1—O4i 84.4 (6) O5viii—Ca2—P2vi 69.8 (9)
O7vi—Ca1—O4vii 81.7 (7) O6iii—Ca2—P2vi 154.1 (3)
O2vi—Ca1—O4vii 81.6 (7) O1i—Ca2—P2vi 101.3 (7)
O4i—Ca1—O4vii 157.0 (3) O7vi—Ca2—P2vi 22.0 (2)
O7vi—Ca1—O2 74.0 (6) O2—Ca2—P2vi 90.4 (9)
O2vi—Ca1—O2 155.4 (3) O8ii—Ca2—P2vi 69.2 (6)
O4i—Ca1—O2 103.9 (7) O3iii—Ca2—P2vi 138.1 (2)
O4vii—Ca1—O2 82.6 (6) P2iii—Ca2—P2vi 161.11 (12)
O7vi—Ca1—O8 163.91 (19) O5viii—Ca2—P2viii 19.8 (2)
O2vi—Ca1—O8 82.9 (8) O6iii—Ca2—P2viii 83.1 (7)
O4i—Ca1—O8 110.4 (5) O1i—Ca2—P2viii 99.6 (7)
O4vii—Ca1—O8 85.9 (7) O7vi—Ca2—P2viii 90.3 (7)
O2—Ca1—O8 114.6 (5) O2—Ca2—P2viii 162.09 (16)
O7vi—Ca1—O1 121.9 (8) O8ii—Ca2—P2viii 97.6 (8)
O2vi—Ca1—O1 145.2 (3) O3iii—Ca2—P2viii 125.3 (4)
O4i—Ca1—O1 80.6 (4) P2iii—Ca2—P2viii 104.1 (7)
O4vii—Ca1—O1 120.7 (5) P2vi—Ca2—P2viii 72.0 (8)
O2—Ca1—O1 59.4 (3) O5viii—Ca2—Ca1ii 116.9 (5)
O8—Ca1—O1 73.4 (8) O6iii—Ca2—Ca1ii 121.9 (6)
O7vi—Ca1—P1i 75.4 (7) O1i—Ca2—Ca1ii 116.9 (4)
O2vi—Ca1—P1i 105.8 (6) O7vi—Ca2—Ca1ii 66.3 (6)
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O4i—Ca1—P1i 22.21 (12) O2—Ca2—Ca1ii 38.3 (4)
O4vii—Ca1—P1i 155.12 (17) O8ii—Ca2—Ca1ii 40.5 (4)
O2—Ca1—P1i 81.9 (6) O3iii—Ca2—Ca1ii 68.1 (5)
O8—Ca1—P1i 118.3 (7) P2iii—Ca2—Ca1ii 98.3 (6)
O1—Ca1—P1i 66.1 (4) P2vi—Ca2—Ca1ii 73.8 (6)
O7vi—Ca1—Ca1ii 70.3 (2) P2viii—Ca2—Ca1ii 133.8 (5)
O2vi—Ca1—Ca1ii 119.3 (6) O5viii—Ca2—Ca1 127.8 (3)
O4i—Ca1—Ca1ii 138.3 (4) O6iii—Ca2—Ca1 146.5 (6)
O4vii—Ca1—Ca1ii 41.6 (3) O1i—Ca2—Ca1 67.5 (4)
O2—Ca1—Ca1ii 41.2 (4) O7vi—Ca2—Ca1 36.8 (6)
O8—Ca1—Ca1ii 106.5 (2) O2—Ca2—Ca1 39.9 (4)
O1—Ca1—Ca1ii 92.1 (4) O8ii—Ca2—Ca1 89.7 (6)
P1i—Ca1—Ca1ii 119.1 (3) O3iii—Ca2—Ca1 110.1 (4)
O7vi—Ca1—Ca1vi 82.9 (3) P2iii—Ca2—Ca1 131.6 (6)
O2vi—Ca1—Ca1vi 43.1 (3) P2vi—Ca2—Ca1 58.5 (7)
O4i—Ca1—Ca1vi 41.6 (4) P2viii—Ca2—Ca1 123.4 (4)
O4vii—Ca1—Ca1vi 123.5 (5) Ca1ii—Ca2—Ca1 56.6 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+1, −y, −z+1; (iv) x−1/2, −y+1/2, z−1/2; (v) x−1/2, −y+1/2, z+1/2; (vi) −x+3/2, 
y+1/2, −z+3/2; (vii) x+1/2, −y+1/2, z+1/2; (viii) x+1/2, −y+1/2, z−1/2.


